ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles

Trieste, 19-23 March 2018

Lecture Tue.2

THEORY AND SIMULATION OF MATERIALS

τηξος

Maximally-localized Wannier functions

<u>Giovanni Pizzi</u>¹, Antimo Marrazzo¹, Valerio Vitale²

¹Theory and Simulation of Materials, EPFL (Switzerland) ²Cavendish Laboratory, Department of Physics, University of Cambridge (UK)

School on Electron-Phonon Physics from First Principles Trieste, March 20th, 2018

PART II

The Wannier90 code

See here for our news archive.

Please cite

An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions AA Mostofi, JR Yates, G Pizzi, YS Lee, I Souza, D Vanderbilt, N Marzari Comput. Phys. Commun. 185, 2309 (2014) ONLINE JOURNAL]

London

in all publications resulting from your use of Wannier90.

OF NEW JERSEY FÉDÉRALE DE LAUSANNE

People involved

WANNIER90 AUTHORS

ARASH MOSTOFI

YOUNG-SU LEE

South Korea.

Young-Su is a Senior Research

Scientist at the Korea Institute of Science and Technology (KIST),

Arash is Reader in Physics and Materials at Imperial College London. He is also a part of the Thomas Young Centre.

JONATHAN YATES

Jonathan is Associate Professor in Materials Modelling at the University of Oxford.

GIOVANNI PIZZI

Giovanni is a postdoctoral researcher at EPFL.

IVO SOUZA

Ivo is Research professor at the University of the Basque Country.

WANNIER90 CONTRIBUTORS

- Matthew Shelley, PhD Student at Imperial College London
- Nicolas Poilvert, PhD Student at the Massachusetts Institute of Technology
- Daniel Aberg (LLNL, USA) for the POV-Ray routines
- Lampros Andrinopoulos, Nicholas D. M. Hine and Arash A. Mostofi (Imperial College) for the w90vdw code
- David Strubbe (MIT, USA): various bugfixes/improvements
- Gabriele Sclauzero (ETH Zurich) for the k-sphere disentanglement routines
- Rei Sakuma (Lund University, Sweden): Symmetry-adapted Wannier functions
- Yusuke Nomura (U. Tokyo, JP): Symmetry-adapted Wannier functions
- Takashi Koretsune (Riken, JP): Symmetry-adapted Wannier functions, non-collinear spin with ultrasoft in pw2wannier90
- Lorenzo Paulatto (UPMC Paris, FR): Improvements to the interpolation routines, non-collinear spin with ultrasoft in pw2wannier90
- Florian Thole (ETHZ, CH): non-collinear spin with ultrasoft in pw2wannier90
- Pablo Garcia Fernandez (Unican, ES): Matrix elements of the position operator
- Dominik Gresch (ETHZ, CH): FORD infrastructure for code documentation
- Samuel Ponce (Oxford University, UK): Test suite for Wannier90
- Marco Gibertini (EPFL, CH): Improvements to the interpolation routines
- Christian Stieger (ETHZ, CH): Routine to print the U matrices
- Stepan Tsirkin (Universidad del Pais Vasco, Spain): bug fixes in the berry module

. . . .

You can be a contributor as well!!

NICOLA MARZARI

Nicola holds the Chair of Theory and Simulation of Materials at EPFL

DAVID VANDERBILT

David is Professor of Condensed Matter Theory at Rutgers University.

Wannierization

- disentanglement in spheres (relevant k-points not easy to distinguish by energy window, but are close in space)
- Symmetry-adapted WFs (to enforce a given local symmetry)
- Support for spin-orbit coupling

Post-processing

- Generic band interpolation (and also analytical band derivatives)
- Boltzmann transport (electrical conductivity, Seebeck coefficient, ...)
- Transport calculations (quantum conductance)
- Berry curvature, anomalous Hall conductivity and optical conductivity
- Orbital magnetisation

Wannier90 "input data"

- Needs the overlap matrices $M_{mn}^{(k,k+b)}$ between neighboring k points, and the $A_{mn}(k)$ projection matrices
- Other possible inputs:
 - the **list of eigenvalues** at each *k*-point (for interpolation)
 - the $u_{nk}(r)$ in real space (for plotting the WFs)
- This input can be obtained from various programs; there exists interfaces for a set of ab-initio codes
 - We will use **Quantum Espresso**
 - **Reminder**: *pw.x* documentation in

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
(you can find the link in the PDF with the exercises)

How to run a Wannier90 calculation

Note: DON'T MIX the yellow and green path! Otherwise the content of the 'output' folder of Quantum Espresso is overwritten and you will get some error.

First follow one path (e.g. the yellow one), and when you get to the bottom box, start again from NSCF

Exercises 1 and 2: Silicon

- Calculate Wannier functions for Silicon (VB only, and VB+CB)
- Check the results
- Plot the real-space WFs (using XCrysDen)
- Plot the ab-initio and the interpolated band structure (using xmgrace or gnuplot)

How to run and input file

- The Wannier90 input file must have a .win extension (e.g.: ex1.win) To run the code, pass the *basename* (i.e., the name without the .win extension) as a command line parameter to wannier90.x: wannier90.x -pp ex1 (for the pre-process step) wannier90.x ex1 (for the Wannierization step) Input file format: very simple, there are *no* namelists but only: Variables (order is not important; not case sensitive) num_wann = 4mp_grid : 6 6 6 Blocks begin atoms_frac Si -0.25 0.75 -0.25 Si 0.00 0.00 0.00
 - end atoms_frac
- Default units for lengths are angstrom (bohr are also accepted), for energies are eV

Example of input file (ex1)

num_bands	= XXX	
num_wann	= XXX	
num_iter	= 100	
! restart	= plot	
wannier_plot	= true	
wannier_plot_supercell = 3		
bands_plot	= true	
begin kpoint_path		

L 0.5 0.5 0.5 G 0.0 0.0 0.0 G 0.0 0.0 0.0 X 0.5 0.0 0.5 end kpoint_path

begin projections f=-0.125,-0.125, 0.375:s f=0.375,-0.125,-0.125:s f=-0.125, 0.375,-0.125:s f=-0.125,-0.125,-0.125:s end projections mp_grid = XXX XXX XXX begin kpoints XXX XXX XXX end kpoints

begin atoms_frac Si -0.25 0.75 -0.25 Si 0.00 0.00 0.00 end atoms_frac

begin unit_cell_cart bohr

-5.10	0.00	5.10
0.00	5.10	5.10
-5.10	5.10	0.00
end unit_cell_cart		

Practical information

- You can find the PDF with the instructions online, or inside /home/nfs3/smr3191/tutorials/wannier90/ wannier-tutorial.pdf
- Before starting the tutorials, copy the whole folder above on the local scratch of your computer:
 - cp -r /home/nfs3/smr3191/tutorials/wannier90/w90-tutorial-files/ /scratch/w90-tutorial-files/
- To get help (from tomorrow on...): <u>www.wannier.org</u>
 - User guide, tutorials
 - Read the source code!
 - Wannier90 mailing list

Exercise 3: band structure and Fermi surface of copper

Interpolate the band structure of copper

Show the Fermi surface of copper

Optional exercise 4: band interpolation using GW

Interpolate the band structure of silicon including G₀W₀ corrections

Image from exciting-code.org

Optional exercises 5 and 6: C chain

 Calculate the band structure, DOS and the Quantum Conductance (QC) of a periodic C chain

Calculate the DOS and QC of a defected C chain

PART III

Wannier90 hands-on

A. Marrazzo and V. Vitale