
. Eliashberg function and superconducting properties

Tutorial Fri.4

Hands-on session

Exercise 1

In this example we are going to calculate the superconducting properties of fcc Pb by solving the
isotropic Migdal-Eliashberg equations.
First copy the tutorial files and go in the first exercise:

$ wget http://epw.org.uk/uploads/School2018/Fri.4.Margine.tar

$ tar -xvf Fri.4.Margine.tar; cd tuto_Fri4/exercise1

IMake a self-consistent calculation for Pb.

&control

calculation='scf'

restart_mode='from_scratch',

prefix='lead',

pseudo_dir = './',

outdir='./'

wf_collect = .true.

/

&system

ibrav= 2,

celldm(1) = 9.2225583816,

nat= 1,

ntyp= 1,

ecutwfc = 30.0

occupations='smearing',

smearing='marzari-vanderbilt',

degauss=0.05

/

&electrons

conv_thr = 1.0d-10

mixing_beta = 0.7

/

ATOMIC_SPECIES

Pb 207.2 pb_s.UPF

ATOMIC_POSITIONS

Pb 0.00 0.00 0.00

K_POINTS {automatic}

8 8 8 0 0 0

Note: The ecutwfc need to be much larger for real calculations.

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/pw.x < scf.in > scf.out

ICompute the vibrational properties of Pb on a coarse 3x3x3 q-point grid.

-- ph.in

&inputph

prefix = 'lead',

fildyn = 'lead',

amass(1) = 207.2,

outdir = './'

ldisp = .true.,

trans = .true.,
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fildvscf = 'dvscf',

nq1=3,

nq2=3,

nq3=3,

tr2_ph = 1.0d-12

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/ph.x < ph.in > ph.out &

The calculation should take about 2 min on 4 cores. During the run, notice the IBZ q-point grid:

Dynamical matrices for ( 3, 3, 3) uniform grid of q-points

( 4 q-points):

N xq(1) xq(2) xq(3)

1 0.000000000 0.000000000 0.000000000

2 -0.333333333 0.333333333 -0.333333333

3 0.000000000 0.666666667 0.000000000

4 0.666666667 -0.000000000 0.666666667

IGather the .dyn, .dvscf and patterns files into a new save directory using the pp.py python
script.

$ python /home/nfs3/smr3191/q-e/EPW/bin/pp.py

IDo a non self-consistent calculation on a homogeneous 6x6x6 uniform and Γ-centered grid
between [0,1] in crystal coordinates.

&control

calculation ='nscf',

prefix ='lead',

pseudo_dir = './',

outdir = './',

/

&system

ibrav = 2,

celldm(1) = 9.2225583816,

nat = 1 ,

ntyp = 1 ,

ecutwfc = 30.0,

occupations = 'smearing',

smearing ='marzari-vanderbilt',

degauss = 0.05,

nbnd = 10,

/

&electrons

mixing_beta = 0.7

conv_thr = 1.0d-12

/

ATOMIC_SPECIES

Pb 207.2 pb_s.UPF

ATOMIC_POSITIONS crystal

Pb 0.000000000 0.000000000 0.000000000

K_POINTS crystal

216

0.00000000 0.00000000 0.00000000 4.629630e-03

0.00000000 0.00000000 0.16666667 4.629630e-03

...

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/pw.x -npool 4 < nscf.in > nscf.out

Since EPW does not yet support G-vector parallelization, we use k-point parallelization only, which
means that np needs to be always equal to npool.

IPerform an EPW calculation.
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-- epw1.in

&inputepw

prefix = 'lead',

amass(1) = 207.2

outdir = './'

dvscf_dir = './save'

ep_coupling = .true.

elph = .true.

kmaps = .false.

epbwrite = .true.

epbread = .false.

epwwrite = .true.

epwread = .false.

nbndsub = 4

nbndskip = 5

wannierize = .true.

num_iter = 300

dis_win_max = 21

dis_win_min = -3

dis_froz_min= -3

dis_froz_max= 13.5

proj(1) = 'Pb:sp3'

wdata(1) = 'bands_plot = .true.'

