

The ELI ALPS research infrastructure New directions in attosecond physics

Katalin Varjú ELI-ALPS, Hungary

Winter College on Extreme Non-linear Optics, Attosecond Science and High-field Physics 7 February, 2018 ICTP, Trieste, Italy

- Optimizing HHG for tailored attosecond pulse production
- The ELI project
- ELI ALPS: collection of sources
- New directions of attosecond science

- 1, increasing the achievable photon energy ("water-window")
- 2, increasing the XUV photon flux (up-scaling)
- 3, producing a Single Attosecond Pulse (gating)

Spectral extension

$$\hbar\omega_{max} = I_p + 3.17 \ U_p$$
$$U_p \propto I \ \lambda^2$$

How to increase the cutoff?

- increase laser intensity
 limit: ionization of the medium
 (phase matching, depletion)
 avoid: short pulses, QPM
- increase laser wavelength limit: laser technology
- increase ionization potential e.g. generate with ions limit: phase matching

typical values:

$$I_p = 10..24 \text{ eV}$$

$$I = 10^{15} \text{ W/cm}^2 \ @ 800 \text{ nm gives } U_p = 60 \text{ eV}$$

$$I_p + 3.17 U_p \approx 200 \text{ eV}$$

Temporal gating

by avoiding ionization, or recombination, or shortening the generating pulse

/Amplitude/intensity gating

M. Hentschel et al., Nature (London) **414**, 509 (2001)

A. Baltuska et al., Nature **421**, 611 (2003)

spectrally filtering the cutoff small intensity small bandwidth

 τ < 5 fs, CEP-stable driving laser

Ellipticity-gating

Budil et al., PRA 48, R3437 (1993)

Sansone: Science 314 (2016)

Tzallas: Nature Physics 3, 846 - 850 (2007)

Ionisation gating I. single atom effect

Ionisation gating II.

Macroscopic: time-dependent coherence length

Lcoh > 1 mm for only 1 optical cycle

Temporal gating: isolation of a single attosecond pulse

Balogh E, PhD dissertation

for ex.: $5.1*10^{14}$ W/cm², 35 fs pulse

Two-color gating (with SH or MIR)

Tunable weak perturbing pulse (harmonic or longer wavelength)

Increases the period of the process (least common multiple)

Can be combined with any other gating process

Polarization + two-color gating = Double Optical Gating (DOG)

The attosecond lighthouse effect

surface plasma effect

Wheeler, Nat Phot 6, 829 (2012)

Harmonic radiation is complicated: contributions from short and long trajectories:

- delayed in time
- opposite chirp
- different intensity-dependent phase dependence, hence different divergence

Short vs long trajectory

Temporal Coherence of Ultrashort High-Order Harmonic Pulses

P. Antoine, *Phys Rev Lett* **77**, 1234 (1996)

Filtering HHG for attosecond pulse production

Generation

) eli

Spectral filtering + postcompression

Trajectory filtering

postcompression is required for short pulse generation

"Filters"

Spectral filtering

m eli

+ postcompression

Gustafsson, Opt Lett, 2007

Trajectory filtering

FIG. 3. Interference fringe pattern for the 15th harmonic. (a) $\tau \approx 0$ fs. (b) $\tau \approx 15$ fs.

Filtering HHG for roduction tensity (arb. units) 10⁰ x 5000 (b) (a) 10⁻⁴ 0.5 10⁻⁸ Spectral 19 23 27 31 35 -0.5 0.5 0 full HHG filtering Time (fs) Harmonic order 10⁻⁵ Intensity (arb. unit 2 (d) (c) 10⁻⁷ 1 10⁻⁹ 15 19 23 27 31 35 -0.5 0.5 1.5 0 1 x 10⁻⁴ Harmonic order Time (fs) Spatial/trajectory Intensity (arb units 10⁻⁵ 1.5 filtering (e) (f)1 10 0.5 10⁻⁹ -0.5 15 19 23 27 31 35 -1 0 0.5 1.5 Harmonic order Time (fs) Postcomprèssion

