Super-Kamiokande latest results (Atmospheric neutrinos)

C. Bronner May 29th, 2018

- Neutrino oscillations
- Atmospheric neutrinos to address open questions in neutrino oscillations
- Super-Kamiokande experiment
- Oscillation analysis:
 - strategy
 - simulation
 - event selection
 - fitting method
- > Results
 - atmospheric neutrinos only
 - using external constraints
- Future improvements

Mixing (or Pontecorvo-Maki-Nagawa-Sakata) matrix link between the two sets of eigenstates

 $P(v_{\alpha} \rightarrow v_{\beta})$ oscillates as a function of distance L traveled by the neutrino

- Amplitude of oscillations depends on the mixing matrix U
- Phase of the oscillation depends on energy and difference of mass squared: Δm²_{ii}L/E

$$(\Delta m_{ij}^2 = m_i^2 - m_j^2)$$

Neutrino oscillation Main current physics goals

Mass hierarchy:

Violation of CP symmetry in neutrino oscillations?

Degeneracies between those 3 questions

Atmospheric neutrinos Interest for oscillation measurements

- Large range of neutrino energies and propagation lengths
- Oscillations dominated by $\nu_{\mu} \! \to \! \nu_{\tau}$
- Large statistics allow to study subdominant effects

Atmospheric neutrino oscillations Matter effects

Presence of a resonance driven by θ_{13} induced matter effects between 2 and 10 GeV

- Only for v in NH and \overline{v} in IH \rightarrow sensitivity to the mass hierarchy
- Size of the effect depends on $\sin^2(\theta_{23}) \rightarrow \text{sensitive to } \theta_{23} \text{ octant}$
- MH sensitivity increases with larger statistics, improved ability to separate interactions of ν and $\bar{\nu}$ and constraint on $\sin^2(\theta_{23})$

Atmospheric neutrino oscillations Delta CP

Value of δ_{CP} modifies the oscillation patterns in a complicated way

- Given neutrino flux and detector energy and angular resolution, sensitivity mainly comes from number of sub-GeV e-like events
- More v_e appearance events for δ ~220-240°, and less for δ ~40-45°

Super-Kamiokande experiment

- 50 kt (22.5 kt fiducial) waterCherenkov detector
- > 1000m overburden
- Operational since 1996

39.3 m

Wide physics program:

- Atmospheric neutrinos
- Solar neutrinos
- Supernova neutrinos
- Proton decay
- Dark matter indirect detection

- From Separation between μ^{\pm} and e^{\pm} (separate ν_{μ} and ν_{e} CC interactions)
 - → Less than 1% mis-PID at 1 GeV
- No magnetic field: cannot separate ν and ν on an event by event basis
- Only detects charged particles above Cerenkov threshold and photons
 - → limitation for energy and directional reconstruction

Analysis strategy Binning

Bin events in variables related to neutrino energy and propagation length: **visible** energy and **lepton** direction (1 ring) or generalized momentum direction (multi-ring)

Flux is approximatively up/down symmetric at high energy:

High energy down going neutrinos did not oscillate

→ systematic cancellation for this region by using up/down symmetric binning

Analysis strategy Samples

CC ν_{τ} interactions disfavored at SK energies: mostly studying $P(\nu_{\mu} \rightarrow \nu_{\mu})$, $P(\nu_{e} \rightarrow \nu_{e})$, $P(\nu_{\mu} \leftrightarrow \nu_{e})$ and corresponding oscillations for $\bar{\nu}$ \rightarrow **separate events between e-like and \mu-like** based on PID of most energetic ring

Make samples enriched in events of different neutrino energy regions, and interaction types based on topology of the events, number of rings, Michel electrons and amount of visible energy

Additional statistical separation between ν_e -like and ν_e -like for Multi-GeV e-like events to increase sensitivity to the mass hierarchy

Monte Carlo simulation

Analysis based full MC simulation of neutrino interactions in the detector. Total MC statistics corresponds to 2000 years of atmospheric neutrino interactions