wdata(2) = 'begin kpoint_path'

wdata(3) = 'G 0.00 0.00 0.00 X 0.00 0.50 0.50'

wdata(4) = 'X 0.00 0.50 0.50 W 0.25 0.50 0.75'

wdata(5) = 'W 0.25 0.50 0.75 L 0.50 0.50 0.50'

wdata(6) = 'L 0.50 0.50 0.50 K 0.375 0.375 0.75'

wdata(7) = 'K 0.375 0.375 0.75 G 0.00 0.00 0.00'

wdata(8) = 'G 0.00 0.00 0.00 L 0.50 0.50 0.50'

wdata(9) = 'end kpoint_path'

wdata(10) = 'bands_plot_format = gnuplot'

parallel_k = .true.

parallel_q = .false.

fsthick = 0.5 ! eV

eptemp = 0.075 ! K

degaussw = 0.05 ! eV

ephwrite = .true.

eliashberg = .true.

liso = .true.

limag = .true.

lpade = .true.

lacon = .true.

nsiter = 500

conv_thr_iaxis = 1.0d-3

conv_thr_racon = 1.0d-3

wscut = 0.1 ! eV

temps(1) = 0.3

temps(2) = 0.9

temps(3) = 1.5

temps(4) = 2.1

temps(5) = 2.7

temps(6) = 3.3

temps(7) = 3.9

temps(8) = 4.1

temps(9) = 4.3

temps(10) = 4.4

temps(11) = 4.5

muc = 0.09
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mp_mesh_k = .true.

nkf1 = 12

nkf2 = 12

nkf3 = 12

nqf1 = 12

nqf2 = 12

nqf3 = 12

nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 3

nq2 = 3

nq3 = 3

/

4 cartesian

0.000000000 0.000000000 0.000000000

-0.333333333 0.333333333 -0.333333333

0.000000000 0.666666667 0.000000000

0.666666667 -0.000000000 0.666666667

Note The list of q points given at the end of the input file should be exactly the same as the list contained in the

file prefix.dyn0. In dvscf dir = ’./save’ we specify the directory where the .dyn, .dvscf and patterns files are

stored.

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/epw.x -npool 4 < epw1.in > epw1.out &

With the above input, we are instructing EPW to:

• Fourier-transform the electron-phonon matrix elements from a coarse 6x6x6 to a dense 12x12x12
k-point grid and from a coarse 3x3x3 to a dense 12x12x12 q-point grid.

• Write on disk: (1) the lead.ephmatXX files (one per CPU) containing the electron-phonon
matrix elements within the Fermi window (fsthick) on the dense k and q grids (2) the
lead.freq file containing the phonon frequencies on the dense q grid, (3) the lead.egnv

file containing the eigenvalues within the Fermi window on the dense k grid, and (4) the
lead.ikmap file containing the index of the k-points on the dense (irreducible) grid within
the Fermi window. All these files were produced by setting ephwrite=.true.. The files are
formatted and required for solving the Migdal-Eliashberg equations.

• Solve the isotropic Migdal-Eliashberg equations on the imaginary frequency axis. This is
achieved by setting the keywords eliashberg = .true., liso = .true., and limag =

.true. in the EPW input file.

The isotropic Migdal-Eliashberg equations take the following form:

Z(iωj) = 1 +
πT

ωj

∑
j′

ωj′√
ω2
j′ + ∆(iωj)

λ(ωj−ωj′)

Z(iωj)∆(iωj) = πT
∑
j′

∆(iωj′)√
ω2
j′ + ∆2(iωj′)

[
λ(ωj−ωj′)− µ∗c

]
(1)

The equations are solved self-consistently for each temperature value specified in the input file
temps(1), temps(2), ....

The isotropic electron-phonon coupling strength λ(ωj) entering in Eqs. (1) is defined as:

λ(ωj) =
1

NF

∑
nmν

∫
dk

ΩBZ

∫
dq

ΩBZ
|gmnν(k,q)|2 2ωqν

ω2
j + ω2

qν

δ(εnk − εF)δ(εmk+q − εF) (2)

19-23 March 2018 R. Margine Tutorial Fri.4 | 4 of 17



Because the electron-phonon matrix elements do not depend on the temperature at which the
Migdal-Eliashberg equations are solved, they can be reused in subsequent EPW calculations at
different temperatures. This is the reason why the .ephmatXX files were saved.

The semiempirical Coulomb parameter µ∗c is provided as an input varible muc in the EPW
calculation.

