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Recent work :
• Probing topology of quasicrystals with Fourier optics

[Dareau et al., arXiv:1607.00901

• Clock spectroscopy of interacting bosons in deep optical lattices
[Bouganne et al., arXiv:1707.04307
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Orbital magnetism of electronic systems

Vector potential A in quantum mechanics : Ĥ =
(p̂−qA)2

2m
, ∇×A = B

Electrons in a magnetic field exhibit many different and fascinating effects :

• Landau diamagnetism, Shubnikov-De
Haas oscillations,

• Vortices in type II superconductors,

• Coherence in mesoscopic physics, ...

• Quantum Hall effect (integer and
fractional)

Fractional Quantum Hall effect:

Emergence of strongly correlated phases of matter :

• incompressible liquids (gap)

• Exotic excitations with fractional charge and
statistics (“anyons”)

• Very similar Quantum Hall states are predicted
for ultracold atomic gases [Cooper, Adv. Phys. 2008].

Laughlin state
Dubail, Read, Rezayi,

PRB 2012

Key elements : flat dispersion relation and interactions
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Aharonov-Bohm and geometric phases

Can we explore orbital magnetism with electrically neutral atoms ?

Vector potential A in
quantum mechanics :

Ĥ =
(p̂− qA)2

2m

∇×A = B

Aharonov-Bohm phase:

φAB =
q

~

∫
C
A · dl

=
q

~

∫
S
B · dS

What about neutral particles (atoms) ?

• Orbital magnetism can be simulated by generating geometric phases

φgeo ≡
1

~

∫
S

(qB)eff · dS

• Coherent atom-light coupling in quantum optics

Review articles : J. Dalibard, F. Gerbier, P. Ohberg, G. Juzeliunas, RMP 2011

N. Goldman, G. Juzeliunas, P. Ohberg, I. Spielman, Rep. Progress. Physics 2014
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Harper Hamiltonian for a charged particle on a tight-binding lattice

Bulk :

Ĥ =
(p̂− qA)2

2m

∇×A = B

Tight-binding lattice :

H = −
∑
〈ri,rj〉

JeiφAB(ri→rj)â†i âj + h.c.

J : single-particle tunnel energy

J J

Jei2πα(y+1)

Je−i2παy
y

x

Landau gauge : A = −Byex

Complex tunnel coefficients:

φAB(ri → rj) =
q

~

∫ rj

ri

A · dl

α =
|q|Bd2

h
=

Magnetic flux/unit cell
Magnetic flux quantum

α =

{
∼ 10−4 in usual solids with ∼ 50 T
∼ 2π in solid-state superlattices or cold atoms.
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A quick glance at experiments
Two broad categories of experiments :

• “Quantum optics” approaches : internal states coupled by one or two-photon
transitions [NIST 2008, Florence 2015]

• Floquet approach : [Pisa, Hamburg, Zürich, Chicago, Munich, MIT]

In all cases, break some symmetry of the “bare” lattice Hamiltonian and project onto a
low-energy subspace.

Observation of single-particle effects

BEC reported only for α = 1/2
• 2D : Aidelsburger et al., PRL 2011,

Struck et al., Nature Physics 2012.

• 3D : Kennedy et al., Nature Physics 2015.

Kennedy et al.

(MIT 2015)

• Heating generally observed

• short BEC lifetime (∼ 50 ms)
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Optical atomic clock technology for many-body physics

Metastable excited state :

• ”clock” transition 3 :
J = 0→ J ′ = 0,

• virtually no spontaneous emission→
coherent manipulation,
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1S0 ≡ |g〉

1P0

3P0 ≡ |e〉
3P1
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• New generation of optical atomic clocks with frequency stability . 10 mHz ( quality
factor ν

∆ν
& 1017)

• N−component Fermi gases with symmetric interactions :
novel many-body problems : N ≤ 6 for 173Yb, N ≤ 10 for 87Sr.

Photon recoil couples internal and external quantum states :

• spin-orbit coupling with fermions [LENS, JILA 2016]

• Artificial magnetic fields : Hofstadter optical lattices [Gerbier/Dalibard , NJP 2010].
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Ytterbium and clock transition

State-dependent optical potentials :

Tailored trapping potentials (without
heating, unlike alkali atoms)

Potential for quantum information
processing and emulation of many-body
systems

Electric polarizabilities for g and e
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Dzuba, Derevianko, J. Phys. B(2010)

State-dependent 2D optical lattice :

• y lattice at “magic” wavelength : Ve(y) = Vg(y)

• x lattice at “anti-magic” wavelength : Ve(x) = −Vg(x)

• regular tunneling along y

• suppressed tunneling along x x

y
≡ |g〉 ≡ |e〉

J

J

J

J

J

J

λx = 610 nm

λy = 759.5 nm
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Laser-induced tunneling in a state-dependent optical lattice
Proposal for alkali atoms in [Jaksch and Zoller, NJP 2003]

• two internal states g and e

• state-dependent potential confining the atoms
at distinct places depending on their internal
state g

φg
e

φe

h̄ωeg

x
Xg Xe

ωL,kL

Coupling laser |g;Rg〉 → |e;Re〉:
• resonant ωL = ωeg

• plane wave with wavevector kL
• electric field E0eikL·r

Transition matrix elements :

