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Course topics 

Introduction to science and technology of extreme-ultraviolet (XUV) 
radiation 

Wave propagation and refractive index in the XUV 

XUV optical systems: mirrors, gratings, multilayer, diffractive optics 

Research topic: photon handling of XUV and soft X-rays 
ultrashort pulses 
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INTRODUCTION 
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The XUV region 
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XUV to increase the resolution 

Optical phenomena have a natural length scale defined by the 
wavelength of radiation. 

Resolution is limited by l. This limits: 

– the minimum size of any patterning/machining 

– the smallest particular that can be observed 

 

 

 

 Optical microscope 
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High-resolution imaging 
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XUV lithoghraphy 
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XUV astronomy 

Multilayer-based telescopes for 
the observation of the Solar disk 
and solar corona in the XUV at 
19 nm wavelength, Fe XVIII 
emission. 

 

SOHO-EIT, SOHO-CGS, ROSAT 
XUV, FUSE, HINODE 
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XUV for ultrafast phenomena 
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XUV and soft X-ray  radiation 

XUV and soft X-ray radiation spans over a range of photon energies from above 
10 eV to few keV. 

Such energetic radiation is emitted from the stars, mainly from electrons from 
both external and core levels (10% of the Sun emission is in the UV, XUV and soft 
X-rays). Sun UV emissions have sufficient energy to ionize atoms and molecules 
on the outer Earth atmosphere, giving raise to the ionosphere. Fortunately, the 
ozone layer (O3) shields radiation below 280 nm. Therefore, XUV telescopes have 
to be operated on satellite from space. 

 

UV and soft X-ray radiation is absorbed by air at atmospheric pressure (few 
centimeters of air are sufficient to block any photon between 10 and 1000 eV). 
Therefore, XUV beamlines are operated in vacuum 
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SCATTERING IN THE XUV 
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Wave propagation (1) 

In vacuum 

 

Maxwell’s 

equations 
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E is the electric field, H and B the magnetic field, D the electric dispacement field, J 

the current density,  the charge density, 0 the dielectric constant, μ0 the magnetic 
permeability 
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Wave propagation (2) 

Wave equation 

 

c = phase velocity in 

vacuum 

The current density is the product of charge density and velocity 
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Scattered fields (1) 

Fourier-Laplace transform 

 

 

 and its inverse 

 

 

Wave equation 

 

 

 

where k = 2p/l is the wave vector 
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Scattered fields (2) 

We apply the charge conservation 

 

 

 

 

 

to obtain 

 

 

 

 

 E(r,t) is finally calculated 
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The electron as a point radiator (1) 

Oscillating electron: the current density is the Dirac delta function 

 

 

 

 

 

 

 

The transverse component is 
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The electron as a point radiator (2) 

Electric field 

 

 

 

          in spherical coordinates 

 

 

 

 

 

  

The radiated electric field is due to the component of electron acceleration 

transverse to the propagation direction, observed at a retarded time due to the 

wave propagation at speed c on a distance r 

rc

crte
t

dt

crtd

rc

e
t

ei
rc

e
t

ck

eie
t

d

dd

cr-t-i

-i

2

0

2

0

)/  (

2

0

4222

)-t(

0

4

)/( 
),(

)/(

4
),(

 )( )(
4

),(

 )( 
),(

T

T

T

T

2

)(2

 

p

p


p







p



p






















 







a
rE

v
rE

vrE

v
rE

k

rk
k



18 

Radiated power (1) 

Radiated power (W/m2) is described by the Poynting vector 

 

 

 

 

        

 

The time derivatives indicate the rate of change of energy density stored in the 

magnetic and electric fields. The rightmost term is the rate of energy dissipation 

per unit volume associated to the current density 
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Radiated power (2) 

For plane waves in free space 

 

 

 

 

The power per unit area radiated by an oscilalting electron is 

 

 

 

The sin2 is the dipole radiation factor. Power scales as 1/r2. 
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Oscillating dipole 

Radiated power per unit solid angle 

 

 

Total radiated power 
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Scattering by a free electron (1) 

The incident e.m. field causes oscillations of the free electron [acceleration a(r,t)], 

which radiates power  scattering 

 

 

 

 

 

 

Scattering cross-section: ratio between the average power radiated and the 

average incident power per unit area 
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Scattering by a free electron (2) 

Oscillating electron  Newton’s law F = ma (F is the Lorentz force) 

 

 

The term linked to the magnetic field is neglected in non-relativistic conditions [it 

scales as (v/c)Ei]. The acceleration is 

 

 

The scattered electric field depends only on the transverse component 
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Scattering by a free electron (3) 

Average scattered power 

 

 

 

Cross section  for the single electron (Thomson cross-section) 
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Cross-section independent from the wavelength 

 

 

Differential cross-section 

 

 
 

16

||
 

3

8
 

2

1
3

0

2

2222

scatt
c

mee
P i

p

p E


225-2

e cm 106.65 r 
3

8


p
 e 

||
2

1

16

||

3

4

  
|| 2

0

0

32

0

2

24

scatt

i

i

cm

e

P

E

E

S





p

p













 sin  22 


e
e r

d

d



24 

Scattering by bound electrons (1) 

Semi-classical model (massive positively charged nucleous + Ze, surrounded by Z 

electrons orbiting at discrete binding energies). 

Answer of electrons at frequency  depends on   s, where s is the resonance 

frequency. A dissipative term is introduced to take into account collisions.  

 Dumpened harmonic oscillator 
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Scattering by bound electrons (2) 

Scattering cross-section for a bound electron 

 

 

 

Near resonance, the shape is a Lorentzian with width /2.  

Far from resonance,  >> s, the cross-section approaches Thomson’s result, 

since the oscilaltions forced by the incident radiation are too rapid to be affected 

by the natural response of the resonant system. 
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Application: the color of the sky 

For  << s, the cross-section has a form described by Reileigh, with a strong 

dependence on the wavelength l-4. 