• Perform the analytic continuation of the solutions along the imaginary frequency axis to the
real frequency axis by using Padé approximants (lpade = .true.) and the iterative procedure
(lacon = .true.).

Note:

• ephwrite=.true. does not work with random k or q grids and requires nkf1,nkf2,nkf3 to be multiple of
nqf1,nqf2,nqf3.

• mp mesh k = .true. specifies that only the irreducible points for the dense k grid are used. This significantly
decreases the computational cost when solving the Migdal-Eliashberg equations.

• If the Migdal-Eliashberg equations are solved in a separate run from the one in which the .ephmatXX, .freq,
.egnv, and .ikmap files were generated, the code requires to use the same number of CPUs as the number of
.ephmatXX files. If you forget this the code will crash, asking to use npool equal to the number of .ephmatXX
files.

• lpade = .true. requires limag = .true.

• lacon = .true. requires both limag = .true. and lpade = .true..

• wscut gives the upper limit (in eV) of the summation over the frequencies on the imaginary axis in the Migdal-
Eliashberg equations (limag = .true.). Note that the input variable wscut is ignored if the number of frequency
points is given using the input variable nswi. In this case, the number of frequency points in the summation is
the same irrespective of the temperature.

• temps(1), temps(2), ... define the temperatures at which the Migdal-Eliashberg equations are evaluated. Note
that the temperatures can also be defined using nstemp,tempsmin,tempsmax input variables.

• If temperatures larger than the critical temperature Tc are specified in the input file, the code will stop when a
first such a temperature is reached since the Migdal-Eliashberg equations have no solution at that point.

The calculation should take about 4 min to be completed. While the calculation is running, notice in
the epw.out the different steps a full EPW run goes into. Once the interpolation into the fine mesh is
finished, the code writes and reads the files required for solving the Migdal-Eliashberg equations and
then proceeds with solving the equations at the specified temperatures.

At the end of the calculation, you should get the following output at every given temperature (only
2 decimals are shown to fit between the page margins). Note that the number of frequency points
decreases as the temperature increases because fewer frequencies iωj = i(2n+ 1)πT (n integer) are
smaller than the cutoff frequency wscut.

temp( 1) = 0.30000 K

Solve isotropic Eliashberg equations on imaginary-axis

Total number of frequency points nsiw ( 1 ) = 616

iter = 1 error = 3.15E+00 Znormi(1) = 1.64E+00 Deltai(1) = 6.53E-04

iter = 2 error = 8.75E-02 Znormi(1) = 1.64E+00 Deltai(1) = 6.70E-04

iter = 3 error = 4.83E-02 Znormi(1) = 1.64E+00 Deltai(1) = 6.86E-04

iter = 4 error = 1.15E-02 Znormi(1) = 1.64E+00 Deltai(1) = 6.95E-04

iter = 5 error = 8.01E-03 Znormi(1) = 1.64E+00 Deltai(1) = 7.01E-04

iter = 6 error = 1.75E-02 Znormi(1) = 1.64E+00 Deltai(1) = 7.13E-04

iter = 7 error = 1.42E-03 Znormi(1) = 1.64E+00 Deltai(1) = 7.13E-04

iter = 8 error = 1.26E-04 Znormi(1) = 1.64E+00 Deltai(1) = 7.13E-04
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Convergence was reached in nsiter = 8

iaxis_imag : 0.01s CPU 0.04s WALL ( 1 calls)

Pade approximant of isotropic Eliashberg equations from imaginary-axis to real-axis

pade = 264 error = 1.65E+00 Re[Znorm(1)] = 1.64E+00 Re[Delta(1)] = 7.13E-04

raxis_pade : 1.79s CPU 1.99s WALL ( 1 calls)

Analytic continuation of isotropic Eliashberg equations from imaginary-axis to real-axis