〈e;Re|V̂AL|g;Rg〉 = 〈e| − d̂ ·E0|g〉︸ ︷︷ ︸
internal

〈Re|eikL·r̂ |Rg〉︸ ︷︷ ︸
external

∝ eikL·
Rg+Re

2

Not enough to get
∮
A · dl 6= 0, but good starting point !
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Hofstadter optical lattice for Ytterbium atoms

State-dependent optical lattice :

• regular tunneling along y

• laser-induced along x

• additional superlattice along x

=⇒ Harper Hamiltonian for low energies
[Gerbier/Dalibard , NJP 2010].

x

y
≡ |g〉 ≡ |e〉

t

t

t

t

Ω1

Ω1

Ω2

Ω2

Ω1

Ω1

Ω2

Ω2

kL −kL

d

Effective Aharonov-Bohm phase :

φAB(ri → ri + ex) = kL · ri ≡ 2παy

Maximum “Flux” per unit cell:

2παmax = kLd ∼ 2π × 0.66

α can be varied between 0 and αmax by changing
the orientation of the clock laser.

J JJ

JeikLd(y+1)

JeikLdy

JeikLd(y+1)

JeikLdy

φ� = 2πα φ� = 2πα

(x, y)
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Quantum-degenerate 174Yb atoms in a 3D optical lattice
Superfluid-Mott insulator transition :

Spectroscopy on the clock transition :

• “magic” optical lattice : identical for both internal states g/e

• selective detection of g, e or both together
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• Lattice depth V ≈ 30ER:

negligible tunneling

• about 20 planes
• N ∼ 8 · 103 in central plane
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+klat

x

z
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Rabi spectroscopy on the clock transition : time domain

Strong driving: Rabi oscillations of a BEC in the optical domain
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High initial atom number : N ≈ 8× 104
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Rabi spectroscopy on the clock transition : time domain

Strong driving: Rabi oscillations of a BEC in the optical domain
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Low initial atom number : N ≈ 8× 103
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Optical spectroscopy in a Mott insulator

Singly-occupied sites :

g

e h̄ωeg

ΩL

Doubly-occupied sites :

g

e

Ugg

√
2ΩL

g

e

Ueg + h̄ωeg

√
2ΩL

g

e γee

Uee + 2h̄ωeg
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Probing the atomic distribution
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Proportion of singly-occupied sites:

Solid line : model of the loading assuming
• T = 0

• adiabatic loading
• decay of triply-occupied sites

(three-body recombination in g)
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Inelastic decay and dephasing

• Doubly-occupied sites decay by inelastic collisions (↔ “T1”):

Decay of |ee〉:
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Time [ms]
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e
[1

04 ]
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e
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]

γee ≈ Ugg/~

Decay of |eg〉:

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

2.5

3.5

4.5

N
g
[1

04 ]

γge < 10−3Ugg/~

• Inhomogeneous coupling ΩL(r) (↔ “T2”):

1

T2,inhom.
∼ ΩL(0)

R2

w2

Explains dephasing for N ≈ 8× 104 : R ≈ 19µm, T2,inhom. ≈ 9 ms
Negligible for N ≈ 8× 103 : R ≈ 8µm, T2,inhom. ≈ 50 ms

• Clock laser frequency fluctuations δωL(r) . 2π × 100 Hz (↔ “T ∗2 ”)
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Rabi spectroscopy on the clock transition : frequency domain
Weak-coupling resonance for doubly-occupied sites:
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Strong-coupling resonance for doubly-occupied sites:
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Similar results at LENS [Livi et al., arXiv:1707.04269 (2017)]
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Inelastic losses in state-dependent lattice

Typical values for lattice depth V0 = 10ER:
• J/h ∼ 70 Hz,
• Ugg/h ∼ 1 kHz,
• γee[n = 2] ∼ Ugg/~

Zeno-like supression of losses:

Three-well model, unit filling, Uii � J :

Effective loss rate in the
one-particle subspace

γeff ≈
2J2γee

U2
ee +

(
~γee

2

)2
� γee

g

e

g

J J

g

e

g

Ugg

Uee
γee

Uee ≈ γee ≈ Ugg =⇒ γeff ≈ 2
J2

~Ugg
�

J

~
� Uii, γee
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Towards atomic fractional Quantum Hall states ?

Relevant parameter :
ν =

atomic density
flux per unit cell

=
n

α

• Analogue of continuum (≡ Lowest Landau level) states exist.

Example : Laughlin states
• fermions : ν = 1

3 , · · ·
• bosons : ν = 1

2 , · · ·

Sorensen et al., PRL 2005

Hafezi et al., PRA 2007, EPL 2008

Palmer, Klein, Jaksch, PRL 2006; PRA 2008

Möller, Cooper, PRL 2009 ...

• Many possible states without continuum counterparts [Möller and Cooper, PRL 2009].

Example for α = 1
5

:

• Laughlin state for particles at n = 1
10

• Laughlin state for holes at n = 1− 1
10

Gaps are small :

at most ∼ 0.1J for the ν = 1
2

bosonic Laughlin state
[Hafezi et al., PRA 2007]

Narrow slices in the global phase diagram

Mott n = 1

vacuum

ν = 1
2 for holes

ν = 1
2 for particles

µ
/U

J/U
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Hofstadter butterfly

Energy spectrum vs flux :

Flux per unit cell : 2πα

• Fragmentation of the Bloch bands

• wide gaps, flat bands

Rational flux α = p/q :

Magnetic unit cell (1× q) : q topological bands with Chern number C 6= 0:
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