 

 

 

We can explain the color of the sky. In air, the resonances of O2 e N2 are respectively at 145 

nm and 152 nm. Reileigh formula gives a cross-section for the blue (400 nm) 16 times 

higher than the red (800 nm). This explains the blue appearance of the sky when looking 

overhead, and the red appearance of the setting sun when observed in direct view. 
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Scattering by multi-electrons atoms (1) 

The size of the atom is not negligible with respect to the wavelength (this is true 

for XUV and X-rays). Each electrons has separate coordinates 

 

 

 

The displacement is dominated by the incident e.m. field, ignoring the effect of 

waves scattered by neighboring electrons. 
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Scattering by multi-electrons atoms (2) 

As from the single radiating electron 

 

 

Equation of motion 

 

Differing phase seen by each electron 
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The complex atomic scattering factor (1) 

It depends on the incident wave frequency , the resonance frequencies s of the 

bound electrons and the phase terms due to the position of the bound electrons 

within the atom 

 

 

It describes the relation between the scattering from a single electron and from a 

multi-electron system. For the single electron  f(k,)=1 
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The complex atomic scattering factor (2) 

The charge distribution within the atom is largely constrained within dimensions 

the Bohr radius (a0 = 0.5 Å for the ground state of the hydrogen atom) 

  

 

 

 

Two special cases 

 

 

 

 

Oscillator strengths gs: indicate the number of electrons associated with a given 

resonance frequency s (e.g. 2 for K shell, 6 for L, 10 for M). Also fractional 

values are given to take into account transition probabilities. 
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The complex atomic scattering factor (3) 

For long wavelengths (l >> a0) and/or small angles ( << l/a0) 

 

 

 

 

 

 

For low-Z atoms and relatively long wavelengths 2 >> s
2 and l/a0 >> 1   
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The complex atomic scattering factor (4) 

Exmple: C atom (Z = 6), 0.4 nm wavelength. The scattering is 36 times higher than a single 

electron. The 6 electrons are scattering coherently in all directions. 

 

1) l= 0.4 nm >> a0 = 0.05 nm 

2) Eph=3 keV >> binding energy of the most tightly held electrons 284 eV 

 

The scattering factor is tabulated )( )()( 0
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WAVE PROPAGATION AND REFRACTION 

INDEX IN THE XUV 
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Wave propagation in the XUV 

The photon energy is comparable with the binding energy of electrons 

 

Vector wave equation for transverse waves (E perpendicular to k) 

 

 

 

 

Propagation in the forward direction 

It is the sum of forward-scattered radiation from all atoms that interferes with the 

incident wave to produce a modified propagation wave, compared to that in vacuum. 

As the scattering process involves both inelastic (lossless) and elastic (dissipative) 

processes, the refractive index is a complex quantity: it describes a modified phase 

velocity and a wave amplitude that decays as it propagates 
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Wave propagation  

The interaction between the incident wave and the scattered waves modifies the 

propagation characteristics  refraction index 

 

The current density is 

 

 

where in the semi-classical model of the atom s is the electron’s natural 

frequency of oscillation,  is a dissipative factor, gs is the oscillator strength and na 

is the average density of atoms 

 

The wave equation becomes 

 

With the complex refraction index defined as 
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Refraction index 

n() is dispersive since it varies with , i.e., waves at different wavelengths 

propagate with different phase speed 
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Phase variation and absorption 

Plane wave 

 

 

 

 

The wave intensity is calculated from the Poynting vector 

 

 

 

 

The wave decays with an exponential decay length 

 

 

 

The scattering coefficient is related to the macroscopic absorption coefficient  
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XUV absorption 

The absorption of any material in the XUV is very high. 

Only thin foils (thickness of fraction of micrometers) can be used as filters, but no 

substrates 

 

 lenses cannot be used in the XUV 

 

 mirrors have to be adopted as the main optical components 

 



Thin foils as filters for the XUV 

Thin metallic foils as filters for the XUV 
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At an interface, reflected and refracted waves obey the Snell’s law 

Reflection and refraction at the interfaces 
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Total external reflection (1) 

For n close to the unity n  1- neglecting absorption) 

 
 
 
Therefore ’≥ and if  approaches 90° (extreme grazing incidence), ’ 
approaches 90° faster. 

 
The critical angle of incidence c is defined as the incidence angle that gives      

’ = 90° 

 
 
For incidence angles beyond the critical angle, the radiation is completely reflected 
 total external reflection 
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Total external reflection (2) 

We define the critical angle as measured from the tangent to the surface (grazing 

angle): + = 90°  

 

The critical angle is 

 

 

Since the scattering factor is approximated by Z (atomic number) 

 

The obtain a conveniently large critical angle at  given wavelength, it is convenient 

to use higher Z materials 

  1cos c
p

ll


)(  
2

0

1

2 frn ea
c 

Zc l 

Material  Critical wavelength (nm)  10°  5 ° 

 

Glass     6.6 3.3 

Aluminum oxide    5.4 2.7 

Silver     3.5 1.8 

Gold     2.7 1.3 

Platinum     2.6 1.3 

Iridium     2.5 1.2 
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Reflection coefficient at the interfaces 

 

S polarization (E polarized perpendicularly to the incident plane) 

 

 

 

 

 

 

 

P polarization (E polarized parallel to the incident plane)    
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Normal incidence 

For normal incidence ( = 0°)  

 

 

For n = 1 -  – i 

 
 
In the XUV 1 and  1 

 

Therefore the XUV reflectivity in normal incidence of a single interface is very 

small 

 

 

 

 

MIRRORS ARE USED AT GRAZING INCIDENCE 
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Comparison between normal and grazing 

incidence in the XUV 

Example: reflectivity of a platinum-coated mirror at normal (left) and grazing (right) incidence  

• Normal incidence reflection is weak for wavelengths below 35 nm 

• Grazing-incidence operation required for broad-band applications below 35 

nm 



46 

Coatings for mirrors at grazing incidence 



NORMAL INCIDENCE 
Small mirrors 

Good correction of aberrations 

High angular acceptance 

 

GRAZING INCIDENCE 
Long mirrors 

Difficult correction of aberrations 

Lower angular acceptance 

 

Normal incidence vs. grazing incidence 
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Effect of coatings on ultrafast pulses at grazing 

incidence 

Due to total reflection, grazing incidence mirrors always exhibit a high and 
almost flat reflectivity and a linear spectral phase (within the bandwidth of the 
attosecond pulses/high-order harmonics). 

 

Moreover, the variation of the incidence angle of the rays on the mirror surface 
is by far too small to induce any changes of the coating response in space 
related to the angle of incidence.  