Neutrino interactions: **NEUT 5.3.6**

- CCQE: Llewellyn-Smith formalism with Smith-Moniz RFG and BBA05 form factors
- 2p2h: model from Nieves et al.
- Resonant pion production: Rein-Sehgal model with form factors from Graczyk and Sobczyk
- DIS: quark parton model using GRV98 PDFs with low q2 corrections by Bodek and Yang. PYTHIA 5.72 for high W part, custom model below
- Specific model for v_{τ} interactions

Detector simulation: SKDetsim

- Based on GEANT3 (Fortran)
- NEUT cascade model used for re-interaction of pions in water ("secondary interactions")

Event selection Topology

- Interaction in FV, no OD activity
- Sub-GeV (Evis<1.33 GeV) and MultiGeV
- > <E_v> ~ 1 GeV
- 8.3 evts/day

FC

- Interaction in FV + OD activity
- Stopping and through going
- \rightarrow <E_v> ~ 10 GeV
- > 0.73 evts/day

PC

- Interaction in rock or OD
- Through going (showering and non-showering) and stopping
- \rightarrow <E_v> ~ 100 GeV
- 1.49 evts/day

Upmu

Event selection FC Multi-GeV events

Additional selections for Fully Contained Multi-GeV ($E_{vis}>1.33$ GeV) to make samples enriched in v_e and \overline{v}_e events to increase MH sensitivity

 π^{-} from CC1 π interaction of ν_{e} easily captured by O¹⁶

→ less likely to have a Michel electron

Event selection FVFC multi-ring multi-GeV events - 1

First likelihood aims at removing NC and $v_{\mu}/\overline{v}_{\mu}$ events which ended up in the MR e-like sample due to reduced PID performance for multi-ring events

4 variables:

- PID of most energetic ring
- Momentum fraction of m.e.r
- Nb of Michel electrons
- Largest distance between a Michel electron vertex and primary vertex

Signal: CC v_e and $\overline{v_e}$ interactions

Efficiency (signal): 72.7%

Purity: 73%

Event selection FVFC multi-ring multi-GeV events - 2

Second likelihood is the real statistical separation between v_e and \overline{v}_e events

	Neutrino	Anti-neutrino
Nb of rings	More	Less
Nb of Michel e-	More	Less
Transverse momentum	Larger	smaller

	Efficiency (signal)	Purity
ν _e -like	52.9%	58.4%
$\overline{\nu}_{e}$ -like	71%	27.5%

Oscillation analysis

- Maximum likelihood method
- Minimize χ^2 with respect to systematics for a grid of values of parameters to fit
- Minimization uses iterative matrix inversion method
- Binned χ^2 assuming Poisson statistics in each bin

Oscillation parameters

- \Rightarrow sin²(θ_{13})= 0.0219 ± 0.0012 (reactor)
- $\sin^2(\theta_{12}) = 0.304 \pm 0.014$ (solar+Kamland)
- $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2/\text{c}^4$ (solar+Kamland)
- \rightarrow sin²(θ_{23}), Δ m²_{32/31} and δ free

Expected nb Observed nb evts in bin n of evts in bin n $\chi^2 = 2\sum_n \left(E_n\right) - \left(\mathcal{O}_n\right) + \mathcal{O}_n \ln \frac{\mathcal{O}_n}{E_n}\right) + \sum_i \left(\epsilon_i\right)^2$

$$E_n = \sum_{j} E_{n,j} \left(1 + \sum_{i} f_{n,j}^{i} \varepsilon_i \right)$$

Effect of a 1σ variation of syst. i on nb of evts in bin n for SK period j (fractional change divided by σ_i)

Predictions calculated separately for each SK period

- different detector configurations, water quality and performance
 - → different MC simulations
- Some systematic uncertainties depend of the SK period
- Expectation from each period summed to compute χ^2

Dataset

- 4 SK periods with different detector conditions over 20 years
- Total livetime: 5326 days (328 kton-year)
- 27505 muon-like and 20949 electron-like events

