

New Opportunities for Spectroscopy (PES) Opened by High-Repetition Rate XFELs

S.L. Molodtsov European XFEL GmbH

Photoemission spectroscopy: Basics

Photoelectron analyzer

Single-particle system

1 - dim. solid state:

Heavy-fermion system-

Quasiparticles properties (Kai Rossnagel)

Lead actor: The quasi-electron

_ Weak correlations

Lead actor: The quasi-electron

Moderate correlations

Lead actor: The quasi-electron

Strong correlations

Lead actor: The quasi-electron

strong interactions

Nobel prize to X-ray spectroscopy work

K. Siegbahn Nobelprize 1981

Angle-resolved photoemission - ARPES

e.g. Cu-sp Shockley surface state

Taken from F. Reinert und S. Hüfner, New Journal of Physics 7, 97 (2005)

Non-correlated materials

solid state

potential averaged over all electrons

single-particle calculations, LDA approach

Problem:

negligence of electron correlations

Correlated *f*-materials

Correlated *f*-materials

fully relativistic band structure

ARPES, basics (Kai Rossnagel)

Angle-Resolved PhotoElectron Spectroscopy

ARPES, basics

Band mapping (seeing is believing)

K. Rossnagel, et al. Uni Kiel

$$E - E_F = E_{\rm kin} + W - h\nu$$

$$\binom{k_{\parallel x}}{k_{\parallel y}} = \sqrt{\frac{2m}{\hbar^2} E_{\rm kin}} \begin{pmatrix} \sin \Theta_{\rm D} \\ \cos \Theta_{\rm D} \sin \Phi_{\rm S} \end{pmatrix}$$

Beamline 7, ALS, Berkeley

FEL ARPES, basics

Fermi surface tomography

K. Rossnagel, et al. Uni Kiel

$$\mathbf{k}_{\parallel}^{2} + k_{\perp}^{2} = \frac{2m}{\hbar^{2}} \left(E_{\text{kin},F} + V_{0} \right)$$

$$\mathbf{k}_{\parallel} = \sqrt{\frac{2m}{\hbar^{2}}} E_{\text{kin},F} \left(\frac{\sin \Theta_{D}}{\cos \Theta_{D} \sin \Phi_{S}} \right)$$

$$E_{\text{kin},F} = h\nu - W$$

Beamline 7, ALS, Berkeley

Light-polarized ARPES on heavy-fermion YbRh₂Si₂ (S. Molodtsov, et al.)

Light-polarized ARPES (YbRh₂Si₂)

Light-polarized ARPES (YbRh₂Si₂)

Light-polarized ARPES (YbRh₂Si₂)

Spectral range and radiation sources

Excharge (He) lamps – VUV/Extreme Ultraviolet Röntgen (Cu) tubes – Soft/Hard X-rays

Disadvantages: (i) low intensity; (ii) discrete spectrum; (iii) no time structure

Revolution with synchrotron radiation !!!

Synchrotron Radiation

Synchrotrons/Storage Rings

Synchrotron Radiation (dipoles)

P-radiated power; c-light velocity; q-particle charge; a-acceleration; v-normalized energy

XFEL Synchrotron radiation (undulators)

XFEL Synchrotron radiation (sources + exp. stations)

Synchrotron Radiation (light polarization)

Spectroscopic toolbox:

X-ray photoelectron spectroscopy, ESCA

F. Hennies et al., J.Chem.Phys. 127, 154709 (2007)

School on SR & FEL Methods, 7-18 May, 2018, Trieste

Characterization of cleaved samples: YbRh₂Si₂ (S. Molodtsov, et al.)

Crystal-field split f-states in Kondo systems

- effective mass mapping (transport phenomena)
- crystal field-split4f states probing(magnetic properties)
- strength of electron states correlation (Kondo behavior)

Symmetry of f-states in YbRh₂Si₂

Heavy-fermion behavior in YbRh₂Si₂

Dispersion of the 4f states around Γ where they hybridize to Rh d bands: Experiment & theory

High-temperature superconductors (S. Borisenko, et al.)

What is missing?

Electron system dynamics that is of the time scale order < 0.1 ps

Probing dynamics one can decide, e.g. in favor of spin or phonon mediated mechanism of electron pairing both in superconducting and Kondo systems

Time scales for dynamics

FEL What is a picosecond?

