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Incoherent states and operations12

A quantum state is called incoherent if it is diagonal in some
preferred basis:

σ =
∑

i

pi |i〉 〈i| , (1)

and any other state is called coherent. The set of all
incoherent states will be called I.

A quantum operation is called incoherent if it can be written as

Λ[ρ] =
∑

i

KiρK †i (2)

with incoherent Kraus operators Ki such that

KiIK †i ⊆ I. (3)

1T. Baumgratz, M. Cramer, and M. B. Plenio, PRL (2014)
2A. S., G. Adesso, and M. B. Plenio, arXiv (2016), to be published in RMP
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Alternative frameworks of coherence

Maximally incoherent operations (MIO)1: most general set,
contains all operations which cannot create coherence:
Λ[ρi] ∈ I, where I is the set of all incoherent states.

Strictly incoherent operations (SIO)2: Incoherent operations
for which also K †i are incoherent.

Translationally invariant operations (TIO)3: Quantum
operations which commute with time translations, i.e.,
e−iHt Λ[ρ]e iHt = Λ[e−iHtρe iHt ] for a given Hamiltonian H.

Dephasing-covariant incoherent operations (DIO)4: Quantum
operations which commute with dephasing, i.e.,
∆[Λ(ρ)] = Λ[∆(ρ)] with the dephasing operation ∆.

1J. Åberg, arXiv (2006)
2A. Winter and D. Yang, PRL (2016); B. Yadin, J. Ma, D. Girolami, M. Gu, V. Vedral, PRX (2016)
3G. Gour and R. W. Spekkens, NJP (2008)
4E. Chitambar and G. Gour, PRL (2016); I. Marvian and R. W. Spekkens, PRA (2016)
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Quantifying coherence

Coherence monotones have the following properties1:

1 C(ρ) ≥ 0, and equality holds if and only if ρ is incoherent,

2 C(ρ) is nonincreasing under incoherent operations:

C(ρ) ≥ C(Λ[ρ]). (4)

Many coherence monotones are additionally nonincreasing on
average under selective incoherent operations:

C(ρ) ≥
∑

i

qiC(σi) (5)

with qi = Tr[KiρK †i ] and σi = KiρK †i /qi .

1T. Baumgratz, M. Cramer, and M. B. Plenio, PRL (2014).
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Quantifying coherence

Two important coherence monotones are1:

Coherence cost: quantifies the rate of maximally coherent
states |+〉 = 1√

2
(|0〉+ |1〉) required to create a state ρ via

incoherent operations in the asymptotic limit.

Cc(ρ) = Cf (ρ) = min
∑

i

piCr(|ψi〉). (6)

Distillable coherence: quantifies the maximal rate for
extracting maximally coherent states |+〉 via incoherent
operations in the asymptotic limit.

Cd(ρ) = S(∆[ρ]) − S(ρ) (7)

with the dephasing operation ∆.

The quantities differ for different frameworks of coherence.

1A. Winter and D. Yang, PRL (2016).
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Quantifying coherence

Other important coherence monotones:

Relative entropy of coherence1

Cr(ρ) = min
σ∈I

S(ρ||σ). (8)

Note that Cr(ρ) = Cd(ρ) = S(∆[ρ]) − S(ρ).

Robustness of coherence2

Rc(ρ) = min
τ

{
s ≥ 0

∣∣∣∣∣ρ + sτ
1 + s

∈ I

}
. (9)

Operational interpretation via interferometric visibility3.

1T. Baumgratz, M. Cramer, M. B. Plenio, PRL (2014).
2C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, G. Adesso, PRL (2016).
3T. Biswas, M. García-Díaz, A. Winter, Proc. Roy. Soc. London (2017).
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Quantum coherence in distributed scenarios123

Similar to LOCC operations in entanglement theory, it is possible to
define local quantum-incoherent operations and classical
communication (LQICC).

Properties of LQICC operations:

LQICC operations preserve the set of quantum-incoherent
states (QI):

ρAB
qi =

∑
i

piσ
A
i ⊗ |i〉 〈i|

B . (10)

LQICC operations cannot increase the QI relative entropy

CA |B
r (ρAB) = min

σAB∈QI
S(ρAB ||σAB) = S(∆B [ρAB ]) − S(ρAB).

(11)
QI relative entropy is additive in the input state.

1E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016
2A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017
3J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, PRL 2016
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Application: Assisted distillation of quantum coherence123

Alice and Bob share many copies a bipartite state ρAB and can
perform bipartite LQICC operations.
Aim of the task: asymptotic distillation of maximally coherent states
|+〉 = 1√

2
(|0〉+ |1〉) on Bob’s side.

The figure of merit is the distillable coherence of collaboration
which is bounded as follows:

CA |B
d (ρAB) ≤ CA |B

r (ρAB) = S(∆B [ρAB ]) − S(ρAB). (12)

For pure states |ψ〉AB we have

CA |B
d (|ψ〉AB) = CA |B

r (|ψ〉AB) = S(∆[ρB ]). (13)

Without assistance Bob can distill coherence at rate

Cd(ρB) = S(∆[ρB ]) − S(ρB). (14)

1E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016
2A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017
3K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Nonlinear Optics 2017
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Standard quantum state merging

A B

R

y

A B

R

y

M. Horodecki, J. Oppenheim, and A. Winter, Nature (2005).

Alice, Bob, and a referee share many copies of a pure state
|ψ〉RAB .

