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Digital quantum simulation could 
solve important physics problems

High-energy 
(QCD...)

Condensed matter
(high-Tc superconductivity)
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Digital quantum simulation approximates 
time evolution operator by discrete gates

Want Can do

,

Lloyd, Science 1996; Trotter, Proc. Am. Math. Soc. 1959; Suzuki, Prog. Theor. Phys. 1976 



Proof-of-principle experiments exist 
for digital quantum simulation

Dynamics of spin models

Lanyon et al., Science 2011
See also Salathé et al., PRX 2015

Fermionic models

Barends et al., Nat. Comm. 2015

Toy-model lattice gauge theory

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, 
PH, Dalmonte, Monz, Zoller, and Blatt, Nature 2016
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How reliable/scalable is that?
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Trotterization has a well-controlled error 
bound

Lloyd, Science 1996

See also 
Aharonov and Ta-Shma, in Proc. 35th STOC
Berry, Ahokas, Cleve, and Sanders, Commun. Math. Phys. 2007
Brown, Munro, and Kendon, Entropy 2010
Childs and Kothari, Lecture Notes in Computer Science 2011

Polynomial divergence in  t and  N (# of qubits)



That is a worst case estimate

But maybe for our interests 
that is too much! 



Local observables may be much 
more robust than the total unitary

Toy model: trivial time evolution
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If the field is modified, unitary changes very fast

Error in unitary Error in magnetization

time
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B t
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Independent of N !Only short times 
and small systems!



What about 
digital quantum simulation and 
quantum many-body systems? 
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Numerical example: 
Ising chain in transverse and longitudinal field
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Characterization through energy 
as an emergent constant of motion

𝑄(𝑡) =
𝐸𝜏(𝑡) − 𝐸𝜏=0
𝐸𝑇=∞ − 𝐸𝜏=0

Ideally: 

𝐸𝜏 𝑡 = 𝜓0| 𝑈𝜏
† 𝑡 𝐻 𝑈𝜏 𝑡 |𝜓0

𝐸𝜏=0 𝑡 = 𝜓0| 𝑒
𝑖 𝐻 𝑡𝐻𝑒− 𝑖 𝐻 𝑡|𝜓0 = const

In Trotterized evolution: 

Simulator fidelity: 
Heating above 
ideal evolution

Normalized to 
infinite heating

Ideally: 
𝑄 = 0

Worst case: 
𝑄 = 1

𝑈𝜏 𝑡 = 𝑈 𝑛 𝑡 = 𝑈1
𝑡

𝑛
= 𝜏 . . . 𝑈𝑀

𝑡

𝑛
= 𝜏

𝑛



At small Trotter step, 
local observables become robust

infinite heating

ideal evolution, 
H conserved quantityTrotter step sizeperturbative

regime

Compare Lloyds bound

𝑄(𝑡) =
𝐸𝜏(𝑡) − 𝐸𝜏=0
𝐸𝑇=∞ − 𝐸𝜏=0

𝑄(𝑡 = ∞)

𝜏 = 𝑡
𝑛



Not only the energy, also other local 
observables become robust

ideal evolution

infinite heating

Trotter step size

magnetization
at 𝑡 = ∞



Where does that come from?
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Interpret Trotter sequence as periodic driving

t/n 2 t/n 3 t/n 4 t/n 5 t/n

𝜏 = 𝑡/𝑛Period: 

Frequency: 𝜔 =
2𝜋

𝜏

small expansion parameter

Cold-atom context: e.g., Goldman and Dalibard, PRX 2014
Reviews: Eckardt 2016, Holthaus 2016



Classical analogue: Kaptiza’s pendulum
https://youtu.be/rwGAzy0noU0

fast drive
stable

slow drive
unstable

Nice comparison classical/quantum: 
D'Alessio, Polkovnikov, Ann. Phys. 2013

https://youtu.be/rwGAzy0noU0


For small period t/n = τ, effective Hamiltonian 
has a perturbative expansion (Magnus)

For small t/n = τ

Cold-atom context: e.g., Goldman and Dalibard, PRX 2014
Reviews: Eckardt 2016, Holthaus 2016

Lloyds bound



D’Alessio and Polkovnikov, Annals of Physics 2013

period #

small frequency / 
large Trotter step 𝜏

period #

large frequency / 
small Trotter step 𝜏 = 𝑡/𝑛

Magnus expansion ensures energy localization

Q(t = ∞)

τ

Zeroth order = time average = target H
→ emergent constant of motion

For small 𝜏 :
permits perturbation theory



ensured by 
energy localization

Periodic sequence of two gates 𝐻1, 𝐻2

𝐻 𝑡 = 1
2 𝐻1 + 𝐻2 + 1

2 square wave ∗ 𝐻1 − 𝐻2

perturbation at frequency 𝜔 =
2𝜋

𝜏

Main assumption of LRT: 
state remains close to unperturbed state

∆𝐵 𝑡 = 𝐵𝜏 𝑡 − 𝐵𝜏=0(𝑡)

∆𝐵 ∞ = −𝑖𝜏4Tr(𝜌0[𝐵, 𝐻2 − 𝐻1])

𝐻1

𝐻2

𝐻1

𝐻2

𝐻1

𝐻2

time

Consequence: 
observables deviate only perturbatively

Kubo 1962

Energy localization enables linear response theory

𝜏

magnetization
at 𝑡 = ∞



From these analytical arguments, we 
understand very well the perturbative regime

If the system is energy localized, 
this regime is robust

Challenge: 
Predict breakdown point

Martinez et al., Nature 2016
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D’Alessio and Polkovnikov, Ann. Phys. 2013
D'Alessio and Rigol, PRX 2014
Lazarides, Das, and Moessner, PRE 2014
Ponte, Papic, Huveneers, and Abanin, PRL 2015
Bukov, Heyl, Huse, and Polkovnikov, PRB 2016
. . . 

τ



Abanin, Roeck, and Huveneers, PRL 2015

𝜔 ≫ Σ 𝐻𝑙
𝜔

Σ 𝐻𝑙 > 𝜔 ≫
𝜆 𝐻𝑚, 𝐻𝑛 𝜆′

𝐸𝜆 − 𝐸𝜆′
, ∀𝜆, 𝜆′, 𝑚, 𝑛

Perturbative response
No heating at large times

Perturbative at low order, break down at higher orders possible
At most logarithmic heating over time (we do not see this)

There may be three different regimes

𝜔 ≫
𝜆 𝐻𝑚, 𝐻𝑛 𝜆′

𝐸𝜆 − 𝐸𝜆′
Non-perturbative; infinite heating

many-body 
spectrum
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Transition to quantum chaos in 
periodically driven single-particle systems
See book Fritz Haake

Kicked rotor

large periods:  
diffusion, chaos

small periods:  
localization in energy

period

energy

𝛩



Break-down as transition of 
Floquet Hamiltonian to quantum chaos

Floquet Hamiltonian 

PR = Σ| 𝜓0|𝜑𝜈 |4

| ۧ𝜑𝜈 = eigenstates of Floquet Hamiltonian

𝑈(1) = = 𝑒−𝑖 𝐻𝐹 𝜏

𝜆PR = −log(PR)/N

all basis states 
are equally likely

Characterize chaos through spread over Floquet basis states

NB: eigenvalues follow Wigner-Dyson statistics for all 𝜏 (for generic ideal H )
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Conclusion

Digital quantum simulators are more robust 

than one may think (for local observables)

Sharp threshold, connected to quantum chaos

We understand the perturbative behavior

from periodically driven systems and LRT

Valid also for Trotter on classical computers (e.g. tensor networks)

Paper in preparation!


