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Master equations

Classical Markov process Quantum Markov process

Liouvillian matrix Liouvillian superoperator



Equilibrium states

is a fixed point of the map = equilibrium state

If is unique the master equation is usually called “mixing” or “relaxing”

There is at least one equilibrium state

corresponds to an eigenvector of       with eigenvalue zero

(trace preserving condition)

Mixing process 

(assuming convergence from every initial state)



Slowly driven master equations

[external driving time-scale]               [characteristic time-scale of the system]  

If       is relaxing for every   :

unique instantaneous equilibrium state

Slow driving regime

Quasi-static limit

Time dependent master equation:



  

Slowly driven master equations

If       is relaxing for every   :

unique instantaneous equilibrium state

Finite driving time

[external driving time-scale]               [characteristic time-scale of the system]  
Slow driving regime

Time dependent master equation:



  

Perturbation theory of slowly driven quantum systems

“shape” of the process

Time scaling

time-length of the process 

Perturbation series ansatz:   

Projector on the traceless subspace

might not converge! 
Solution:



  

Example: slowly driven two-level system

0th order
(quasi-static limit )

1st order approx.

2nd order approx.

Exact solution

modulation (sinusoidal in this case)



  

Finite-time thermodynamics

Thermal master equations:

Finite-time correctionsQuasi-static evolution

Irreversible correctionsReversible 
thermodynamics



  

First order irreversible corrections

2nd law

1st law

Important property:           is invariant for a time reversed protocol



  

Finite-time Carnot cycle

Isothermal expansion
at temperature

Time reversed 
isothermal compression 
at temperature

Adiabatic compression Adiabatic expansion



  

Efficiency at maximum power

Limit of many cycles
Initial conditions are lost and 
also the quantum state 
becomes periodic,

Power

Efficiency

Max Power

Carnot efficiency

Efficiency at max Power

Esposito et al., PRL 105, 150603 (2010)

Schmiedl, Seifert. EPL 81.2 20003 (2007)
We know how to compute 
finite-time heat corrections

1st  order perturbation theory



  

is continuous and differentiable

Scaling properties of thermal Liouvillians
(derives from macroscopic derivation)

Pseudo-time reversal symmetry of the cycle

Spectral density exponent

(depends on the particular protocol)

Universal scaling
for all protocols

If

Efficiency at maximum power



  

Efficiency at maximum power

Thermal bath spectral density Efficiency at maximum power

Flat bath

Ohmic bath

Chambadal, L.c..n., 4 1-58 (1957)

Schmiedl, Seifert. EPL 81.2 20003 (2007)

Infinitely
super-Ohmic bath

Infinitely
sub-Ohmic bath

Schmiedl, Seifert. EPL 81.2 20003 (2007)

Esposito et al., PRL 105, 150603 (2010)

Curzon, Ahlborn, AJP 43, 22 (1975)

Benenti, et al. ArXiv:1608.05595 (2016)



  

Efficiency at maximum power

Curzon-Ahlborn

Schmiedl-Seifert
Carnot

lower bound

upper bound

Only within 1st order perturbation theory

Only for sufficiently smooth cycles 
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Exact simulation based on a single 
qubit in flat or Ohmic thermal baths:
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What is the optimal driving of a thermal 
machine ?

Given a d-level quantum system and two 
heat baths, what is the maximum power 
that we can extract?

Slow-driving perturbation theory 

General questions

Methods

(because we are far from equilibrium)

Optimal control theory approach (Pontryagin's minimum principle)



  

Optimal control of a thermal machine

Hamiltonian driving

Dissipative control

Heat released by the system:

Work done by the system:

Optimal control problem

minimize

with respect to all 
control strategies

for fixed:



  

Pontryagin's approach

Extended functional

(similar to Hamiltonian formalism applied to control theory)

Lagrange multipliers

Pseudo Hamiltonian 

normalization master equation

Analogue of Hamilton equations:

Analogue of energy conservation: 
 

(constant conserved quantity)



  

Pontryagin's minimum principle

Necessary conditions for optimal control strategies minimizing the extended functional 

are such that:

1. there exists a non-zero costate         evolving according to:

2. the pseudo Hamiltonian 
    
  is minimized by the control function             for all

3. the pseudo Hamiltonian is constant 



  

Thermodynamic link between     and maximum power

Does       have a physical meaning?

Its variation w.r.t.     is:

Assume that we want to maximize the power of a cyclic engine

The optimal driving of a generic quantum heat engine reduces to the optimization of a single
degree of freedom        within its accessible region     .

 optimal solutions must satisfy:

Optimization procedure:

Determine Check if

Try a larger      

?

YES

NO



  

Optimal cycle for a d-level quantum heat engine

Upper bound on the total dissipation rate:

The optimal control for            and              turns out to be of “bang-bang” type:

(strong coupling only with the cold bath)

(strong coupling only with the hot bath)
2 alternatives:

Optimal control for the Hamiltonian             turns out to be given by differentiable solutions
(isothermal processes) separated by discontinuous jumps (adiabatic quenches). 

Maximum power quantum heat engines are achieved by a finite-time Carnot cycle
 

Power maximization: take the minimum      such that
                



  

Example: full solution for a 2-level system 

Gibbs thermalizing dissipatorscontrol on the energy level

Quantum state (diagonal):

Pontryagin's costate:

Pseudo Hamiltonian:

Pseudo Hamilton equations: (master equation)

(costate equation)

(constant of motion)



  

Optimal solutions for a 2-level system

Cold isotherm Hot isotherm

Optimal trajectories in the            plane



  

Optimal solutions for a 2-level system

Carnot cycle at fixed     

Populations 
for adiabats

is also a continuous cycle

      completely determines the Carnot cycle.



  

Optimal solutions for a 2-level system

Carnot cycle at fixed     

Populations 
for adiabats

is also a continuous cycle

      completely determines the Carnot cycle.

The maximum power is achieved for              corresponding to an infinitesimal cycle
performed around the optimal non-equilibrium state 



  

Maximum power cycle for a 2-level system

Optimal state Optimal energy levels Optimal control



  

Maximum power cycle for a 2-level system

Maximum power 

(high power limit)

Efficiency at maximum power 

Remark: same efficiency as for a 
              quasi-static Otto cycle



  

Conclusions

Slow driving of quantum thermal machines [1]

Optimal driving of quantum thermal machines [2]

1.

2.

- Perturbation theory of slowly driven master equations

- Optimal processes are finite-time Carnot cycles

- Maximum power = conserved quantity of the control problem:

- Universal formula for the efficiency at maximum power 

- Optimal control theory approach (Pontryagin's minimum principle)

- Full solution for a two-level system heat engine

[2] Cavina, AM, Carlini, Giovannetti, arXiv: (2017).

[1] Cavina, AM, Giovannetti, Phys. Rev. Lett. (2017).
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