 

Therefore, the influence of the coating on the reflected pulses can be 
neglected. Only the losses due to non-unity reflectivity have to be considered. 
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OPTICAL SYSTEMS FOR THE XUV 



Optical systems 

 Optical configurations to form images 

 Optical systems to select one particular wavelength: 
monochromators 

 Optical systems to disperse the radiation and measure the 
spectrum: spectrometers 

 

Optical instruments: 

 Mirrors 

 Multilayer-coated optics 

 Gratings 

 Diffractive optics 

 

 



Aim of the optical design 

 The most important element of any photon beamline is the 
sample 

 

 The beamline has to:  

 transport the radiation from the source to the sample 

 handle the photon beam such as to obtain the proper energy, energy 
band, focusing, polarization, position, intensity 

 



Broad-band mirrors 



Imaging systems and aberrations 

Optical aberrations are deformation of the shape of an image given by an 
optical system. They are due to the departure of the performance of an 
optical system from the predictions of paraxial optics (i.e., from the formulas 
for small angles of propagation). 

 

fqp

111


p = source distance 

q = image distance 

f = focal length 

 



On-axis aberration-free mirrors 

OPTICAL SURFACES FOR ON-AXIS 
ABERRATION-FREE IMAGING 

The optical performances are independent 
from the angular aperture of the rays 

 

1. Ellipse 

2. Parabola 

3. Hyperbola 



Aberrations: defocus 

Out of the nominal focus 



Aberrations: astigmatism 

The rays propagating in perpendicualr planes have different foci 

http://upload.wikimedia.org/wikipedia/commons/b/b3/Astigmatism.svg


Aberrations: spherical aberration 

The position of the focal plan depends on the distance from the optical axis. On a 
spherical surface, incoming rays from different height from the axis do not bend at 
the same position and focus at slightly different distance along the axis. 

 

 
          Perfect lens 

      

 

 

 

 

              Real lens 

http://upload.wikimedia.org/wikipedia/commons/9/92/Spherical_aberration_2.svg


Aberrations: coma 

Rays incoming from the periphery of the lens focus closer to the axis and produce a 
larger blurry spot than the paraxial rays. As coma is proportional to the distance to 
the central axis, more the rays are away from the center, more the focal point 
changes of position and get blurry images. 

http://upload.wikimedia.org/wikipedia/commons/3/31/Lens-coma.svg


The spherical mirror 

Mirror equation 

1/p + 1/q = 2/(R cosa         tangential plane 

1/p + 1/q ‘= (2 cosa) /R        sagittal plane 
 

 a : incidence angle 

 p : source-mirror distance 

 q : mirror-image distance in the tangential plane 

 q’ : mirror-image distance in the sagittal plane 

 R : radius 



Spherical mirror at normal incidence 

q and q’ are equal  no astigmatism 

 

At near-normal incidence the astigmatism introduced by a spherical mirror is 
negligible. 

When the angle deviates from the normal, the astigmatism is more evident 

a

a

cos

sin2 2
2

R
qq 



Spherical mirror at grazing incidence 

A spherical mirror at grazing incidence has only tangential focusing capabilities, since 
q’ becomes negative (virtual image) and almost equal to p 

 

Example: 

 p = q = 1 m ,  a  87 

R  19100 mm 

q’=-1005 mm, therefore |q’ |p .  

In the sagittal plane, rays propagates as from a plane mirror.  

 

A point is focused on a line. 



Kirkpatrick-Baez configuration: 2 spherical 

mirrors 

 Two crossed spherical mirrors both for tangential focusing 

 KB system is stigmatic: a source point is focused on a point 

 

1/p1 + 1/q1 = 2/(R1 cosa  

1/p2 + 1/q2 = 2/(R2 cosa  

p1 + q1 = p2 + q2 



KB for sub-micrometric focusing 

KB systems at extreme grazing incidence are used for nanometric focusing on 
synchrotron and free-electron laser beamlines  

 10 keV FEL pulses have been focused on 1 um X 1 um spot (Yumoto et al, Nat. 
Photonics, 7, 43, 2013) 

 KB systems with variable numerical aperture for variable focusing from 100 nm 
to  600 nm have been realized (Matsuyama et al, Sci. Rep. 6, 24801, 2016) 



The toroidal mirror 

Toroidal: two different radii in the tangential and sagittal directions 

 

Mirror equation 

1/p + 1/q = 2/(R cosa         tangential plane 

1/p + 1/q ‘= (2 cosa /         sagittal plane 
 

  a : incidence angle 

 p : source-mirror distance 

 q : mirror-image distance in the tangential plane 

 q’ : mirror-image distance in the sagittal plane 

 R : tangential radius 

  : sagittal radius 



Toroidal mirror for stigmatic focusing 

The condition to have stigmaticity (q = q’) is 

 / R = cos2 a    ( << R) 

 

A point is imaged on a point 

 

 

Example: 

 p = q = q’ = 1 m ,  a  87 

R  19100 mm,  = 52 mm 

 

 



Rowland mounting for a toroidal mirror 

A toroidal mirror at grazing incidence has minima aberrations (no coma) if used in 
the Rowland mounting, that is, unity magnification 

 

 / R = cos2 a   astigmatism correction 

p = q = q’ = R cosa                 coma correction 

 

If the mirror is used with magnification different from unity, coma is the dominant 
aberration. 

 

Focal plane image of a toroidal 
mirror with demagnification of 10, 
three angular apertures. Coma 
aberration is evident. 



Wolter configurations 

 Optical systems used in reflection – they use the properties of the conical 
surfaces by combining two of them 

 They are designed for grazing incidence 

 The are normally used to realize telescopes for space applications, since they 
give reduced aberrations on an extended field-of-view, as required to image 
multiple stars in the same image 



Coma compensation with magnification 

different from unity 

 The Abbe sine condition is a condition that must be fulfilled by an 
optical system to produce sharp images of off-axis as well as on-axis 
objects 

 The sine of the output angle has to be proportional to the sine of the input 
angle sina’/sina = cost  

 Two reflections are required 

 

 



Wolter type 1 



Wolter type 2 



Wolter type 3 



Aberrations and ultrafast response 



Optical path and Fermat’s principle: mirror 

PBAPF 

The optical path function describes, for any 
point B within the optical surface, the 
contribution of all rays to the image in B 



Theory of aberrations from Fermat’s 

principle 

Following the Fermat’s principle with no aberrations, the position of B (image point) 
is that giving P(u,w,l) a stationary point for F(w,l) 

 

 

 

Any violation of the Fermat’s principle gives raise to an aberration on the image 
point B  deformation of the image 
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F

Fermat's principle is the principle that the path taken between two points by a 
ray of light is the path that can be traveled in the least time. A more modern 
statement of the principle is that rays of light traverse the path of stationary optical 
length with respect to variations of the path. 



