Measurement of Atmospheric Neutrino Flux by Super-Kamiokande: energy spectra, geomagnetic effect, and solar modulation

Kimihiro Okumura okumura@icrr.u-tokyo.ac.jp

Institute for Cosmic Ray Research (ICRR), University of Tokyo May 29th, 2018

Advanced Workshop on Physics of Atmospheric Neutrinos (PANE2018)

Introduction

- Atmospheric neutrino: end particle of cosmic ray interactions with atmosphere
- Neutrino flux affected by several factors:
 - primary CR flux, composition
 - hadron interaction
 - atmosphere model, seasonal variation, geomagnetic effect
- These effects are introduced in flux simulations precisely
- Can test flux prediction directly by flux measurement

Atmospheric Neutrino Flux in GeV-TeV

- Atmospheric neutrinos from π and K decays dominates below TeV energies ("conventional")
- Nominal spectrum: $dN/dE \propto E^{-3.7}$ steeper for v_e
- $v_{\mu}/v_e \sim 2$ at GeV determined from π decay
- Larger kaon fraction as higher energies
 - · Uncertainties due to π/K ratio

Motivations of This Study

- Accurate flux prediction is necessary as signal (oscillation analysis), and background (proton decay, DM, astro v)
 - previous measurement by Frejus in 1995
 - recent detection of astrophysical neutrino by IceCube
- Comparison with recent improved flux calculations from various perspectives:
 - energy spectrum
 - geomagnetic effect
 - solar modulation effect
- This talk is based on
 Physical Review D 94, 052001 (2016)

Super-K Detector

- Water Cherenkov imaging detector
- 1000 m underground in Kamioka mine
- 50 kton volume (fiducial 22.5 kton)
- 11129 20" PMTs in inner detector (ID) for Cherenkov ring imaging
- 1885 8" PMTs for outer detector (OD)

Phase	Period	# of PMTs	
SK-I	1996.4 ~ 2001.7	11146 (40%)	
SK-II	2002.10 ~ 2005.10	5182 (20%)	
SK-III	2006.7 ~ 2008.8	11129 (40%)	
SK-IV	2008.9 ~		

Energy Spectrum Analysis

Flux Measurement in Super-K

- Neutrino oscillation affects flux and energy spectrum, especially for v_{μ}
- Atmospheric neutrino is utilized to measure neutrino oscillation
 - input: *Ν*, *Φ*, *σ*, ε
 - output: O
- Flux measurement
 - using estimated O from external measurement, we can measure flux (Φ)

Data Sample, Neutrino Energy

- Three event topologies: FC, PC, UPµ
- Covers from sub-GeV up to 100 GeV (10 TeV) for $v_e~(v_\mu)$
- Provide high purity v_e and v_{μ} sample thanks to excellent particle identification and NC background abilities
- Caveat: slightly different sample selection from that of Super-K oscillation analysis

Flux Unfolding

- Adopt iterated Bayesian method for flux unfolding
- Response matrix constructed from MC events.
- Unfold number of events in neutrino energy bin, and then convert to flux value by applying normalization factor estimated with MC

(*) G. D'Agostini, NIM A 362, 487 (1995)

Super-K Measured Energy Spectrum

- Provide significantly improved flux measurement below 100 GeV
- Extended to lower energies down to ~100 MeV
- Overlap in high energy with AMANDA and IceCube regions
- Caveat: larger flux expected at Frejus site due to lower rigidity cutoff

Comparison With Flux Models

		χ^2	
Flux model	$ u_e ext{ and } u_\mu$	ν_e only	$ u_{\mu} \text{ only} $
HKKM11 [21]	21.8	4.9	10.3
HKKM07 [20]	22.2	6.2	10.0
Bartol [23]	30.7	7.1	14.7
FLUKA [22]	25.6	5.4	11.4
(DOF	23	11	12)

$$\chi^{2} = \sum_{i}^{N} \sum_{j}^{N} \left(\Phi_{i} - \Phi_{MC,i} \right)^{T} C_{ij}^{-1} \left(\Phi_{j} - \Phi_{MC,j} \right)$$

- Compared with flux models and test agreement by χ^2
- Not strongly inconsistent
 - p-value: 0.53, 0.32, 0.13 for HKKM11, FLUKA, Bartol, respectively