Stable event rates for the different topologies

Atmospheric neutrino results

- χ^2 (NH)- χ^2 (IH)=-4.33
- $^{>}$ P-value for this $\Delta\chi^2$ (true values of the parameters corresponding to the NH best fit point) is 0.027 for true IH
 - → Preference for the normal hierarchy hypothesis

Atmospheric neutrino results Contributions to the MH preference

- Contribution to Δχ² comes mainly from Multi-GeV elike samples
- MR Other sample has the biggest contribution, although it has lower purity
- Large statistical errors: statistically limited

Atmospheric neutrino results Search for matter effects

- Test consistency of data with matter effect
- Use all changes compared to vacuum oscillations, not just hierarchy dependent ones
- \rightarrow Introduce multiplicative parameter α which changes electron density
- > Best fit for $\alpha=1$ and NH
- > Disfavors vacuum oscillation at $\Delta \chi^2 = 5.2$ (1.6 σ)

External constraints Motivations

Tokai To Kamioka (T2K)

- Uncertainty on value of $\sin^2(\theta_{23})$
 - → uncertainty for MH determination
- Precise measurements of $\sin^2(\theta_{23})$ and $|\Delta m^2_{32}|$ by LBL experiments
- \succ Both experiments have sensitivity to δ
- Combination can also break degeneracies in certain cases

- Almost pure $v_{\mu}/\overline{v}_{\mu}$ beam
- L=295 km from J-PARC to Super-K
- Near detector complex to constrain systematic uncertainties

Error bands: uncertainty due to unknown δ value

External constraints Model of the T2K experiment

NOT a joint analysis between the 2 collaborations. Use SK tools to build a model of T2K and fit data based on publicly available information

- Neutrino interaction generator and detector simulation common between the experiments
 - → reweight atmospheric MC to mimic T2K flux
- Systematic uncertainties :
 - -interaction and detector fully correlated
 - -flux uncorrelated
- Propagate published results of near detector fit for interaction and beam flux parameters

Uses T2K data and analysis from PRD 91, 072010 (2015) – not latest results

- > 6.57e20 POT in ν-mode
- No v-mode data
- > No appearance CC1 π sample
- Appearance samples binned in E_{rec}
- Not using new reconstruction and FV

Model reproduces well official results

Results with external constraints

- $> \chi^2(NH) \chi^2(IH) = -5.27$
- > P-value for this $\Delta\chi^2$ (true values of the parameters corresponding to the NH best fit point) is 0.023 for true IH
 - → Slightly stronger preference for the normal hierarchy

Mass hierarchy Significance

- MH significance does not go as $\sqrt{(\chi 2)}$
 - → compute p-values using toy MC
- Limited sensitivity at current statistics
 - → Also compute CLs values
- Significance depend on true values of θ_{23} and δ
 - → Compute for different true values

P-values and CLs for IH exclusion

P-values	Lower	Best fit	Upper
SK only	0.012	0.027	0.020
SK+T2K model	0.004	0.023	0.024

CLs	Lower	Best fit	Upper
SK only	0.181	0.070	0.033
SK+T2K model	0.081	0.075	0.056

$$CL_s = \frac{p_0(IH)}{1 - p_0(NH)}$$

Lower/upper edges of the 90% CL intervals for $\sin^2(\theta_{23})$ and δ

Atmospheric parameters

90% CL contours for the normal hierarchy case

- Super-K atmospheric only measurement compatible with other experiments results
- > In the analysis using T2K model, result dominated by T2K data

Future improvements - 1

High energy neutrino interactions

- Improve simulation of DIS events in NEUT
- Improve systematic uncertainties model for DIS events

Future improvements - 2

New event reconstruction algorithm

- Maximum likelihood method using charge and time information from each PMT
- Improved PID performance, as well as vertex and momentum resolution
- Already used in T2K

Vertex resolution, SR μ-like events

Limited statistics

- New definition of fiducial volume
- Larger detector: Hyper-K

Future Neutron tagging

- Neutrons cannot be directly seen in Super-K
- Can be detected from gammas emitted during their capture
- SK-IV: can use capture on hydrogen efficiency~20%
- Future SK-Gd: capture on Gd efficiency~80% at 0.1% Gd loading