Theory of aberrations from Fermat’s 

principle 

 The violation of Fermat’s principle for the point B occurs with aberrations. The 
non-zero terms Fij describe the type and the order of the aberration: low orders 
of i and j describe more important aberrations, while the variation with w and/or 
l gives the direction (tangential or sagittal) affecting the aberration 

 

 Aberrations are corrected by varying the geometry of the configuration, the 
shape of the surface and the law of variation of the groove density (for gratings) 
in order to cancel or mimimize the terms Fij  

 

The condition F10=0 gives the Snell’s law for reflection βα 

Series development ji
ji lwFF 



TOROIDAL SURFACE 

 

Taking into account the equation of the toroidal surface, the distances <AP> 
and <PB> can be expressed as functions of the variables a, p, q, y and z, where 
a is the angle of incidence, p and q are the entrance and exit arms (the 
distances between A and the mirror center, O, and between O and B), y and z 
span on the mirror surface 

 

F = p + q + F20y 2 + F02 z 
2 + F30y 3 + F12 yz 2 + O(y 4, z 4) 

Theory of aberrations for a mirror (1) 



For a toroidal surface (tangential radius R, sagittal radius ), the first terms Fij are 

Theory of aberrations for a mirror (2) 
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Theory of aberrations for a mirror (3) 

According to Fermat’s principle, point B is located such that F will be an extreme for 
any point P. Since points A and B are fixed while point P can be any point on the 
surface of the mirror, aberration-free image focusing is obtained by the conditions 
F/y = F/z = 0, which must be satisfied simultaneously by any pair of y and z 
values.  

This is possible only if all Fij terms are equal to zero.  

 

The F20 and F02 terms control the tangential and sagittal defocusing 
respectively, which are the main optical aberrations to be cancelled. Therefore, in 
order to have stigmatic imaging, two conditions must be fulfilled: F20 = 0 and F02 = 
0, which give 

 

 

 

 

The tangential and sagittal radii of the mirror have to be calculated from these 
equations 



a

a

cos2

cos

211


Rqp



Theory of aberrations for a mirror (4) 

The remaining parts of the derivatives of the optical path function F give rise to the 
aberration terms. Since the partial derivatives have the geometrical significance of 
angles, the maximum tangential (y) and sagittal (z) displacements of the reflected 
rays from the true focus B can be calculated as 
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a

where (2Ltan)×(2Lsag) is the illuminated area on the mirror surface. 

For the partial derivatives of order n that do not vanish, these displacements 
correspond to aberrations of order n in the focal plane. 

Tangential and sagittal defocusing: II-order aberration 

Tangential and sagittal coma: III-order aberration 

 

For M=1 (i.e., p=q), the coma is zero  Rowland configuration 



Ultrafast pulses 

An ultrafast pulse is a “sheet of light” with micrometric or sub-micrometric 
thickness that is traveling at 300.000 km/s 

 

The thickness of the “sheet” is proportional to the duration of the pulse 

 

100 fs  30 m  

10 fs    3 m  

1 fs      0.3 m 

100 as   30 nm 

 

 

 

c = 3108 m/s 

s = cT 



Pulse-front deformation 

Since aberrations are violation of the Fermat’s principle (rays with different directions 
travel different paths), they give deformation of the pulse-front  pulse stretching of 
ultrafast pulses 

Aberrations have to be studied not only in space but also in time 

Toroidal mirror, p = 1000 mm, a = 87°, 5 mrad accepted aperture 

Rowland mounting Rowland mounting 



Spatio-temporal coupling (1) 

Advanced simulation techniques allow to study the space-time coupling given by 
aberrations, that means that the pulse profile is spatially dependent.  

 

Bourassin-Bouchet et al, Opt. Express 19, 17357 (2011) 

Bourassin-Bouchet et al, Opt. Express 21, 2506 (2012) 

 



Spatio-temporal coupling (2) 

Magnification different from unity or misalignment error  

 



Rule of thumb 

Toroidal mirror for ultrashort pulses have to be used with almost 
unity magnification. 

For magnification different from unity, ellipsoidal mirrors have to 
be preferred. 

 

High attention to be given in the alignment procedure to avoid 
misalignment errors. 



Micro-focusing of ultrashort pulses 

Micro-focusing is required to: 

- Increase the peak intensity in the focus (as required for nonlinear effects) 

- Increase the spatial resolution (as required for microscopy) 



Micro-focusing of HHs with an ellipsoidal 

mirror 

HHs have been focused by a platinum-coated ellipsoidal mirror at moderate 
grazing incidence (60 deg) to a spot size of 2.4 um 

Mashiko et al, Appl. Opt. 45, 573, 2006 

Entrance arm: 1600 mm 

Exit arm: 107 mm 

Demagnification factor: 15 



Micro-focusing and output arm 

Micro-focusing is normally achieved on a short output arm, since a large 
demagnification is required (p/q >>1). 

If microfocusing and a long output arm are simultaneously required, there are 
two solutions: 

- increase also p to maintain the same demagnification 

- add an additional relay mirror to make a 1:1 image of the focus 



Micro-focusing of HHs with compensated 

toroidal mirrors 

HHs have been focused by two toroidal mirrors at grazing incidence (80 deg) to 
a spot size of 8 um. The first mirror gives the high demagnification, the second 
mirror compensates for the coma 

L. Poletto et al, Opt. Express 21, 13040, 2013 

F. Frassetto et al, Rev. Sci. Inst. 85, 103115, 2014 

 

Demagnification factor: 11 

Output arm: 600 mm 

Total length of the 
beamline: <3 m 



Design consideration 

 The ideal mirror to demagnify a source with no aberrations is the ellipsoidal 

 

Drawback of single-mirror configuration 

 A configuration with high demagnification using a single mirror has a short exit arm 

 The short exit arm may be not suitable to accommodate the experimental 

chamber.  