Total number of frequency points nsw = 3000

iter = 1 error = 1.10E-01 Re[Znorm(1)] = 1.64E+00 Re[Delta(1)] = 7.13E-04

iter = 2 error = 1.57E-02 Re[Znorm(1)] = 1.64E+00 Re[Delta(1)] = 7.13E-04

iter = 3 error = 7.38E-03 Re[Znorm(1)] = 1.64E+00 Re[Delta(1)] = 7.13E-04

iter = 4 error = 1.96E-03 Re[Znorm(1)] = 1.64E+00 Re[Delta(1)] = 7.13E-04

iter = 5 error = 5.25E-04 Re[Znorm(1)] = 1.64E+00 Re[Delta(1)] = 7.13E-04

Convergence was reached in nsiter = 5

raxis_acon : 15.65s CPU 15.76s WALL ( 1 calls)

itemp = 1 total cpu time : 17.8 secs

The calculation of superconducting properties will be accompanied by significant I/O. In the following
we will describe the various physical quantities saved in the output files and how to process them.
We will use XX in the name of the output files to indicate the temperature at which the equations
are solved.

IPlot the superconducting gap along the imaginary frequency axis and the real frequency axis.

lead.imag iso XX files were generated by setting eliashberg = .true., liso = .true., and
limag = .true.. Each file contains 4 columns: the frequency iωj (eV) along the imaginary axis,
the quasiparticle renormalization Z(iωj), the superconducting gap ∆(iωj) (eV), and the quasiparticle
renormalization ZN (iωj) in the normal state.

lead.pade iso XX files were generated by setting lpade = .true.. Each file contains 5 columns:
the frequency ω (eV) along the real axis, the real part of the quasiparticle renormalization ReZ(ω),
the imaginary part of the quasiparticle renormalization ImZ(ω), the real part of the superconducting
gap Re∆(ω) (eV), and the imaginary part of the superconducting gap Im∆(ω) (eV).

lead.acon iso XX files were generated by setting lacon = .true. and contain similar information
as lead.pade iso XX.

You should get the following graphs at 0.3 K. The plot on the left is the superconducting gap
along the imaginary axis (columns 1:3 from lead.imag iso 000.30). The plot on the right is
the superconducting gap on the real axis (columns 1:4 and 1:5 from lead.pade iso 000.30 and
lead.acon iso 000.30).
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At convergence you should get 1:

IPlot the leading edge of the superconducting gap as a function of temperature.

To obtain the lead.imag iso gap0 file use the script gap0 imag shell script:

#!/bin/tcsh

awk 'FNR==2 {print FILENAME,$0}' lead.imag_iso_* | awk '{print $1 " " $4}' > lead.imag_iso_gap0

sed -i 's/lead.imag_iso_//' lead.imag_iso_gap0

$ script_gap0_imag

You should get the following graph:

1Figure adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013).
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At convergence you should get a value of ∆0 around 1.2 meV and a critical temperature Tc of about
6.8 K for µ∗c = 0.1 2:

You can further extract the leading edge of the superconducting gap as a function of temperature
from the calculations on the real axis to compare with the results obtained on the imaginary axis.
To get the lead.pade iso gap0 and lead.acon iso gap0 files use the script gap0 pade and
script gap0 acon shell scripts:

#!/bin/tcsh

awk 'FNR==2 {print FILENAME,$0}' lead.pade_iso_* | awk '{print $1 " " $5}' > lead.pade_iso_gap0

sed -i 's/lead.pade_iso_//' lead.pade_iso_gap0

$ script_gap0_pade

and

#!/bin/tcsh

awk 'FNR==2 {print FILENAME,$0}' lead.acon_iso_* | awk '{print $1 " " $5}' > lead.acon_iso_gap0

sed -i 's/lead.acon_iso_//' lead.acon_iso_gap0

$ script_gap0_acon

2Figure adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013).

19-23 March 2018 R. Margine Tutorial Fri.4 | 8 of 17



IPlot the superconducting quasiparticle density of states.

lead.qdos XX files contain the quasiparticle density of states in the superconducting state relative
to the density of states in the normal state NS(ω)/NF as a function of frequency (eV) at various XX
temperatures

NS(ω)

NF
= Re

[
ω√

ω2−∆2(ω)

]
(3)

You should get the following graph at 0.3 K:

At convergence you should get 3:

I Solve the isotropic Migdal-Eliashberg equations starting from a file containing the Eliashberg spec-
tral function. For this you need to have the input variables fila2f = ’lead.a2f iso’, ep coupling

= .false., elph = .false., wannierize = .false., and ephwrite = .false..
Note: This procedure can only be followed when solving the isotropic Migdal-Eliashberg equations. In this case

.ephmatXX, .freq, .egnv, and .ikmap files are not used.