Single 2.2 MeV γ

8 MeV γ cascade

Possible benefits:

- ν statistical $\nu_e/\bar{\nu}_e$ separation in Sub-GeV samples for δ
- Improve statistical v_e/\overline{v}_e separation in Multi-GeV samples for MH
- Correct for missing (invisible) energy to improve energy resolution

<u>Challenges</u>

- uncertainties on neutron production for high energy ν on nuclear targets
- uncertainties on re-interactions in nuclear material and water
- No measurement currently available

Summary

- Atmospheric neutrinos can be used to study open questions in neutrino oscillations
- Super-K is sensitive to the mass hierarchy through a matter induced resonance in the muon to electron flavor_oscillation probability, which happens only for ν in the NH and $\bar{\nu}$ in the IH.
- Also sensitive to δ_{CP} through the Sub-GeV electron like events
- The T2K data can be used to constrain the values of the oscillation parameters, particularly $\sin^2(\theta_{23})$, to increase MH sensitivity
- Using 328 kton-years of atmospheric data, exclude vacuum oscillations at 1.6σ and IH by between 81.9% and 96.7% depending on true values of oscillation parameters
- IH exclusion ranges between 91.9% and 94.5% with the addition of the T2K data

Additional slides

Neutrino oscillations Parameters

In practice, for neutrino oscillations:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 "Atmospheric" "Reactor" "Solar"

 $(c_{ij} = cos(\theta_{ij}), s_{ij} = sin(\theta_{ij}))$

 $P(v_{\alpha} \rightarrow v_{\beta})$ depends on **6 parameters**:

- \rightarrow 3 mixing angles θ_{12} , θ_{23} , θ_{13}
- → 2 independent mass splittings Δm_{ii}^2
- → 1 complex phase, the CP phase δ

- Observed both disappearance and appearance of neutrino flavors
- All mass splittings (Δm^2_{ij}) and mixing angles (θ_{ij}) measured to be non-zero
- Only δ still unknown (not well constrained by data)
- Sign of ∆m²_{32/31} unknown

Atmospheric neutrino oscillations Matter effects – muon neutrinos

Slightly more muon disappearance for neutrinos passing through the Earth's core

Angular resolution

Relation between L and $cos(\theta z)$

Event selection nue/nuebar separation likelihood variables

3 variables, 5 energy bins.