Toroidal mirrors for micro-focusing 

Toroidal mirrors are a cheaper alternative to the use of expensive Cartesian 

surfaces 

 A single toroidal mirror gives large aberrations (coma) when used to give high 

demagnification 

 

PROPOSAL: two sections with toroidal mirrors in a compensated configuration: M1 

provides the large demagnification, M2 is the relay section to increase the length of 

the exit arm. M2 compensates for the coma given by the couple M1.  

 

 

 



Study of the aberrations 

From the light-path function, the coma aberration is calculated as 
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Coma compensation 



Preliminary test of the beamline 

with He:Ne laser 

Aberrations from the first mirror 

 

 

 

 

 

Case a) M3 in C configuration 
with respect to M2 

 

 

 

 

 

Case b) M3 in Z configuration 
with respect to M2 

Z configuration effective in 
coma compensation 

 



Test of the beamline with XUV high-

order laser harmonics 

Spot size: 8 um FWHM 



Gratings 



Diffraction grating 
- Different wavelengths exit with different directions (dispersion) 

- The same wavelength is deviated in different directions (diffraction orders) 
  

Diffraction gratings 

mλsinβsinα 

a = incidence angle (a > 0) 
 = diffraction angle ( < 0 if opposite to a with respect to the 

normal) 
m = diffraction order (m = 0, 1, -1, 2, -2, ...) 
l = wavelength 
 = groove density 

Monochromator: system which gives at the output a monochromatic beam from a 
polychromatic beam (it is a filter with variable wavelength and variable bandwidth) 

Spectrometer: it allows to analyze spectrally the radiation, it gives the spectrum on 
a defined bandwidth 

 



It is the capacity to distinguish two close wavelenths separated by l.  

From the grating theory, the maximum resolution is l/l = mN where m is the 
diffraction order and N is the total number of illuminated grooves.  

 

E.g.: m=1, 1200 l/mm grating, 10 cm illuminated area  the highest theoretical resolution 
is 120.000 

 

From the practical point of view, the resolution is limited by the finite width of 
the slits or by the pixel size of the detector. 

Spectral resolution 



Dispersion 

Angular dispersion 

                                 

Plate factor 

 

Bandwidth on a slit of width W (or on a detector pixel of size W) 
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Czerny-Turner configuration 

The beam entering is collimated from the 
first mirror, the grating diffracts the radiation, 
the second mirror focuses the radiation.  

The spectral scanning is done by rotating the 
grating around an axis parallel to the 
grooves. 



Grating types 

  

 Two categories: 

• constant groove spacing 

 

 

• variable groove spacing 

 

 

0 

4

4

3

3

2

210 wwww  

w 

Grating surfaces are normally plane, spherical or toroidal 

R indicates the tangential radius and  the sagittal radius 

Plane grating:  = R =  

Spherical grating:  = R 

Toroidal grating:   R 

 



Optical path and Fermat’s principle: grating 

lnmPBAPF 

The optical path function describes, for any 
point B within the optical surface, the 
contribution of all rays to the image in B 

where n=w/d is the groove number in P, d 
is the groove density (n=0 is the groove 
passing through the center O), m is the 
diffraction order. 

Following the Fermat’s principle with no aberrations, the position of B (image point) 
is that giving P(u,w,l) a stationary point for F(w,l) 

 

 

Any violation of the Fermat’s principle gives raise to an aberration on the image 
point B 
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The concave grating 

Concave grating, radii R,  
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Spectral defocusing 

Astigmatism 

Spectral focusing curve: F20=0  the image of a point-like source consists of 
vertical lines at the different wavelengths  

Spatial focusing curve: F02=0  the image of a point-like source consists of 
horizontal lines at the different wavelengths  

 

For spectroscopy, the spectral focus is preferred to the spatial focus to achieve 
the best spectral resolution 



Rowland configuration for constant-spaced 

concave gratings (1) 

If the source (the slit) and the grating are on a circle with diameter equal to 
the grating tangential radius, and the grating normal is on a diameter, the 
spectral focus is on the circle  

 

 p = R cos a 

 q = R cos  

This configuration has been used for 
many instruments for lab and space 
applications 



For a spherical grating, the spectral and spatial foci are not coincident  
astigmatism (given by the spherical surface) 
 
Astigmatism is corrected by a toroidal surface 

 

  = Rcos a cos  

 

Stigmaticity is realized on two points on the Rowland circle (stigmatic points) for 

two wavelengths (stigmatic wavelengtyhs), corresponding to (a, ) and (a,- ) 

 

Rowland configuration for constant-spaced 

concave gratings (2) 



Space application of toroidal gratings at n.i.: 

UVCS spectrometer on SOHO 

Composite image of the solar 
disk and solar corona with 
EIT and UVCS. 

UVCS is an UV solar coronagraph launched in 1995 with SOHO satellite and 
operated till 2012. It acquires spectroscopic images of the solar corona at the HI-
Lya line at 121.6 nm and O-VI lines centered at 103.2 nm. 



At grazing incidence, when the term F20 is canceled (Rowland circle), the term 

F20 is highly different from zero, since a sphere at grazing incidence has no 

focusing capabilities in the sagittal plane. 

The image of a point-like source is a series of vertical lines at the different 

wavelengths.  

Constant-spaced spherical grating at 

grazing incidence 
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CHARACTERISTICS 

The input arm is p = R cosa 

The output arm is q = R cos 

 



Space application of toroidal gratings at g.i.: 

CDS spectrometer on SOHO 

CDS is a solar disk spectrometer on SOHO, 

to acquire monochromatic images in the 15-

78 nm region. 



  

 
The varied-line-spaced (VLS) grating at 

grazing incidence 
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At grazing incidence, when the term F20 is canceled, the term F20 is highly 

different from zero, since a sphere at grazing incidence has no focusing 

capabilities in the sagittal plane  astigmatism 

 

Once the incidence angle has been fixed, R and 1 can be chosen to have the 

spectral focusing on a curve that is a line almost normal to the tangent to the 

grating surface. 

