Performance of shortcut-to-adiabaticity quantum engines

Obinna Abah

Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, United Kingdom

Workshop on Quantum Science and Quantum Technologies ICTP, Trieste 2017

News..

Sales of inefficient vacuum cleaners banned By Euronews · last updated: 01/09/2017

Powerful vacuum cleaners are to be banned from today after the European Union introduced new rules which aim to improve energy efficiency across the continent.

'Widespread misconception'

The European Environment Bureau (EEB) said: "Power doesn't always equal performance, though the misconception has become widespread."

"Some efficient models maintained high standards of dust pick-up while using significantly less energy - due to design innovation."

From BBC News 01/09/2017

Outline

- Motivation
 - Introduction
 - Downscaling engines
- Pour-stroke Otto engine
- Shortcut-to-adiabaticity engine
 - Fast and efficient engines
 - Generic bounds on quantum machines

Introduction

Miniaturization:

is about building smaller devices

Drexler 1981

→ fundamental limit = atomic structure of matter

Transistor:

1947

Today

Introduction

Mobile phone:

1973/1983

Today

→ weight 1.1kg, 30min talk time, 10h charge time, price 4000\$

Introduction

"There is plenty of room at the bottom":

Feynman 1959

"Consider any machine – for example, an automobile – and ask about the problems of making an infinitesimal machine like it"

Two basic strategies:

Follow engineers

Follow nature

Macroscopic heat engine

ightarrow convert thermal energy into mechanical work = motion

Carnot efficiency:

$$\eta = \frac{\textit{Work produced}}{\textit{Heat absorbed}} \leq 1 - \frac{\beta_{\textit{h}}}{\beta_{\textit{c}}} = 1 - \frac{T_{\textit{c}}}{T_{\textit{h}}}$$

(James Watt 1783: $\eta \sim 5-7$ %)

ightarrow maximum efficiency

Today's gasoline engines: $\eta \sim 25 - 30 \%$

Downscaling of heat engines

Single atom heat engine

Rossnagel et al., Science 352, 325 (2016)

Reservoir engineering:

- Cold reservoir: laser (Doppler) cooling (always on)
- Hot reservoir: electrode noise (switched on/off)

Classical four-stroke heat engine

Quantum Otto heat engine

Quantum Otto heat engine: theory

Quantum Otto heat engine

Question How can we speed up the heat engine?

National waiters day

- gadgets shoes, tray, ...
- optimal protocol

More bang for your buck: Super-adiabatic quantum engines

A. del Campo^{1,2}, J. Goold³ & M. Paternostro⁴

Scientific Report 4: 6208 (2014)

Waiters race, fast service is a priority!

Shortcut-to-adiabaticity (STA)

... inducing a "fast motion video of the adiabatic dynamics."

Effective Hamiltonian:
$$H_{\text{eff}}(t) = H_0(t) + H_{\text{STA}}^i(t)$$

 $H_{STA}^{i}(t)$ - STA driving Hamiltonian and i = (1,3) - compression/expansion steps → fast and reduces irreversible losses

Demirplak and Rice, JPC A 107, 9937 (2003) Berry, JPA 42, 365303 (2009) Chen et al. PRL 109, 100403 (2010) del Campo, PRL 111, 100502 (2013)

$$\omega(0) = \omega_i, \quad \dot{\omega}(0) = 0, \quad \ddot{\omega}(0) = 0,$$

$$\omega(\tau) = \omega_f, \quad \dot{\omega}(\tau) = 0, \quad \ddot{\omega}(\tau) = 0,$$

For harmonic oscillator: LCD technique

$$\mathcal{H}_{\text{STA}} = \frac{m}{2} \left(\Omega_t^2 - \omega_t^2 \right) x^2$$
$$= \frac{m}{2} \left(-\frac{3\dot{\omega}_t^2}{4\omega_t^2} + \frac{\ddot{\omega}_t}{2\omega_t} \right) x^2$$

Energetic cost of the shortcut driving

Elementary power analysis

$$P_{avg} = (1/T) \int_0^T P_{inst} dt$$

Cost of the driving:

$$\left\langle H_{\mathsf{STA}}^{i}\right\rangle _{ au}=\left(1/ au\right)\int_{0}^{ au}dt\left\langle H_{\mathsf{SA}}^{i}(t)
ight
angle$$

Nonadiabatic work (friction):

$$\langle W_i \rangle_{NA} = \langle W_i \rangle - \langle W_i \rangle_{AD}$$

- the actual and the adiabatic work

Abah and Lutz, EPL 118, 40005 (2017)

Performance of STA quantum engines

Efficiency:

$$\eta_{\mathsf{STA}} = rac{\mathrm{energy\,output}}{\mathrm{energy\,input}} = rac{-\left(\langle W_1
angle_{\mathsf{STA}} + \langle W_3
angle_{\mathsf{STA}}
ight)}{\langle Q_2
angle + \left\langle H_{\mathrm{STA}}^1
ight
angle_{ au} + \left\langle H_{\mathrm{STA}}^3
ight
angle_{ au}}$$

Power:

$$P_{\mathsf{STA}} = rac{\mathrm{energy\,output}}{\mathrm{Cycle\,time}} = -rac{\langle \mathit{W}_1
angle_{\mathsf{STA}} + \langle \mathit{W}_3
angle_{\mathsf{STA}}}{ au_{\mathsf{cycle}}}.$$

Generic bounds: quantum speed limit (QSL)

Quantum: limits the speed of evolution of a system Anandan and Aharonov, PRL (1990)

QSL time:
$$au_{\text{QSL}} = rac{\hbar \mathcal{L}(
ho_i,
ho_f)}{\langle H_{\text{STA}} \rangle_{\tau}} \leq au$$
 $\qquad \mathcal{L}(
ho_i,
ho_f)$ - the Bures angle between density operators

Efficiency:
$$\eta_{\text{STA}} \leq \eta_{\text{STA}}^{\text{QSL}} = -\frac{\langle W_1 \rangle_{\text{AD}} + \langle W_3 \rangle_{\text{AD}}}{\langle Q_2 \rangle + \hbar (\mathcal{L}_1 + \mathcal{L}_3) / \tau}$$

Power:
$$P_{\text{STA}} \leq P_{\text{STA}}^{\text{QSL}} = -\frac{\langle W_1 \rangle_{\text{AD}} + \langle W_3 \rangle_{\text{AD}}}{\tau_{\text{QSL}}^1 + \tau_{\text{QSL}}^3}$$

Abah and Lutz, EPL 118, 40005 (2017)

Fast and efficient quantum engines

Question: Is it true for every shortcut-to-adiabaticity protocol?

Take-Home message

- STA engine are energy efficient machines
 - → outperform their convention counterpart
- Quantum speed limit impose bounds to performance
 - → fundamental limit for quantum machines
 - → tighter than the second law of thermodynamics
- Power doesn't always equal performance
 - → overall efficiency is important quantity

References

- ★ Energy efficient quantum machines
- O. Abah and E. Lutz

EPL (Europhys. Lett.) 118, 40005 (2017)

Physicists investigate fundamental limits of quantum engines

(Phys.org)—Quantum engines are known to operate differently than—and in some cases, outperform—their classical counterparts.

- ★ Performance of shortcut-to-adiabaticity quantum engines
- O. Abah and E. Lutz

arxiv: 1707.09963 (2017)

- ★ Shortcut-to-adiabaticity quantum refrigerator
- O. Abah, M. Paternostro, and E. Lutz

(to appear soon)

Thanksforyourattention!!