MC predictions

Sample	Energy bins	$\cos \theta_z$ bins	CC ν_e	CC $\bar{\nu_e}$	$CC \ \nu_{\mu} + \bar{\nu_{\mu}}$	CC ν_{τ}	NC	Data	MC
Fully Contained	(FC) Sub-GeV								
e-like, Single-rin									
0 decay-e	$5 e^{\pm}$ momentum	10 in [-1, 1]	0.717	0.248	0.002	0.000	0.033	10294	10266.1
1 decay-e	$5 e^{\pm}$ momentum	single bin	0.805	0.019	0.108	0.001	0.067	1174	1150.7
μ -like, Single-rin									
0 decay-e	$5 \mu^{\pm}$ momentum	10 in [-1, 1]	0.041	0.013	0.759	0.001	0.186	2843	2824.3
1 decay-e	$5 \mu^{\pm}$ momentum	10 in $[-1, 1]$	0.001	0.000	0.972	0.000	0.027	8011	8008.7
2 decay-e	$5 \mu^{\pm}$ momentum	single bin	0.000	0.000	0.979	0.001	0.020	687	687.0
π^0 -like									
Single-ring	$5 e^{\pm}$ momentum	single bin	0.096	0.033	0.015	0.000	0.856	578	571.8
Two-ring	$5 \pi^0$ momentum	single bin	0.067	0.025	0.011	0.000	0.897	1720	1728.4
Multi-ring			0.294	0.047	0.342	0.000	0.318	(1682)	(1624.2)
Fully Contained	(FC) Multi-GeV								
Single-ring	(1 0) 111111 00 1								
ν_e -like	$4 e^{\pm}$ momentum	10 in [-1, 1]	0.621	0.090	0.100	0.033	0.156	705	671.3
$\bar{\nu}_e$ -like	$4 e^{\pm}$ momentum	10 in $[-1, 1]$	0.546	0.372	0.009	0.010	0.063	2142	2193.7
μ-like	$2 \mu^{\pm}$ momentum	10 in $[-1, 1]$	0.003	0.001	0.992	0.002	0.002	2565	2573.8
Multi-ring	•								
ν_e -like	3 visible energy	10 in [-1, 1]	0.557	0.102	0.117	0.040	0.184	907	915.5
$\bar{\nu}_e$ -like	3 visible energy	10 in $[-1, 1]$	0.531	0.270	0.041	0.022	0.136	745	773.8
μ -like	4 visible energy	10 in [-1, 1]	0.027	0.004	0.913	0.005	0.051	2310	2294.0
Other	4 visible energy	10 in [-1, 1]	0.275	0.029	0.348	0.049	0.299	1808	1772.6
Partially Contain	ned (PC)								
Stopping	2 visible energy	10 in [-1, 1]	0.084	0.032	0.829	0.010	0.045	566	570.0
Through-going	4 visible energy	10 in [-1, 1]	0.006	0.003	0.978	0.007	0.006	2801	2889.9
0 0 0		10 [1,1]	0.000	0.000	0.270	0.007	0.000	2001	2007.7
Upward-going M									
Stopping	3 visible energy	10 in $[-1,0]$	0.008	0.003	0.986	0.000	0.003	1456.4	1448.9
Through-going		10 1 [1 0]	0.000	0.004	0.007	0.000	0.004	5005 C	4000 1
Non-showering	single bin	10 in [-1,0]	0.002	0.001	0.996	0.000	0.001	5035.3	4900.4
Showering	single bin	10 in $[-1,0]$	0.001	0.000	0.998	0.000	0.001	1231.0	1305.0

328 kton-year, $\sin^2(\theta_{23})$ =0.5, Δm^2_{32} =2.4e-3

Atmospheric neutrino results Data/MC comparisons

Flux systematics

Systematic error			Fit value (%)	σ (%)
Flux normalization	$E_{\nu} < 1 \text{ GeV}^{\text{a}}$		14.3	25
	$E_{\nu} > 1 \text{ GeV}^{\text{b}}$		7.8	15
$(\nu_{\mu} + \bar{\nu}_{\mu})/(\nu_{e} + \bar{\nu}_{e})$	$E_{\nu} < 1 \text{ GeV}$		0.08	2
$(\mu + \bar{\nu}_{\mu})/(\nu_e + \bar{\nu}_e)$ $(\mu + \bar{\nu}_{\mu})/(\nu_e)$ $(\mu + \bar{\nu}_{$	$1 < E_{\nu} < 10 { m GeV}$		-1.1	3
	$E_{\nu} > 10 \text{ GeV}^{\text{c}}$		1.6	5
$\bar{\nu}_e/\nu_e$	$E_{\nu} < 1 \text{ GeV}$		1.6	5
	$1 < E_{\nu} < 10 \text{ GeV}$		3.3	5
	$E_{\nu} > 10~{ m GeV^d}$		-1.6	8
$\bar{\nu}_{\mu}/\nu_{\mu}$	$E_{\nu} < 1 \mathrm{GeV}$		0.24	2
	$1 < E_{\nu} < 10 \text{ GeV}$		2.9	6
	$E_{\nu} > 10 \text{ GeV}^{\text{e}}$		-2.9	15
Up/down ratio	<400 MeV	e-like	-0.026	0.1
		μ -like	-0.078	0.3
ix normalization $ + \bar{\nu}_{\mu})/(\nu_{e} + \bar{\nu}_{e}) $ $ /\nu_{e} $ $ /\nu_{\mu} $ //down ratio		0-decay μ-like	-0.286	1.1
	>400 MeV	<i>e</i> -like	-0.208	0.8
		μ -like	-0.130	0.5
		0-decay μ-like	-0.442	1.7
	Multi-GeV	e-like	-0.182	0.7
		μ -like	-0.052	0.2
	Multi-ring Sub-GeV	e-like	-0.104	0.4
		μ -like	-0.052	0.2
	Multi-ring Multi-GeV	e-like	-0.078	0.3
		μ -like	-0.052	0.2
forizontal/vertical ratio	PC		-0.052	0.2
Horizontal/vertical ratio	<400 MeV	e-like	0.018	0.1
		μ -like	0.018	0.1
		0-decay μ-like	0.054	0.3
	>400 MeV	e-like	0.252	1.4
		μ -like	0.341	1.9
		0-decay μ-like	0.252	1.4
	Multi-GeV	e-like	0.576	3.2
		μ -like	0.414	2.3
	Multi-ring Sub-GeV	e-like	0.252	1.4
		μ -like	0.234	1.3
	Multi-ring Multi-GeV	e-like	0.504	2.8
	20	μ -like	0.270	1.5
77/	PC		0.306	1.7
			-9.3	10
	PO Maki GAY		-2.13	10
Sample-by-sample	FC Multi-GeV		-6.6	5
M	$PC + Stopping UP-\mu$		0.22	5
Matter effects			0.52	6.8