Furthermore, parameters 2 and 3 are chosen to minimize coma and spherical 

aberration. 

 



  

 



  

 

HH spectra in Helium, 300 J laser pulse 

Hitachi grating, 1200 gr/mm 

MCP detector, 40 mm size 

 

Example of flat-field spectrograph 



  

 

Stigmatic configurations at grazing 

incidence 

Two configurations: 

• toroidal gratings 

• additional mirror for spatial focusing 

 

Option 1: toroidal grating monochromators (TGM), often used for synchrotron 

beamlines. 



  

 

Stigmatic configurations with external 

toroidal mirror (1) 

An external mirror provides the tangential focusing on the entrance plane of the 
grating and the sagittal focusing on the detector plane. 

The configuration gives a single stigmatic point for the Rowland 
configuration, since the output arm varies rapidly. 

The configuration is stigmatic on a broad spectral interval with VLS gratings, 
since the output arm is constant with the wavelength. 
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Poletto et al, Rev. Sci. Inst. 72, 2868 (2001) 



 Toroidal mirror and VLS grating 

Example: configuration to measure HH spectrum 

and divergence 
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Grating monochromators for 

ultrafast pulses 



Spectral selection of ultrafast pulses 

Let us consider the problem of the monochromatization of ultrafast tunable XUV 
pulses, such as FEL pulses (e.g. suppression of the background or selection of the 
FEL harmonics) 

 

 XUV TUNABLE MONOCHROMATOR 

 THE MONOCHROMATOR  HAS TO PRESERVE THE TEMPORAL 
DURATION OF THE XUV PULSE AS SHORT AS THE GENERATION 
PROCESS 

 

 

 

If the wavelength selection is operated by a diffraction grating, a pulse-front tilt 
has to be accepted at the output. 

Es: 5-mm FWHM beam, l=30 nm (41 eV), 300 gr/mm 

grating, normal incidence 

 1500 illuminated grooves 

 path-difference OPFWHM = 45  m, tFWHM = 150 fs 



Limit of the grating monochromator 

For a given resolution l/l, the minimum number of illuminated grooves (first 
diffracted order) is N = l/l (Rayleigh criterion). 

This gives a broadening on the focus that is equal to the Fourier limit. 

 

 

 

 

If the number of grooves that are illuminated is the minimum for a given 
resolution, the broadening given by a diffraction grating is comparable to 
the Fourier limit. 

 

 

OPERATION AT GRAZING INCIDENCE 
When working with gratings at grazing incidence, the illuminated area is long and the number 
of illuminated grooves is normally far superior to the Rayleigh limit. 

The problem of time preservation has to be analyzed ! 
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Design of single-grating 

monochromators 

Aim of the design is to keep the number of illuminated grooves as close as possible 
to the resolution l/l 

 

• The classical diffraction geometry can be used to make the spectral selection with 
a single grating 

• The temporal broadening in the XUV is in the range 100-200 fs FWHM 

• The efficiency is limited by the quality of the grating surface (10%) 

L. Poletto and F. Frassetto, Appl. Opt. 49, 5465 (2010) 

 



The off-plane mount 

OFF-PLANE MOUNT  the incident and 
diffracted wave vectors are almost parallel 
to the grooves 

W. Cash, Appl. Opt. 21 710 (1982) 

W. Werner and H. Visser, Appl. Opt. 20, 487 (1981) 



Efficiency of gratings for XUV monochromators 

M. Pascolini et al, Appl. Opt. 45, 3253 (2006) 

Grating gr/mm altitude angle blaze wavelength 

1 400 3 44 nm 

2 400 5.6 38 nm 

3 600 3 21 nm 

VERY HIGH EFFICIENCY ! 



Classical design vs off-plane (single-grating 

mount) 

The classical mount is suitable for time response in the 100-200 fs range. 

The off-plane mount should be used for time response in the 10-100 fs range. 

 

Wavelength 30 nm 

Beam size 1 mm half-width 

 

L. Poletto et al, J. Sel. Top. Quant. Electron. 18, 467 (2012) 



Temporal characterization 

The temporal characterization is achieved by cross-correlation measurement of the XUV 
pulses with a synchronized 800-nm pulse. The harmonic pulse ionizes a gas in the 
presence of the IR field. When the two pulses overlap in time and space on a gas jet, 
sidebands appear in the photoelectron spectrum. The sideband amplitude as a function of 
the delay between the XUV and IR pulses provides the cross-correlation signal. 



Example: monochromatic beamline at EPFL (1) 

Harmonium beamline at EPFL, Lausanne 

 

J. Ojeda et al, Structural Dynamics 3, 023602 (2016) 

 



Example: monochromatic beamline at EPFL (2) 

Spot size, 22 um 
FWHM 

 

Temporal response 

200 gr/mm grating, 70 fs FWHM @36 eV 

 



Double-grating design 

Scheme for path length equalization: the mechanism which originates the path 
difference, hence the pulse-front tilt,  must be canceled. 

 
 equalization of path length for different rays at the 

same wavelength 

 combination of two diffractive elements in 
negative dispersion  

 correction of the optical aberrations 

P. Villoresi, Appl. Opt. 38, 6040 (1999) 

L Poletto, Appl. Phys. B 78, 1009 (2004) 

L Poletto and P. Villoresi, Appl. Opt. 45, 8577 (2006) 

 

Double-grating monochromators have already 
been realized for high-order laser harmonics, 
showing instrumental response of 10 fs in the 
XUV (30-40 eV range) 



Double-grating design with toroidal gratings 

The double-grating design has been realized in a moderate grazing-incidence set-up 
(142° deviation angle) 

Compensation of the pulse-front tilt to 11 fs at 32.6 eV (38 nm, H21) has been 
demonstrated 

M. Ito et al, Opt. Express 18, 6071 (2010) 

H. Igarashi et al, Opt. Express 20, 3725 (2012) 

 



Double-grating design in the off-plane mount 

DOUBLE-GRATING CONFIGURATION 
The two gratings are mounted in COMPENSATED CONFIGURATION and SUBTRACTIVE 
DISPERSION. 
 
