Interplay between anisotropic multiband superconductivity and unconventional electronic order in Pd chalcogenides

Luis BALICAS
National High Magnetic Field Lab and Physics Department
Florida State University

The Fe pnictides and chalcogenides often display the coexistence of multiband superconductivity with electronic or magnetic order. For instance, the pressure-induced suppression of the orbital order of FeSe leads to antiferromagnetism and to an enhanced superconducting transition temperature T_c. The superconducting phase-diagram of these compounds under an external magnetic field tend to display anomalous phase boundaries as, for example, a linear dependence of the upper critical field $H_{c2}(T)$ on temperature which, in FeSe is claimed to result from an additional superconducting phase at the highest fields and lowest temperatures. Motivated by these compounds, a few years ago we reported the discovery of superconductivity in Pd and chalcogenide based compounds [1,2] like Nb$_2$Pd$_{0.82}$S$_5$. These compounds display extremely large $H_{c2}(T)$ accompanied by a temperature dependent superconducting anisotropy [1,2] akin to what is observed in Fe based superconductors which is claimed to result from multi-band superconductivity. Point contact spectroscopy [3] does provide evidence for multiple superconducting gaps in some of these compounds, while $H_{c2}(T) \propto T$ is detected in Ta$_3$Pd$_4$Te$_{16}$ [4]. Remarkably, one observes anomalies in the resistivity [2] and in thermodynamic variables [5] indicating that superconductivity is preceded by some type of subtle electronic order which apparently does not affect the geometry of their Fermi surfaces [5]. We also find that Pd acts as a tuning parameter, i.e. an increase in its fraction within Nb$_3$Pd$_7$Se$_2$ increases its T_c albeit leading to an extremely anisotropic superconducting state whose $H_{c2}(T)$ display a $T^{1/2}$ dependence in the neighborhood of T_c as observed in monolayer NbSe$_2$ [6] or in the surface of ionic liquid gated MoS$_2$ [7]. This indicates that superconductivity in these single-crystals is two-dimensional in character but unlikely to result from spin momentum locking [6,7]. Here, we review and discuss the properties of this family of superconductors.

References-