In 1 s light travels 300 000 km

Distance between earth and moon is 384 000 km

In 1 ps light travels 0,3 mm

Pump-probe experiment (K. Kummer, et al.)

ARPES with MHz optical lasers

Experimental setup

YbRh₂Si₂: Projected *p*-character band structure

Proof of principle pump-probe experiment

Angle-resolved pump-probe experiments

Pump-probe delay maps of the photoemission intensity above E_F and results of fit analysis

Lifetime of electrons above Fermi energy

Jump in electron lifetime around Γ points at deviation from Fermi liquid theory and can be related to strength of correlation between d and f electrons. Effect depends on energy gap between d and f states.

But is it really time scale of Kondo (*f-d*) interaction?

Cross sections of *d* and *f* electron excitations are extremely low at optical laser energies

Go to hy close (high harmonic generation, HHG) or above (XFEL) 100 eV!

Photon sources for trARPES (Kai Rossnagel)

Sync. Rad. News 25:5, 12 (2012)

Strobe lights: FEL versus HHG

$$h
u \approx 25 - 300 \,\mathrm{eV}$$
 (fundamental)

$$I \approx 10^{10} \, {\rm photons/s} \\ {\rm (space-charge} \\ {\rm \& rep-rate \ limited)}$$

$$\tau > 10 \, \mathrm{fs}$$

HHG

$$h\nu < 100\,\mathrm{eV}$$
 (practically)

$$I \approx 10^{10} \, \mathrm{photons/s}$$

$$\tau \leq 10 \, \mathrm{fs}$$

Study by destruction

Nature of condensed matter phases

Time scale of different interactions

Time-domain classification (learning by destroying)

Mott insulator

Excitonic insulator

Peierls insulator

pump pulse excitation

 $\tau = \mathcal{O}\left(\frac{h}{t_{\mathrm{hop}}}\right)$

hopping

 $au = O\left(rac{t_{
m hop}}{t_{
m hop}}
ight)$ electron

 $au = \mathcal{O}\left(rac{\pi}{\omega_{ ext{amp}}}
ight)$

screening

lattice vibration

fs 1 fs

10 fs

100 fs

1000 fs

What can be done with HHG sources?

Nature 471, 490 (2011)

trARPES using HHG

What can be done with HHG sources?

Nature 471, 490 (2011)

Snapshots

ultrafast CDW quenching

picosecond CDW recovery

s-polarized probe

$$F_{\rm abs} = 5 \,\mathrm{mJ/cm^2}$$

Examples of pump-probe research

Nature Commun. 3, 1069 (2012)

Hierarchy of quenching times

HHG and FELs: Complimentary tools

FEL photoemission

X-Rays

New Generation Sources Free Electron Lasers (FELs)

Basics of SASE FEL process

simulations at the radiation wavelength (λ_e), ζ – distance inside the undulator

Basics of SASE FEL process

simulations at the radiation wavelength (λ_e), ζ – distance inside the undulator

Origin of microbunching

Electron trajectory

Undulator axis

Radiation electric field has a small component parallel to electron velocity, which can accelerate or decelerate electrons

Spontaneous vs. coherent radiation in undulators

Peak brilliance of X-Ray sources vs. time

Free Electron Lasers:

- Based on Linear Accelerator
- -Delivers ultrashort pulses

$$(100 \text{ fs} = 0.1 \text{ ps} = 10^{-13} \text{ s or less})$$

(Transversely) Spatially coherent (laser-like) radiation

Wanted ... More brilliant X-ray sources, with:

wavelength down to < 0.1 nm ==> atomic-scale resolution

ultra-high peak brightness, transverse spatial coherence

ultrashort (<1 ps) pulses ==> "molecular movies"

==> imaging of single nanoscale objects, possibly down to individual macromolecules (no crystals)

==> investigation of matter under extreme conditions...

Making molecular movies

Eadward Muybridge 1892

European XFEL 2017

Tremendous variety of bio-objects to be studied

XFEL Soft X-ray projects

Hard X-Ray FEL facilities

2011 - 60 p/s SCSS SPring-8 Compact SASE Source

2009 -120 p/s LCLS LINAC COHERENT LIGHT SOURCE

Hamburg, 30.11.2009: the European XFEL Convention Signing Ceremony

Total costs ≈1.500 MEUR

European XFEL - a leading new research facility

How it works – a closer look at the facility

XFEL European XFEL – a leading new research facility

The European XFEL is a research facility, now under operation, which is using high-energy X-ray light to help scientists better understand the nature of matter.

