Quadratic to higher-order Jahn-Teller coupling effects and subfemtosecond proton dynamics in tetrahedral systems

T. Mondal¹

¹Department of Chemistry, Birla Institute of Technology & Science - Pilani, K. K. Birla Goa Campus, Goa – 403 726, India

Neutral Methane and neopentane, and negatively charged alanate anion are having T_d equilibrium structure in ground state. Ionization of an electron from their highest occupied molecular orbitals yield CH_4^+ , $C(CH_3)_4^+$ and AlH_4 in their X^2T_2 state. According to Jahn-Teller (JT) theory both the cations and AlH_4 are unstable on this electronic manifold and expected to form new JT minima. Indeed, C_{2v} minimum energy structures are observed experimentally for CH_4^+ while it is of C_{3v} symmetry for $C(CH_3)_4^+$. However, AlH_4 is unstable to AlH_2+H_2 or AlH_3+H asymptotes with local minimum structures of D_{2d} and C_{2v} symmetry. In all three cases their first photoelectron bands are broad with highly irregular vibronic structures. Additionally, a recent measurement of the structural rearrangement of methane upon ionization using high-harmonic generation (HHG) technology, suggests such an event in CH_4^+ to be occur in subfemtosecond regime [1].

In this presentation, I shall discuss the origin of such distinct structural symmetry, underlying details of their photoelectron bands and the subfemtosecond proton dynamics of CH₄⁺ via an *ab initio* quantum dynamics study [2-4]. A comparison of stabilization energies for T₂ x *e*-, T₂ x *t*₂- and T₂ x (*e*+*t*₂)-JT problems suggest that the structural evolution of C(CH₃)₄⁺ from T_d to C_{3v} configurations is occur via JT active *t*₂ mode, whereas CH₄⁺ rearranges to C_{2v} structure through a combination of JT active *e* and *t*₂ bending vibrations. A comparison of the ratio of squared autocorrelation functions of CD₄⁺ and CH₄⁺ in their ground states with the experimentally observed ratio of HHG signals of CH₄ and CD₄ suggests a local minimum structure of CH₄⁺ to occur in ~1.85 fs. Additionally, the structural evolution is predicted to begin through activation of the *a*₁ and *e* modes which conducts the original T_d symmetry of the cation to a D_{2d} structure. At ~1.85 fs, the intermediate D_{2d} structure is further predicted to rearrange to local C_{2v} geometry via *t*₂ bending vibration. While CH₄⁺ and C(CH₃)₄⁺ are treated with quadratic JT coupling, the higher-order JT coupling effect is found to be important to correctly reproduce the first photoelectron band of AlH₄⁻⁻.

References

- [1] S. Baker et al., *Science*, **312** 424 (2006).
- [2] T. Mondal, Phys. Chem. Chem. Phys. 18, 10459 (2016).
- [3] T. Mondal and A. J. C. Varandas, J. Chem. Phys. 143, 014304 (2015); ibid. 137, 214320 (2012); 135, 174304 (2011); J. Chem. Theory Comput. 10, 3606 (2014).
- [4] T. Mondal, (Manuscript under preparation).