Aim of Alice and Bob: merge their systems on Bob’s side
while preserving the total state, i.e., the final state |ψ〉RBB′ is
the same as |ψ〉RAB up to relabeling A and B′.
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Standard quantum state merging1

For this purpose, Alice and Bob have access to shared
singlets and a classical channel.

The minimal number of singlets, asymptotically needed per
copy of the state |ψ〉RAB , is given by the conditional entropy:

S(A |B) = S(ρAB) − S(ρB). (15)

Recall that in quantum theory the conditional entropy can be
either positive or negative.

If S(A |B) is positive, merging is possible with singlets at rate
S(A |B), and merging is not possible if less singlets are
available.

If S(A |B) is negative, merging is possible without singlets, and
Alice and Bob can additionally gain singlets at rate −S(A |B).

1M. Horodecki, J. Oppenheim, and A. Winter, Nature 2005.
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Incoherent quantum state merging1

In standard quantum state merging, shared entanglement is
considered as an expensive resource, while local coherence
is available at no additional cost.

In incoherent quantum state merging we also take Bob’s local
coherence into account.

In particular, for a tripartite state ρRAB , we consider state
merging via LQICC operations, where additional singlets and
maximally coherent states on Bob’s side are provided at rates
E and C.

We consider optimal entanglement-coherence pairs (E,C):
these are pairs of entanglement and coherence rate for which
merging is possible, but neither E nor C can be reduced.

The main problem is to determine all such optimal pairs
(E,C) for a given state ρRAB .

1A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.
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Incoherent quantum state merging1

Theorem

Given a tripartite quantum state ρRAB , any achievable pair (E,C)
fulfills the following inequality:

E + C ≥ S
(
∆AB [ρRAB ]

)
− S

(
∆B [ρRAB ]

)
. (16)

Here, S is the von Neumann entropy and ∆X denotes full
decoherence of a (possibly multipartite) subsystem X :

∆X [ρ] =
∑

i

|i〉 〈i|X ρ |i〉 〈i|X . (17)

Since the right-hand side of Eq. (16) is nonnegative, the sum
E + C is also nonnegative: no merging procedure can gain
coherence and entanglement at the same time.

1A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.
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For pure states |ψ〉RAB we have the following bounds:

E ≥ Emin = S(ρAB) − S(ρB), (18)

E + C ≥ S(∆AB [ρAB ]) − S(∆B [ρB ]). (19)

Crucially, the bound in Eq. (19) is achievable for all pure states.

Theorem

Any pure state |ψ〉RAB can be merged without local coherence by
using singlets at rate

E0 = S(∆AB [ρAB ]) − S(∆B [ρB ]). (20)

1A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.
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b

E0

b

Emin E

C

bCmax?

Emin = S(ρAB) − S(ρB), (21)

E0 = S(∆AB [ρAB ]) − S(∆B [ρB ]). (22)
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For some mixed states ρRAB it is possible to find all optimal pairs.
Example: states of the form

ρRAB =
∑
i,j

pij |ij〉 〈ij|R ⊗ |ψij〉 〈ψij |
A ⊗ |i〉 〈i|B , (23)

where |ψij〉 are mutually orthogonal for different j. Note that this
state can be merged without entanglement.

All optimal pairs are given by

(E,C) = (aCmax, [1 − a]Cmax) (24)

with a ≥ 0 and Cmax =
∑

i,j pijS(∆[ψij]).
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There is evidence that a large amount of local coherence can be
saved by using little extra entanglement, i.e., that for some states
the pairs (E,C � 0) and (E′ = E + ε,C ′ � C) are both optimal
for small ε.

Possible candidate for such states:

ρ =
1

dB

dB−1∑
i=0

|i〉 〈i|R ⊗ |φi〉 〈φi |
A ⊗ |ψi〉 〈ψi |

B , (25)

where |ψi〉 are mutually orthogonal maximally coherent states of
arbitrary dimension dB , and |φi〉 are single-qubit states.

This state can be merged without entanglement if Bob
performs a local von Neumann measurement in the basis
{|ψi〉}, and conditionally prepares the states |φi〉. However, this
process requires a large amount of coherence.
Alice and Bob can use one singlet for teleporting Alice’s
system to Bob, in which case no coherence is needed.
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Summary

We introduced the task of incoherent quantum state merging,
in which both entanglement and local coherence are
considered as a resource.

We showed that the entanglement-coherence sum in this
procedure are bounded below as

E + C ≥ S(∆AB [ρRAB ]) − S(∆B [ρRAB ]). (26)

This implies that no merging procedure can gain
entanglement and coherence at the same time.

The bound is tight for all pure states: any pure state can be
merged without coherence by using singlets at rate
E0 = S(∆AB [ρAB ]) − S(∆B [ρB ]).
Our results imply an incoherent version of Schumacher
compression: S(∆[ρ]) is the optimal compression rate for a
state ρ if the decompression has to be performed via
incoherent operations only.
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