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the microwave driving is applied non-simultaneously over the
registers, a ⇡-pulse on the first ion induces a dephasing like
propagator on the second ion and vice versa. In this manner,
our decoupling sequence has to be able of eliminating that
undesired contribution that would otherwise spoil the high fi-
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in a initial thermal state each of them containing 0.5 phonons.
In addition and in order to include possible errors sources, we
are considering a Rabi frequency mismatch of 1%, a trap fre-
quency shift of 0.1% that implies a deviation of (2⇡) ⇥ 100
Hz for ⌫1 and of (2⇡) ⇥

p
3 100 Hz for ⌫2, while a constant

energy shift of (2⇡) ⇥ 20 KHz on both ions is also present in
the numerics.
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Then, both expressions contains the ⇡-pulses we want plus
some contributions that we want to eliminate. In this respect
the terms e�i�t⇡�̃2 and e�i�t⇡�̃1 can be neglected by adjusting the
Rabi frequency ⌦ such that

2⇡⇥�t⇡ ⌘ 2⇡⇥
s
✓
⌦

2

◆2
+
✓�
2

◆2 1
2⌦
= ⇡⇥k,with k 2 Z. (22)

If this is the case we have that e�i�t⇡�̃2 = e�i�t⇡�̃1 = ±I, i.e.
a global phase. Hence we only have one remaining pure de-
phasing term in both pulses ei �2�

z
2t⇡ and e�i �2�

z
1t⇡ that will be

cancelled because of our employed DD sequences.

VII. CONCLUSIONS

[1] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt,
C. Wunderlich, and W. K. Hensinger, Blueprint for a Microwave

Trapped Ion Quantum Computer, Sci. Adv. 3, e1601540 (2017).
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Results

π-pulse time: 77ns π-pulse time: 49ns

hnia1,a2 = 0.5

⌦̃ = ⌦(1 + ✏⌦) ✏⌦ = 0.01

⌫̃ = ⌫(1 + ✏⌫) ✏⌫ = 0.001

Sources of error :

Fidelities above 99,9%
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Conclusions

- We validated our ideas with detailed numerical simulations 

- Fast approach to generate two qubit phase gates with microwave ions

Best experiments:                              in millisecondsF = 99, 7%

- Robust against main sources of decoherence 

- Microwave control comparable in precision and speed to laser-

controlled gates.
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