3Figure adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013).
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At the end of the run, the code should have produced the lead.a2f and lead.a2f iso files.
lead.a2f file contains the Eliashberg spectral function as a function of frequency ω (meV) for
different phonon smearing values (see the end of the file for information about the smearing).
lead.a2f iso file contains the Eliashberg spectral function as a function of frequency ω (meV).
The second column in lead.a2f iso is the Eliashberg spectral function corresponding to the first
smearing in .a2f. The remaining (3 × number of atoms) columns in lead.a2f iso contain the
mode-resolved Eliashberg spectral functions (there is no specific information on which modes corre-
spond to which atomic species).

The input file is as follow (only the differences w.r.t. epw1.in are shown):

-- epw2.in

ep_coupling = .false.

elph = .false.

wannierize = .false.

ephwrite = .false.

fila2f = 'lead.a2f_iso'

$ mpirun -np 1 /home/nfs3/smr3191/q-e/bin/epw.x < epw2.in > epw2.out &

Note: You only need to use one CPU if the isotropic Migdal-Eliashberg equations are solved starting from the Eliashberg

spectral function.

Exercise 2

In this example we are going to calculate the superconducting properties of MgB2 by solving the
anisotropic Migdal-Eliashberg equations.

I First go to the second exercise:

$ cd tuto_Fri4/exercise2

IMake a self-consistent calculation for MgB2.

&control scf.in

calculation='scf',

restart_mode='from_scratch',

prefix='mgb2',

pseudo_dir = './',

outdir='./',

wf_collect = .true.

/

&system

ibrav = 4,

celldm(1) = 5.8260252227888,

celldm(3) = 1.1420694129095,

nat= 3,

ntyp = 2,

ecutwfc = 40

smearing = 'mp'

occupations = 'smearing'

degauss = 0.05

/

&electrons

diagonalization = 'david'

mixing_mode = 'plain'

mixing_beta = 0.7
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conv_thr = 1.0d-9

/

ATOMIC_SPECIES

Mg 24.305 Mg.pz-n-vbc.UPF

B 10.811 B.pz-vbc.UPF

ATOMIC_POSITIONS crystal

Mg 0.000000000 0.000000000 0.000000000

B 0.333333333 0.666666667 0.500000000

B 0.666666667 0.333333333 0.500000000

K_POINTS AUTOMATIC

8 8 8 0 0 0

Note: The smearing is quite large in order to get reasonable phonons in the subsequent phonon calculation.

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/pw.x < scf.in > scf.out

ICompute the vibrational properties of MgB2 on a coarse 3x3x3 q-point grid.

-- ph.in

&inputph

prefix = 'mgb2',

fildyn = 'mgb2.dyn',

amass(1) = 24.305,

amass(2) = 10.811,

outdir = './'

ldisp = .true.,

trans = .true.,

fildvscf = 'dvscf',

nq1=3,

nq2=3,

nq3=3,

tr2_ph = 1.0d-12

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/ph.x < ph.in > ph.out &

The calculation should take about 7 min on 4 cores. During the run, notice the IBZ q-point grid:

Dynamical matrices for ( 3, 3, 3) uniform grid of q-points

( 6 q-points):

N xq(1) xq(2) xq(3)

1 0.000000000 0.000000000 0.000000000

2 0.000000000 0.000000000 0.291867841

3 0.000000000 0.384900179 0.000000000

4 0.000000000 0.384900179 0.291867841

5 0.333333333 0.577350269 0.000000000

6 0.333333333 0.577350269 0.291867841

IGather the .dyn, .dvscf and patterns files into a new save directory using the pp.py python
script.

$ python /home/nfs3/smr3191/q-e/EPW/bin/pp.py

IDo a non self-consistent calculation on a homogeneous 6x6x6 uniform and Γ-centered grid
between [0,1] in crystal coordinates.