Schenefeld & Hamburg, Germany

User facility with 260 staff (+ 230 from DESY)

2017: Start of user operation

Site anothe statemoonseAngestation 3

Injector: creating bunches of electrons

- Optical laser strikes Cs₂Te surface, releasing a cloud of electrons
- Electrons move into a magnetic field, shaping into a bunch
- Small accelerator module "fires" bunch into the main electron accelerator

Accelerator: electrons at close to light speed

- 100 accelerator modules over 2 km bring the electron bunch to near light speed and high energies
- Superconducting niobium cavities powered by intense radio frequency accelerate electrons

First accelerated electron beam in the injector

- Injector commissioning started, injector tunnel closed, cool down to 2 K successful.
- First 130 MeV Electron beam on 18.12.2015!

XFEL Testing accelerator modules prior to installation

Accelerator module test facility

XFEL Injector complex DESY-Bahrenfeld

XFEL Power RF – Installation check

XFEL Tunnel branch Osdorfer Born (2017)

Aligning the undulators

XFEL Undulators in tunnel

Optical elements of the SASE1 beamline

Photon beamlines

Beamline layout & experiment stations

Photon energy ranges

Scientific instruments

Hard X-rays

SPB: Single Particles, Clusters, and Biomolecules

Will determine the structure of single particles, such as atomic clusters, viruses, and biomolecules

MID: Materials Imaging and Dynamics

Will be able to image and analyze nanosized devices and materials used in engineering

FXE: Femtosecond X-Ray Experiments

Will investigate chemical reactions at the atomic scale in short time scales—molecular movies

HED: High Energy Density Physics

Will look into some of the most extreme states of matter in the universe, such as the conditions at the center of planets

Soft X-rays

SQS: Small Quantum Systems

Will examine the quantum mechanical properties of atoms and molecules.

SCS: Spectroscopy and Coherent Scattering

Will determine the structure and properties of large, complex molecules and nano-sized structures.

SASE3 Undulator

General Soft X-Ray radiation parameters

Pulse widths	2 - 100 fs	Coherence time	0.3 - 1.8 fs
--------------	-------------	-----------------------	---------------

Pulse energy
$$0.2 - 11.0 \text{ mJ}$$
 Bandwidth $0.25 - 0.7 \%$

Peak power
$$50 - 120 \text{ GW}$$
 Number of photons $0.1 - 2 \times 10^{14}$

Average power
$$3 - 300 \text{ W}$$
 Average flux of photons $0.3 - 5.4 \times 10^{18}$

Beam size
$$40-80 \mu m$$
 Average brilliance $0.03-2.6 \times 10^{24}$

Rep. rate 10 H	Hz (2700	pulses in bunch	train) = 2	27.000 pulses/s
----------------	-----------------	-----------------	------------	-----------------

Parameter	Unit					
Bunch charge	рC	20	100	250	500	1000
Pulse duration (FWHM)	fs	2	9	23	43	107

Science

SCS Scientific Instrument (trXPS and trARPES) Spin-resolved photoemission (?)

Photoemission at FELs: Motivation

Surface chemical reactions

Charge order dynamics

Time scale: 10 fs - 1 µs, reversible processes are preferable

XFEL Pump-probe experiments at XFELs

Problems to be solved (Kai Rossnagel)

Challenge I: Vacuum space-charge effects

Core-level X-ray photoemission spectroscopy (XPS)

Core-level PE was proven to be extremely useful tool for time-resolved studies of, e.g. chemical interactions at FLASH and LCLS (W. Wurth, L. Kipp, A. Nilsson).