Johnsson, JMO (2006)

Combination of driving fields

doi:10.1088/0953-4075/45/7/074022

A case study for terahertz-assisted single attosecond pulse generation

Highly Efficient High-Harmonic Generation in an Orthogonally P

I Jong Kim, Chul Min Kim, Hyung Taek Kim, Gae Hwang Lee, Yo David Jaeyun Cho, and Chang Hee Nam*

An attosecond experiment

- Optimizing HHG for tailored attosecond pulse production
- The ELI project
- ELI ALPS: collection of sources
- New directions of attosecond science

The ELI project

A distributed RI of the ESFRI roadmap

- > ELI Attosecond Light Pulse Source (ELI-ALPS) (Szeged, Hungary)
- > ELI High Energy Beam-Line Facility (ELI-Beamlines) (Dolni Brezhany, Czech Republic)
- > ELI Nuclear Physics Facility (ELI-NP) (Magurele, Romania)

Missions of ELI ALPS

- 1) To generate X-UV and X-ray fs and atto pulses, for temporal investigation at the attosecond scale of electron dynamics in atoms, molecules, plasmas and solids.
- 2) To contribute to the technological development towards high average power, high intensity lasers.

as to the state of the state of

Scientific program

- Laser research and development
- Research and development of secondary sources
- · Atomic, molecular and nanophysical research
- Applied research activities:

biomedicine, materials science

Industrial applications

See in details: www.eli-alps.hu

Generation of

```
the shortest possible light pulses (few cycles) in the broadest possible spectral regime (XUV - THz) at the highest possible repetition rate (10Hz-100kHz)
```

Construction

Experimental areas

Clean room environment.

ISO 7 for laser halls, ISO 8 for secondary sources / user areas.

Temperature and relative humidity.

21°C (±0.5°C), 35±5% (tunable).

Vibration isolation

VC-E (ASHRAE)

Laboratories

■eli

- Optimizing HHG for tailored attosecond pulse production
- · The ELI project
- ELI ALPS: collection of sources
- New directions of attosecond science

Scheme of ELI-ALPS

Kühn, et al., Journal of Physics B, 50, 132002 (2017)

Lasers of ELI-ALPS

Unprecedent stability conditions for operation

Primary sources

(laser beams)

High repetition rate (HR) laser:

x2

By 2019-20: 100 kHz, > 5 mJ, < 6 fs, VIS-NIR, CEP In 2017: 100 kHz, > 1 mJ, < 6,2 fs, VIS-NIR, CEP

Mid-infrared (MIR) laser:

By 2024-25: 10 kHz, > 10 mJ, < 2 cycles, 4 μ m-8 μ m In 2017: 100 kHz, > 150 μ J, < 4 cycles, 2.3 μ m-3.8 μ m

Terahertz pump laser:

x2

By 2020-21: 100 Hz, > 1 J, < 0.5 ps, 1.5 μ m-2 μ m By 2018: 50 Hz, > 500 mJ, < 0.5 ps, 1.03 μ m

Single cycle (SYLOS) laser:

+1

By 2019-20: 1 kHz, >100 mJ, < 5 fs, VIS-NIR, CEP In 2017: 1 kHz, >45 mJ, < 10 fs, VIS-NIR, CEP

High field (HF) laser:

By 2024-25: 10 Hz, >2 PW, <10 fs By 2019: 10 Hz, >2 PW, <17 fs

Breakthrough in laser science and technologies (mission 2)

■eli

Front end of large scale ultrafast laser systems

Change of paradigm

- Sub-ps fiber oscillators around 1µJ replace Kerr-lens mode-locked Ti:S oscillators
- White light generators
- Self-CEP stabilisation: DFG+OPA

The first TW-class few cycle fiber laser for users (HR laser) Change of paradigm – new generation of HAP / HI lasers.