&control nscf.in

calculation='nscf',

prefix='mgb2',

pseudo_dir = './',

outdir='./',

/

&system
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ibrav = 4,

celldm(1) = 5.8260252227888,

celldm(3) = 1.1420694129095,

nat= 3,

ntyp = 2,

ecutwfc = 40

smearing = 'mp'

occupations = 'smearing'

degauss = 0.05

/

&electrons

diagonalization = 'david'

mixing_mode = 'plain'

mixing_beta = 0.7

conv_thr = 1.0d-9

/

ATOMIC_SPECIES

Mg 24.305 Mg.pz-n-vbc.UPF

B 10.811 B.pz-vbc.UPF

ATOMIC_POSITIONS crystal

Mg 0.000000000 0.000000000 0.000000000

B 0.333333333 0.666666667 0.500000000

B 0.666666667 0.333333333 0.500000000

K_POINTS crystal

216

0.00000000 0.00000000 0.00000000 4.629630e-03

0.00000000 0.00000000 0.16666667 4.629630e-03

...

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/pw.x -npool 4 < nscf.in > nscf.out

IPerform an EPW calculation:

-- epw1.in

&inputepw

prefix = 'mgb2',

amass(1) = 24.305,

amass(2) = 10.811

outdir = './'

ep_coupling = .true.

elph = .true.

kmaps = .false.

epbwrite = .true.

epbread = .false.

epwwrite = .true.

epwread = .false.

etf_mem = 1

nbndsub = 5

nbndskip = 0

wannierize = .true.

num_iter = 500

dis_froz_max= 8.8

proj(1) = 'B:pz'

proj(2) = 'f=0.5,1.0,0.5:s'

proj(3) = 'f=0.0,0.5,0.5:s'

proj(4) = 'f=0.5,0.5,0.5:s'

iverbosity = 2

parallel_k = .true.

parallel_q = .false.

fsthick = 0.4 ! eV

eptemp = 300 ! K

degaussw = 0.1 ! eV
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ephwrite = .true.

eliashberg = .true.

laniso = .true.

limag = .true.

lpade = .true.

nsiter = 500

conv_thr_iaxis = 1.0d-3

wscut = 0.5 ! eV

nstemp = 1

tempsmin = 10.00

tempsmax = 15.00

muc = 0.1

dvscf_dir = './save'

nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 3

nq2 = 3

nq3 = 3

mp_mesh_k = .true.

nkf1 = 24

nkf2 = 24

nkf3 = 24

nqf1 = 12

nqf2 = 12

nqf3 = 12

/

6 cartesian

0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.2918678

0.0000000 0.3849002 0.0000000

0.0000000 0.3849002 0.2918678

0.3333333 0.5773503 0.0000000

0.3333333 0.5773503 0.2918678

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/epw.x -npool 4 < epw1.in > epw1.out &

The calculation should take about 10 min. In the output, notice the same steps as for exercise1:

• Fourier-transform the electron-phonon matrix elements from a coarse 6x6x6 to a dense 12x12x12
k-point grid and from a coarse 3x3x3 to a dense 12x12x12 q-point grid.

• Write on disk: (1) the mgb2.ephmatXX files (one per CPU) containing the electron-phonon
matrix elements within the Fermi window (fsthick) on the dense k and q grids, (2) the
mgb2.freq file containing the phonon frequencies on the dense q grid, (3) the lead.egnv

file containing the eigenvalues within the Fermi window on the dense k grid, and (4) the
mgb2.ikmap file containing the index of the k-points on the dense (irreducible) grid within the
Fermi window. All these files were produced by setting ephwrite=.true.. The files are for-
matted and required for solving the Migdal-Eliashberg equations. Because the electron-phonon
matrix elements do not depend on the temperature at which the Migdal-Eliashberg equations
are solved, the files can be reused in subsequent EPW calculations at different temperatures.
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• Solve the anisotropic Migdal-Eliashberg equations on the imaginary frequency axis by setting the
keywords eliashberg = .true., liso = .true., and limag = .true. in the EPW input
file.

The anisotropic Migdal-Eliashberg equations take the following form:

Znk(iωj) = 1 +
πT

ωjNF

∑
mj′

∫
dq

ΩBZ

ωj′√
ω2
j′ +∆2

mk+q(iωj′)

×λnk,mk+q(ωj−ωj′)δ(εmk+q − εF)

Znk(iωj)∆nk(iωj) =
πT

NF

∑
mj′

∫
dq

ΩBZ

∆mk+q(iωj′)√
ω2
j′ +∆2

mk+q(iωj′)

×
[
λnk,mk+q(ωj−ωj′)−µ∗c

]
δ(εmk+q − εF) (4)

The anisotropic electron-phonon coupling strength entering in Eqs. (4) is defined as:

λnk,mk+q(ωj) = NF

∑
ν

2ωqν

ω2
j + ω2

qν

|gmnν(k,q)|2 (5)

The semiempirical Coulomb parameter µ∗c is provided as an input varible muc in the EPW
calculation.

