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Background 

• Special relativity and basics of electromagnetism 

• Lorentz and gauge invariance 

• Maxwell’s equations 

• electromagnetic field generated by a moving 

charge 

• Covariant formulation of classical electrodynamics 

• Basic knowledge of quantum electrodynamics 

• Dirac equation and gamma matrices “technology” 

• Feynman diagrams 
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Outline (Part I) 

• Radiation by accelerated charges 

• Necessity of introducing radiation-reaction terms in 

the Lorentz equation 

• Thorough derivation of the Lorentz-Abraham-Dirac 

(LAD) equation 

• Physical inconsistencies of the LAD equation 

• The Landau-Lifshitz (LL) equation 

• Recent experimental tests of the LL equation 

• Conclusions 



Experimental observation of radiation reaction 

• Experiment carried out at Astra Gemini (UK) 

• Electron energy: up to 2.0 GeV, Laser intensity: 2£1020 W/cm2 

(Poder, Tamburini et al. arXiv:1709.01861) 

• Experimental results: 



Outline (Part II) 

• QED in the presence of a strong background 

electromagnetic field 

• The Furry picture and the Volkov states 

• Nonlinear single Compton scattering 

• Radiation reaction in QED 

• Conclusions 



Optical laser technology 

Electron accelerator 

technology 
Energy 

(GeV) 

Beam 

duration (fs) 

Spot radius 

(¹m) 

Number of 

electrons 

Conventional accelerators (PDG) 10¥50 103¥104 10¥100 1010¥1011 

Laser-plasma accelerators (Leemans 

et al., Phys. Rev. Lett. 2014)  
4.2 40 50 8£108 

Present technology allows in principle the experimental 

investigation of strong-¯eld QED 

Electron accelerator technology 

Optical laser technology 

(}!0=1 eV, ¸0=1 ¹m) 
Energy 

(J) 

Pulse 

duration 

(fs) 

Spot radius 

(¹m) 

Intensity 

(W/cm2) 

State-of-art (Yanovsky et al., Opt. 

Express 2008) 
10 30 1 2£1022 

Soon (APOLLON, ELI Beamlines, 

ELI Nuclear Physics etc…) 
10¥100 10¥100 1 1022¥1023 

Near future (ELI 4th pillar, XCELS) 104 10 1 1025¥1026 



• We have calculated the average 
energy emitted per unit of 
electron energy (emission 
spectrum), by taking into account 
the emission of N>1 photons 
(quantum radiation reaction) 

• Numerical parameters: electron 
energy 1 GeV, laser wavelength 
0.8 ¹m, laser intensity 51022 

W/cm2 (»=150,  Â=1.8), laser 
pulse duration 5 fs (the spectra 
converged after the inclusion of 
the emission of 13 photons) 
 

• E®ects of radiation reaction: 

1. increase of the spectrum yield at low energies 

2. shift to lower energies of the maximum of the spectrum yield 

3. decrease of the spectrum yield at high energies 

• Classical radiation reaction arti¯cially ampli¯es all the above e®ects 

• Classical spectra both without and with radiation reaction give 
unphysical results at high photon energies 



• Numerical parameters as 
above except I0=2.2£1022 

W/cm2 (»=68) and "*=1 

GeV (Â*=0.8) 

• SC: classical formulas with 

quantum intensity of 

radiation 

• Numerical example: sin2-like optical 
(¸0=0.8 ¹m) pulse with I0=4.3£1020 

W/cm2 (»=10), and an electron bunch 
initially with "*=42 MeV (Â*=5£10{3) 

• QED effects are small and both 

classical and quantum equations 

predict a reduction of the energy width 

Q 

C SC 

 

• Classical and quantum approaches give opposite results 

• The semiclassical approach does not include stochasticity effects 

and cannot explain the broadening of the distribution function 