Time compensation 
1) the differences in the path lengths of rays with the same wavelength that are caused by 
the first grating are compensated by the second grating 
2) rays with different wavelengths within the spectrum of the pulse to be selected are 
focused on the same point 
 
Focusing 
The focusing is provided by the toroidal surfaces 
 
Spectral selection 
A slit placed on the intermediate focus carries out the spectral selection of the HHs 
 
Wavelength scanning 
The wavelength scanning is performed by rotating the gratings around an axis tangent to 
the surface and parallel to the grooves 
 



Double-grating design in the off-plane mount 

L. Poletto, Appl. Phys. B 78, 1013 (2004) 

L. Poletto and P. Villoresi, Appl. Opt. 45, 8577 (2006) 

L. Poletto, Appl. Opt. 48, 4526 (2009) 

 

The double-grating design 
has been realized in the of-
plane mounting. 

Compensation of the pulse-
front tilt down to 8 fs at H23 
has been measured 



Effect of the monochromator on ultrafast pulses 

The temporal response of the monochromator is evaluated considering two effects 

on the ultrafast pulse given by the time-delay-compensating configuration 

 

1. Compensation of the pulse-front tilt, i.e., all the rays emitted by the source in 

different directions at the same wavelength have to travel the same optical 

path. Ideally the compensation is perfect for a double-grating configuration, 

although aberrations may give a residual distortion of the pulse-front.  

 

2. Group delay introduced by the two gratings, i.e., different wavelengths within 

the bandwidth transmitted by the slit travel different paths, similarly to 

grating pulse shapers for the visible range. Within the output bandwidth, the 

optical path decreases linearly with the wavelength and this forces the group 

delay dispersion to be almost constant and positive. 

L. Poletto and F. Frassetto, Applied Sciences 2018, 8, 1-9 (2018) 



Gratings for pulse compression 



Chirped-pulse amplification for FELs 

Solid-state laser: frequency chirping is employed to stretch a short pulse 
before amplification. This mitigates the problem of phase distortion in the 
amplification medium. After pulse amplification, the chirp is compensated in 
order to recover short pulses and high power. 
 
CPA in seeded FEL’s: the seed pulse is stretched in time before interacting 
with the electron beam. This allows to induce bunching on a larger number 
of electrons, and to linearly increase the output energy of the generated 
pulse. The chirp carried by the phase of the seed pulse is transmitted to the 
phase of the FEL pulse. Compensating the chirp of the FEL pulse allows to 
recover a short pulse and a high peak power. 



Grating compressor 

The first grating disperses the beam, therefore different wavelengths travel in different 

directions and with different optical paths, but also introduces a pulse-front tilt because of 

diffraction. The second grating compensates for the spectral dispersion, therefore all the 

wavelengths at the output have the same direction than the input, and for the pulse-front 

tilt. Two additional plane mirrors are required to translate the output beam as the input. 

F. Frassetto and L. Poletto, Appl. Opt. 54, 7985 (2015) 

Optical path varies with the wavelength  negative dispersion 
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The experiment at FERMI (1) 

FEL tuned at 37.3 nm 

FEL pulse duration 
measured through IR-XUV 
cross-correlation 

Seeding laser duration: 
170 fs (no chirp) 

Standard FEL pulse 
measured to be 91 fs 



The experiment at FERMI (2) 

Seeding laser duration with chirp: 290 fs 

FEL duration before compression: 143 fs 

FEL duration after compression: 50 fs (40 fs Fourier limit) 

D. Gauthier et al, Nat. Comm. 7, 13688 (2016) 



Multilayer mirrors 



Operation at normal incidence 

Operation at normal incidence is preferred for optical systems: 

- Low aberrations 

- Large collecting angle 

- Small optics 

 

Unfortunately, XUV reflectivity of a single layer at normal incidence is very low. 
50 nm wavelength 

Platinum 0.18 

Silicon  0.006 

 

20 nm wavelength 

Platinum 0.01 

Silicon  0.0001 

 

What can be done to operate at normal incidence with high efficiency ? 

 

 



What is a multilayer?  

 Multilayer is a nanostructured stack based on two or more 
materials 

 The layer thickness is regulated in such a way that all the 
reflected component at each interface add in phase 

 A capping layer (i.e. structure on top of it) can be deposited 
to improve performances or for protection 
 



Applications  



Definitions  

 Periodic ML: structure based on the repetition of a couple of materials 
deposited using the same layer structure 

 A-periodic ML: the materials are deposited alernatively, but with 
different layers 

 Spacer: material with low absorption 

 Absorber: material with high absorption 

 Г (gamma): ratio between spacer layer and ML period d 

 Capping-layer: external layers of the structure 

 Barrier layer: thin layers deposited between the spacer and the 
absorber to decrease roughness and interdiffusion 



Definitions 

Barrier layer 

Spacer 

Absorber 



Multilayer mirrors satisfy the Bragg condition 

Just as Bragg's law describes the condition for constructive interference of X-rays in 

a crystal, the same law describes the condition for constructive interference in a 

multilayer film (operating in first order): λ=2dsinθ. 

Near normal incidence (θ~90°) Bragg’s law tells us that the multilayer period d is 

approximately equal to half the photon wavelength. 



Materials and Fresnel diagram  

Materials used for ML should satisfy the following criteria: 

• Lowest absorption of spacer 

• Highest optical contrast between absorber and spacer 

• Low chemical reactivity and reactivity with oxygen 

• Deposition in smooth layers (amorphous phase) 

• No toxic elements Fresnel diagram 

Typical materials 



Roughness and interdiffusion 

P. Zuppella et al, Optics Letters 36, 1203 (2011) 

• Interdiffusion and substrate 

roughness during the 

deposition give a rough 

interface between layers 

• Reflectivity is decreasing 

Mo-Si ML (simulation) 

d=6.9 nm 

G=0.4 

Normal incidence 





Example: XUV lithography   

Engineering Test Stand from Extreme 
Ultraviolet Limited Liability Company 
(USA) 



Example: XUV lithography   

The XUV lithography is realized at 13.5 

nm because of high reflectivity of 

available ML mirrors 



Example: space applications in the XUV 

Cassegrain telescope 

Coronal loop at 17.1 nm, TRACE (Fe IX) The solar disk at 28.4 nm, SOHO-EIT (Fe XV) 



Example: space application in the X-rays 

NUSTAR NASA mission 

X-ray Wolter-type telescope 

133 shells 

3-79 keV photons 



Tight focusing of HHs with ML-coated optics 

Multilayer-coated optics at normal incidence have been used to focus HHs to 

1-um spot size 

Mashiko et al, Opt. Lett. 29, 1927 2004 

ML coated off-axis parabola, 6-cm focal length 



Narrow-band ML for the isolation of a single 

harmonics 



ML to generate attosecond pulses 

XUV excitation pulses generated from neon atoms ionized by an 5-fs linearly 

polarized laser pulse. 