Unprecedent stability conditions for operation (SYLOS, PW)

Trial period: 6 months, 4 months trouble-free operation

ELI-ALPS: collection of sources

Clever use of the ever increasing laser power

) eli

High (but not too high) intensity, (10¹⁴ W/cm² - 10¹⁵ W/cm²) depletion of the medium distortion of the driving pulse phase-matching increasing interaction volume

Scaling principles

Heyl, et al., Optica 3, 75 (2016)

Parameter

Scaled Parameter

Gaussian beam:

$$z_{\rm R} \rightarrow \eta^2 z_{\rm R}$$

$$W_0 \to \eta W_0$$

$$z_R = \frac{\pi W_0^2}{\lambda}$$

Other parameters

(longitudinal) (transverse)

(density) $\varepsilon_{\rm in}$

Output Parameters

General

Filamentation

HHG

 $\varepsilon_{\mathrm{out}}$

 $p_{\rm cr}$ $z_{\rm cr}$

SYLOS-driven beamlines: scaling principles

m eli

short, high pressure target

The HR GHHG beamlines

The SYLOS GHHG compact beamline

The SYLOS GHHG compact beamline

Developer: Lund University, Sweden

Upscaling phasematching concept: loose focusing, long gas cell, low pressure

Heyl, C. et al., J. Phys. B, **45**, 074020 (2012). Rudawski, P. et al., Rev. Sci. Instrum., **84**, 073103 (2013).

Developer: Lund University, Sweden

meli

Pump-probe experiments with attosecond resolution

XUV XUV IR IR / SHG / THG / VUV / XUV P10 P9 P4 P8 - IR diagn. P3 IR diagnostics P7 - VUV spec. P5 P₆ Andor XUV spec.

filter reflected attosecond pulse plasma target

Plasma density profile

HHG at surface plasma

- no inversion symmetry
- all integer harmonics
- one XUV burst per laser cycle

Promising

- higher conversion efficiency, and no laser intensity limitation
- extension to shorter wavelengths

2 mechanisms

Coherent Wake Emission (CWE)

non-relativistic $a_{\rm L}^2 \le 1$

Relativistic Oscillating Mirror (ROM)

relativistic $a_{\rm L}^2 \ge 1$

$$a_{\tau}^2 = I_{\tau} \lambda^2 / (1.38 \times 10^{18} \text{ W } \mu\text{m}^2 / \text{ cm}^2)$$

- F. Quéré et al., Phys. Rev. Lett. <u>96</u>, 125004 (2006)
- A. Tarasevitch et al., Phys. Rev. Lett. 98, 103902 (2007).
- F. Quéré et al., Phys. Rev. Lett. 100, 095004 (2008).
- C. Thaury et al., Nat. Phys. 4, 631 (2008).

- S.V. Bulanov et al. Phys. Plasmas, <u>1</u>, 745 (1994)
- S. Gordienko et al. Phys. Rev. Lett. <u>93</u>, 115002 (2004)
- R. Lichters et al. Phys. Plasmas 3, 3425 (1996)
- G. D. Tsakiris et al. New J. Phys. 8, 19(2006)
- T. Baeva et al., PRE, 74, 046404(2006)

Electromagnetic interaction among a high number of charged particles.

The Algorithm

<u>Compute Charge Density:</u> particle positions are scattered to the grid

<u>Compute Electric Potential</u>: performed by solving the Poisson equation

<u>Compute Electric Field:</u> from the gradient of potential <u>Move Particles:</u> update velocity and position from Newton's second law.