Interaction and oscillation systematics

Systematic error		Fit value (%)	σ (%)
$\overline{M_A}$ in QE		-0.69	10
Single π Production, Axial Coupling		-4.4	10
Single π Production, C_{A5}		-3.1	10
Single π Production, BKG		-8.7	10
CCQE cross section ^a		6.7	10
CCQE $\bar{\nu}/\nu$ ratio ^a		9.2	10
CCQE μ/e ratio ^a		0.67	10
DIS cross section		-4.4	5
DIS model comparisons ^b		3.0	10
DIS Q^2 distribution (high W) ^c		8.2	10
DIS Q^2 distribution (low W) ^c		-5.8	10
Coherent π production		-10.0	100
NC/CC		12.1	20
ν_{τ} cross section		-13.8	25
Single π production, π^0/π^{\pm}		-20.3	40
Single π production, $\bar{\nu}_i/\nu_i$ (i = e, μ) ^d		-11.0	10
NC fraction from hadron simulation		-0.47	10
π^+ decay uncertainty Sub-GeV 1-ring	e-like 0-decay	-0.17	0.6
	μ -like 0-decay	-0.22	0.8
	e-like 1-decay	1.1	4.1
	μ -like 1-decay	0.25	0.9
	μ -like 2-decay	1.60	5.7
Final state and secondary interactions ^e		-0.2	10
Meson exchange current ^f		-1.8	10
Δm_{21}^2 [29]		0.022	2.4
$\sin^2(\theta_{12})$ [29]		0.32	4.6
$\sin^2(\theta_{13})$ [29]		0.11	5.4

Reduction and background systematics

		SK-I	SK-I		SK-I SK-		SK-III SK-III		I	SK-IV	
Systematic Error		Fit Value	σ	Fit Value	σ	Fit Value	σ	Fit Value	σ		
FC reduction		-0.009	0.2	0.005	0.2	0.066	0.8	0.68	1.3		
PC reduction		0.016	2.4	-3.43	4.8	-0.012	0.5	-0.78	1		
FC/PC separation		-0.10	0.6	0.077	0.5	-0.13	0.9	0.0004	0.02		
PC stopping/through-going separation (bottom)		-15.8	23	-2.4	13	-0.32	12	-1.5	6.8		
PC stopping/through-going	separation (barrel)	3.8	7	-5.7	9.4	-13.9	29	-0.40	8.5		
PC stopping/through-going	separation (top)	8.5	46	-3.0	19	-12.6	87	-24.1	40		
Non-v background	Sub-GeV μ-like	0.010	0.1	0.065	0.4	0.105	0.5	-0.011	0.02		
	Multi-GeV μ-like	0.040	0.4	0.065	0.4	0.105	0.5	-0.011	0.02		
	Sub-GeV 1-ring	0.010	0.1	0.049	0.3	0.084	0.4	-0.052	0.09		
	0-decay μ -like										
	PC	0.020	0.2	0.115	0.7	0.381	1.8	-0.282	0.49		