Fit with Variable Normalization and Spectral Index

 Fit data and models with variable normalization (Δα) and spectral index (Δγ) parameters

$$\Phi'_{MC,i} = (1 + \Delta \alpha) \left(\frac{\bar{E}_i}{1 \text{ GeV}}\right)^{\Delta \gamma} \Phi_{MC,i}$$

• Agrees within 1σ except from FLUKA v_{μ} spectrum (2.4 σ)

Systematic Uncertainty

-0.6

-0.8

8 10 12 14 16 18 20 22

6

4

 $\begin{array}{c}
2 \\
0 \\
0 \\
2 \\
4 \\
6
\end{array}$

- Utilize same systematic error estimation as used in oscillation analysis
- For calculation of error propagation, Toy MC method is adopted
 - Repeat Toy MC throw and flux unfolding by 2000 times. Variance of unfolded fluxes is taken as error
- Approximately 20% error estimated in total
- Neutrino interaction error is dominant

$$\tilde{M}_{j}(\mathbf{g}) = M_{MC,j} \times \begin{pmatrix} 1 + \sum_{k}^{N_{sys}} \checkmark \\ 1 + \sum_{k}^{k} f_{jk}g_{k} \\ \uparrow \end{pmatrix}$$
(3.10)
nominal MC random Gauss.

Azimuthal Spectrum Analysis

Geomagnetic Effect

- "East-West effect" in azimuthal direction is well-known on cosmic ray flux, such as dipole asymmetry
- Rigidity cutoff due to geomagnetic field depends on position and direction at Earth's surface
- Can test for such asymmetries by using Super-K neutrino data

Azimuthal Distributions

electron-like

muon-like

- "East-west" effect becomes larger for lower energies and horizontal direction
- Modulation becomes small in lowest energy below E<0.4GeV because directional information is lost due to large lepton scattering angle

East-West Asymmetry

- Select events by $|\cos\theta| < 0.6$ and $0.4 < E_{rec} < 1.33$ GeV to optimize significance
- Clear asymmetries are seen and significance level
 - 6.0 σ (8.0 σ) for μ -like and e-like

 $A_{\mu} = 0.108 \pm 0.014(\text{stat}) \pm 0.004(\text{syst})$

 $A_e = 0.153 \pm 0.015(\text{stat}) \pm 0.004(\text{syst})$

 $A = \frac{n_{\text{east}} - n_{\text{west}}}{n_{\text{east}} + n_{\text{west}}}$

Energy and Zenith Dependence

- Test for in each energy and zenith angle with asymmetry parameter, A
- Agrees with expectation within statistical uncertainties

Azimuthal modulation phase

- Investigate phase shift of azimuthal modulation by fitting sine curve: $k_2 \times sin(\varphi + B) + k_1$
- Zenith dependence is seen with 2.2σ significance, and consistent between data and MC
- HKKM11 calculation models reproduced geomagnetic effect

Solar Modulation Analysis

Modulation Effect of Solar Activity

- Atmospheric neutrino flux will be affected by solar activity below 1 GeV
 - Solar wind scatter off CR
- Larger effect for upward direction coming from polar regions, where solar effect is larger
- SuperK data covers more than one and half solar cycles
- Test correlation with solar modulation by event rate change

Correlation with Solar Modulation

- Correlations between sub-GeV event rate vs neutron monitor are investigated
- Effect is small and difficult to see:
 - directional information is lost by neutrino scattering
- Estimate correlation by one parameter fitting (a)
- Best fit : α = 0.62 ± 0.58 (1.06 σ)

Fitting to Sub-samples

- Also apply fitting for sub-sample (elike / µ-like, upward / downward)
- No SK-III result since observation time is too short to cover solar cycle
- Prefer no correlation for e-like, but not statistically significant
- Not inconsistent with overall result

Summary

- A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV to TeV using SuperK was performed
- v_e and v_μ energy spectra are measured with higher accuracy from 100 MeV up to 10 TeV, and consistent with flux models.
- Azimuthal spectrum of data and MC agrees well confirming implementation of geomagnetic field in flux calculation
 - Geomagnetic effect in azimuthal distribution is seen at 6σ (8σ) for v_{μ} (v_{e}).
 - An indication that the angle of the dipole asymmetry shifts depending on the zenith angle was found at the 2.2 σ level
- Expected correlation between neutrino flux and solar activity was studied using sub-GeV sample
 - Predicted effect is found to be relatively small (62% of expected), and a weak preference is seen at 1.1σ level