Generate Particles: sample sources to add new particles

Output: optional, save information on the state of simulation

Repeat: loop iterates until maximum number of time steps is achieved or until simulation reaches steady state

PIC Simulation
Euterpe code
J.P. Geindre, LULI

Density=80.n_c
Short (non-vanishing) density gradient
I=6.10¹⁷ W/cm²

F.Quéré et al, Phys. Rev. Lett. 96 (2006)

F.Quéré et al, Phys. Rev. Lett. 96 (2006)

SYLOS SHHG beamline

PW SHHG beamline m eli IR diagn and shaping Def M Outp compressor PM **D1** HTA-3 Designer: SourceLab, France

ELI-ALPS: experimental stations

Giuseppe Sansone Scientific Advisor

Attosecond and Strong Field Science

Franck Lepine

Laser Plasma Theory
Group
Alexander
Andreev

Strong Field and Quantum Optics Theory Group Sandor Varro

Computational and Applied Materials Science Group Mousumi Upadhyay Kahaly

Theoretical and Computational Group of Molecular Structure and Dynamics Group Agnes Vibok

Attosecond and Strong Field Processes in Fewbody Systems

Charge Dynamics in (Bio)materials
Sophie Canton

Scientific Application

Peter Dombi

Biomedical Application Group Katalin Hideghety

Ultrafast 4D Imaging Group Laszlo Ovari

> Ultrafast Nanoscience Group Peter Dombi

Ultrafast Dynamics in Semiconductors Group Csaba Janaky

THz Reaction Control Group Viktor Chikan

Service Diagnostics Laboratories

Attosecond Sources

Katalin Varju

HR Attosource Group Miklos Füle

SYLOS Gas Attosource Group Sergei Kühn

Surface Plasma Attosource Group Subhendu Kahaly

Diagnostics of Attosources Paraskevas Tzallas

Attosources R&D Group Katalin Varju

Particle and Terahertz Sources

Patrizio Antici

Ion Acceleration Group Patrizio Antici

Electron Acceleration Group Christos Kamperidis

Terahertz Source and Applications Group Jozsef Fulop

Laser Infrastructure

Karoly Osvay

Mid-Infrared Laser Group Eric Cormier

High Field Laser Group Mikhail Kalashnikov

Single Cycle Laser Group Adam Borzsonyi

High Repetition Rate Laser Group Zoltan Varallyay

Engineering and integration

Lajos Fulop

Beam Transport
Group
Arpad Mohacsi

Infrastructure Liaison Group Imre Kiss

Software Engineering Group Lajos Schrettner

Electrical
Engineering Group
Ferenc Horvath

Mechanical

Research Technology Service Unit

Gergo Meszaros

Optical Preparatory Workshop Gergo Meszaros

> Mechanical Workshop Zoltan Vaina

Electrical Workshop Viktor Varkonyi

Number of researchers, engineers, technicians (June, 2017)

- Optimizing HHG for tailored attosecond pulse production
- · The ELI project
- ELI ALPS: collection of sources
- New directions of attosecond science

- **Repetition rate** (few Hz-10 kHz)
- $(10^9-10^{12} \text{ W/cm}^2)$ XUV Intensity
- **Photon energy** (10-150 eV)

The properties of attosecond pulses are the result of a trade-off between competing requirements on the driving sources.

Intensity (W/cm^2)

Rep. rate (kHz)

100

High-rep. rate for coincidence spectroscopy

Repetition rate = 100 kHz

- -Molecular-frame autoionization Coupling between nuclear and electronic degrees of freedom
- -Interatomic Coulombic Decay
 Ultrafast energy relaxation in van der
 Waals and hydrogen-bonded clusters
- -Surface attosecond science
 Photoelectron emission microscopy

Intensity (W/cm²)

High-intensity for nonlinear XUV spectroscopy

Rep. rate (kHz)

High photon energy for core electrons

Rep. rate (kHz)

m eli

HOT NEWS: harmonics at ELI ALPS

₩ eli

Further reading

on HHG and attosecond physics

Boyd: Nonlinear Optics

Chang: Fundamentals of attosecond optics

Plaja (ed): Attosecond Physics

Vrakking (ed): Attosecond and XUV Physics

on ELI ALPS

http://www.eli-alps.hu/

M. Reduzzi, et al., J. El. Spec. Rel. Phen. 204, 257 (2015)

S. Kühn, et al., J. Phys. B, 50, 132002 (2017)

European Union European Regional Development Fund

INVESTING IN YOUR FUTURE