Problems to be solved

Problems to be solved

Challenge III: Low FEL repetition rates

Angle imaging + TOF spectroscopy + multi-hit detection

Space-charge
$$I_0 \approx 10^4 \, \frac{\mathrm{e^-}}{\mathrm{pulse}}$$

Energy window: $\frac{\Delta E}{E} \approx 0.01$

Angular $\frac{\Delta\Omega}{2\pi} pprox 0.034$

Electron counts per photon pulse:

$$I_0 \times \frac{\Delta E}{E} \times \frac{\Delta \Omega}{2\pi} \approx 3.4 \frac{\mathrm{e}^-}{\mathrm{pulse}}$$

1 T-TaSe2: trXPS using FLASH

PRL 105, 187401 (2010)

$$T = 10 \text{ K}$$

 $h\nu_{pump}=1.55~{\rm eV}.~h\nu_{probe}=156~{\rm eV}$ $\Delta E\approx 300~{\rm meV}.~\Delta t\approx 700~{\rm fs}$

Angle-resolved photoemission (ARPES)

In contrast, angle(spin)-resolved photoemission (ARPES) that for crystalline species is the only tool providing direct information on

- single-particle excitations (simple s- and p-like systems) and
- electron interactions (correlated *d* and *f*-systems)

is not straightforward at the existing low repetition rate FELs!

Reason: too less "allowed" excited electrons per second to acquire reasonable statistics

*Note: ARPES signal is 100-1000 lower than XPS one

ARPES at XFELs with low repetition rate

What you get at non-superconducting XFEL facilities (60 - 100 Hz rep. rate)

Why angle-resolved photoemission?

On the other hand, particularly temperature dependent electron dynamics that causes transitions between

supercondcting, magnetic and Kondo (heavy fermion) properties

in correlated systems is dreamed to be studied, since it allows

- understanding of underlying mechanisms of the phenomena
- switching from one behavior to another
- engineering of novel materials with well-defined properties

European XFEL: Time structure

Electron bunch trains (with up to 2700 bunches à 1 nC)

ARPES at European XFEL

What you get at non-superconducting XFEL facilities (60 - 100 Hz rep. rate)

Due to unique rep. rate photoemission response at the European XFEL is about 10³ higher (statistics)

- \rightarrow strong case for ARPES:
 - two-color exp. (unfilled states)
 - pump-probe (electron dynamics)

V 1s in VO2, SACLA (Japan)

Combined probing of electronic & lattice order (Kai Rossnagel)

Participants of the TR-XPES User Consortium (K. Rossnagel)

Spokesperson and Consortium Members				
Ulf Karlsson	KTH Stockholm	Kai Rossnagel	Universität Kiel	
Wilfried Wurth	Univ. Hamburg/l	Wolfgang Eberhardt	TU Berlin/DESY	
Yves Acremann	ETH Zürich +	Victor Aristov	RAS Chernogolov	
Alessandro Baraldi	Univ. Trieste/ Elet	Carlo Carbone	CNR-ISM	
Stefano Colonna	CNR-ISM	Dan Dessau	Univ. of Colorad	
Alexander Föhlisch	HZB	Gerd Ganteför	Universität Konst	
Mats Göthelid	KTH	Nils Martensson	Uppsala Universi	
Anders Nilsson	Stockholm Univ.	Henrik Öström	Stockholm Unive	
Hirohito Ogasawara	SLAC	Giancarlo Pannacione	IOM-CNR	
Eric Pellegrin	ALBA	Giorgio Rossi	UMilano/IOM-CN	
Alexander Soldatov	So. Fed. Univ. Ros	Gerd Schönhense	Universität Mainz	
Giovanni Stefani	Universita Roma	Svante Svensson	Uppsala Universi	
Oscar Tjernberg	КТН	Geoff Thornton	UCL	
Martin Weinelt	FU Berlin	Jonas Weissenberger	KTH	
Martin Wolf	FHI Berlin	in the second		
XFEL contacts				
Serguei Molodtsov	Harald Sinn	Andreas Scherz		

Science with TR-XPES

Science case for TR-XPES at EuXFEL

Surface and Interface Chemistry and Catalysis

- observe transition states

H. Öström et al. Science 347,978 (2015)

Methods

TR-XPS (ESCA)

TR-XPED

Photovoltaics

– follow charge transfer at interfaces

- → Element specific, chemical state selective,
- → Local charge state
- → element specific, structural information

Science with TR-XPES

Science case for TR-XPES at EuXFEL

Cluster physics

- structure and dynamics (e.g. dissociation, non-thermal melting) as function of size

- → Element specific, chemical state selective,
- → Local coordination

TR-XPES: Endstations

TR-XPES: Endstations

Technical concept - Endstations

Stage 2 - dedicated instruments under development

e.g. Nilsson group - Ambient Pressure XPS

S. Kaya, et al, Catal. Today 205, 101 (2012).

You are very welcome

to plan your experiments

at the European XFEL