• Perform the analytic continuation of the solutions along the imaginary frequency axis to the real
frequency axis by using Padé approximants ( lpade = .true.). Note the analytic continuation
with the iterative procedure (lacon = .true.) is not performed since this is very expensive
computationally (hours to days).

IPlot the superconducting gap along the imaginary frequency axis and the real frequency axis.

mgb2.imag aniso XX files were generated by setting eliashberg = .true., laniso = .true.,
and limag = .true.. Each file contains 5 columns: the frequency iωj (eV) along the imaginary
axis, the Kohn-Sham eigenvalue εnk (eV) relative to the Fermi level, the quasiparticle renormalization
Znk(iωj), the superconducting gap ∆nk(iωj) (eV), and the quasiparticle renormalization ZNnk(iωj)
in the normal state.

mgb2.pade iso XX files were generated by setting lpade = .true.. Each file contains 6 columns:
the energy ω (eV) along the real axis, the Kohn-Sham eigenvalue εnk (eV) relative to the Fermi level,
the real part of the quasiparticle renormalization ReZnk(ω), the imaginary part of the quasiparticle
renormalization ImZnk(ω), the real part of the superconducting gap Re∆nk(ω) (eV), and the imag-
inary part of the superconducting gap Im∆nk(ω) (eV).

mgb2.acon aniso XX files could have also been generated by setting lacon = .true.. These files
will contain similar information as mgb2.pade aniso XX.

You should get the following graphs at 10 K. The plot on the left is the superconducting gap along
the imaginary axis (columns 1:4 from mgb2.imag aniso 010.00). The plot on the right is the
superconducting gap along the real axis (columns 1:5 and 1:6 from mgb2.pade aniso 010.00 - this
file is about 70MB).
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The fine k and q point grids need to be much denser for real calculations. However, we can already
get relatively decent results. At convergence you should get 4:

IDo a restart calculation (from mgb2.imag aniso 010.00) to compute the superconducting gap
function on the imaginary axis at other temperatures.

The input file is as follow (only the difference w.r.t. epw1.in are shown):

-- epw2.in

ep_coupling = .false.

elph = .false.

wannierize = .false.

iverbosity = 1

ephwrite = .false.

imag_read = .true.

nstemp = 5

tempsmin = 10.00

tempsmax = 30.00

4Figure adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013).
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Notes:

• imag read works if limag = .true. and laniso = .true.

• imag read allows the code to read from file the superconducting gap and renormalization function on the imag-
inary axis at specific temperature XX from file mgb2.imag aniso XX. The temperature is specified as tempsmin

= XX or temps(1) = XX in the EPW input file.

• imag read can be used to:
(1) solve the anisotropic Migdal-Eliashberg equations on the imaginary axis at temperatures greater than XX

using as a starting point the superconducting gap estimated at temperature XX.
(2) obtain the solutions of the Migdal-Eliashberg equations on the real axis with lpade = .true. or lacon =

.true. starting from the imaginary axis solutions at temperature XX;
(3) write to file the superconducting gap on the Fermi surface in cube format at temperature XX for iverbosity
= 2. The generated output files are mgb2.imag aniso gap XX YY.cube, where YY is the band number within
the chosen energy window during the EPW calculation.

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/epw.x -npool 4 < epw2.in > epw2.out &

The run should take about 10 min.

IPlot the leading edge of the superconducting gap as a function of temperature.

You should get the following graph by plotting the data from all mgb2.imag aniso gap0 XX files.

At convergence you should get 5:

5Figure adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013).
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ITry to increase the fine grids and see if you can get a result closer to convergence. Note that if
either k or q is changed you need to obtain new .ephmatXX, .egnv, .freq, and .ikmap files.

ICheck the effect of the Coulomb pseudopotential µ∗c on the superconducting gap and the critical
temperature by varying the input variable muc.
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