Proper adjustment of the laser peak intensity yielded highest-energy (cutoff) XUV 

emission in the high-reflectivity band of a Mo/Si multilayer mirror, which is used to 

spectrally confine and focus the XUV pulses. The cutoff emission is confined to 

the vicinity of zero transition(s) of the laser electric field after the most intense 

half-cycle(s) in a few-cycle driver. 

250-as single pulses have been generated. 

R. Kienberger et al, Nature 427, 817, 2004 



Aperiodic ML 

Aperiodic multilayers are typically used to achieve broad spectral response at a 

fixed incidence angle. The individual layer thicknesses are specified numerically. 

Performance of an aperiodic Al/Zr 

multilayer designed for high reflectance at 

normal incidence from 171 Å to 211 Å, to 

be compared with the reflectivity curves 

for the periodic Si/Mo multilayers used for 

the Hinode/EIS instrument on SOLAR-B 

and the TXI sounding rocket instrument.  



Aperiodic ML to compensate the attochirp 

Controlled isolation of a single energetic harmonic pulse requires control of the 

amplitude of spectral components of the emitted XUV radiation over a broad 

spectral range. Furthermore, transform-limited XUV pulse production calls for 

precise control of the phase over the spectral band.  

Such a phase control has been demonstrated by utilizing the dispersion of 

materials near electronic resonances (R. Lopez-Martens et al, Phys. Rev. Lett. 

94, 033001, 2005; Sansone et al, Science 314, 443, 2006). 

By analogy with broadband dispersion control of optical pulses with chirped 

multilayer dielectric mirrors, chirped ML mirrors have been proposed and 

developed for the same purpose in the XUV (A.-S. Morlens et al, Opt. Lett. 30, 

1554, 2005; A. Wonisch et al, Appl. Opt. 45, 4147, 2006; M. Schultze et al, New 

J. Phys. 9, 243, 2007). 

 

  



Simulations 

The electric field of the incident pulse E(t) is Fourier transformed to obtain the 

spectral composition E() of the pulse.  

Each Fourier component is multiplied by the complex amplitude reflectivity r() of 

the ML. To obtain the field of the reflected pulse, an inverse Fourier transform is 

performed on E’()= E() r(). 

The complex-amplitude reflectivity r()=|r()|exp[-i()] with () as the phase 

shift () is calculated by a recursive Fresnel equation code by using the atomic 

scattering factors for the layer materials. 

The pulse duration of the reflected pulse can be determined by calculating the 

FWHM of the pulse intensity envelope I(t)=E(t)2 

 

The two main parameters for designing a chirped mirror that can compress 

HH pulses are a large bandwidth and a negative GDD. 
 

 

  



Results (1) 

A.S. Marlens et al, Opt. Lett. 30, 1554, 2005  

 

  

H25-H61, GDD = 10,000 as2 at 5 1014 W cm−2 

H25-H101, GDD = 6,500 as2 at 7.5 1014 W cm−2 



Results (2) 

A. Wonisch et al, Appl. Opt. 45, 4147, 2006 

  

ML coating for reflection of attosecond pulses: 

● Large bandwidth: for a Gaussian-shaped 100 as pulse a bandwidth of 

approximately 26 eV is required. 

● Linear phase shift: When a nonchirped incident pulse is reflected from a 

multilayer coating, its duration and shape are conserved only if the multilayer 

has a linear phase shift 

● High reflectivity 

● Gaussian or rectangular reflectivity profile: 



Diffractive optics 



Zone plate 

A zone plate is a device used to focus light using diffraction.  

A zone plate consists of a set of radially symmetric rings (Fresnel zones), which 

alternate between opaque and transparent. Light hitting the zone plate will diffract 

around the opaque zones. The zones can be spaced so that the diffracted light 

constructively interferes at the desired focus, creating an image. 

 

 

 

http://en.wikipedia.org/wiki/File:Zone_plate.svg


Diffractive focusing 

 Selection of the paths that are 
added in phase with the 
central path 

 Image formation from the 
contributions having path 
multiple of the wavelength 

 Chromatic effect (strongly 
dependent on the wavelength) 

 



Zone plate: radius of single zones 
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Zone plate: focal length and numerical 

aperture 

N = number of zones 

D = zone plate diameter 

A  numerical aperture 
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Zone plate: point by point imaging 

magnification 
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Zone plate: diffraction limit 



Some numbers 



Example: XM-1 

beamline at ALS 



Nanometer focusing 

150 nm focus at 8 keV (0.16 nm) 
Yun et al, Rev. Sci. Inst. 70, 2238, 1999 

 
Sub-5 nm focusing at 8 keV 

Doring et al, Opt. Express 21, 19311, 2013 



Zone plates for high-order laser harmonics 

The zone plate monochromator 
An off-axis reflection zone plate (RZP) is imprinted as a projection of a 
conventional transmission zone plate on a totally reflecting mirror surface. The 
structure, being a laminar grating of variable line spacing in two dimensions, is 
capable of imaging the source by diffraction onto a certain distance along the 
optical axis, acting as both a dispersive and focusing optical element. However, 
owing to the high chromaticity of a zone plate, i.e. the dependence of the focal 
length on wavelength, different energies are focused on different positions along 
the optical axis. 
 

J. Metje al, Opt. Express 22, 10747, 2014 



Zone plates for high-order laser harmonics 

Energy dispersion 
 
 
 
Optimal structure period d 

M. Brzhezinskaya et al, J. Synch. Rad. 20, 522, 2013 



Beamline for HHs 



Conclusions 

After 50 years from the use of dye lasers 
(ps time scale), ultrafast optics broke the 
femtosecond barrier and reached the 
attosecond time scale to watch at electron 
motion in real time. 

 

XUV optics play an important role in 
handling and conditioning the XUV photon 
beam toward the sample 

x 1012 