(Table continued)

			SK-I		SK-I	I	SK-II	I	SK-I	v
Systematic Error			Fit Value	σ						
	Sub-GeV e-like		0.068	0.5	0.000	0.2	-0.004	0.2	-0.000	0.02
	(flasher event)									
	Multi-GeV e-like		0.014	0.1	0.000	0.3	-0.014	0.7	-0.000	0.08
	(flasher event)									
	Multi-GeV		3.6	13	-5.2	38	-1.0	27	2.6	18
	1-ring e-like Multi-GeV		3.7	12	3.8	11	0.75	11	0.34	12
	Multi-ring e-like		3.1	12	3.0	11	0.75	11	0.54	12
Fiducial Volume	Walta Ting C like		-0.85	2	-0.11	2	0.22	2	-1.5	2
Ring separation	< 400 MeV	e-like	0.45	2.3	-1.07	1.3	0.80	2.3	0.96	1.6
		μ-like	0.14	0.7	-1.91	2.3	1.04	3	1.79	3
	> 400 MeV	e-like	0.078	0.4	-1.40	1.7	0.45	1.3	-0.60	1
		μ -like	0.14	0.7	-0.576	0.7	0.208	0.6	-0.36	0.6
	Multi-GeV	e-like	0.72	3.7	-2.14	2.6	0.45	1.3	-0.60	1
		μ-like	0.33	1.7	-1.41	1.7	0.35	1	0.72	1.2
	Multi-ring Sub-GeV	e-like	-0.68	3.5	3.13	3.8	0.45	1.3	1.14	1.9
	Multi sina Multi CaV	μ-like	-0.88	4.5	6.75	8.2	-0.90	2.6	1.37	2.3
	Multi-ring Multi-GeV	e-like μ-like	-0.61 -0.80	3.1 4.1	1.56 0.658	1.9 0.8	-0.38 -0.73	1.1 2.1	0.54 -1.43	0.9 2.4
Particle identification (1 ring)	Sub-GeV	e-like	0.039	0.23	0.038	0.66	0.053	0.26		0.28
radele identification (1 mig)	Sub-GC V	μ-like	-0.030	0.18	-0.172	0.5	-0.038	0.19		0.22
	Multi-GeV	e-like	0.032	0.19	0.082	0.24	0.062	0.31	-0.154	0.35
		μ-like	-0.032	0.19	-0.089	0.26	-0.060	0.3	0.154	0.35
Particle identification (multi-ring)	Sub-GeV	e-like	-0.23	3.1	-3.44	6	3.49	9.5	-2.24	4.2
		μ -like	0.049	0.66	1.38	2.5	-1.91	5.2	0.85	1.6
	Multi-GeV	e-like	0.48	6.5	5.57	9.7	-1.80	4.9	-1.76	3.3
		μ -like	-0.21	2.9	-2.24	3.9	0.99	2.7	0.85	1.6
Multi-ring likelihood selection	Multi-ring e-like	ν_e , $\bar{\nu}_e$	-6.5	6.0	-1.3	3.8	-5.3	5.3	-2.3	3.0
Faces calibration	Multi-ring Other		6.2	5.7	1.4	4.1	4.7	4.9	2.7	3.4
Energy calibration			-0.75	3.3	-0.90	2.8	0.06	2.4	0.08	2.1
Up/down asymmetry energy calib UP- μ reduction			0.26 -0.091	0.6 0.7	0.24 -0.090	0.6 0.7	0.74 0.162	1.3	-0.15 0.087	0.4
OF-μ reduction	Stopping Through-going		-0.065	0.7	-0.064	0.7	0.102	0.7	0.052	0.3
UP-μ stopping/through-going sepa			0.003	0.4	-0.004	0.6	0.030	0.4	-0.102	0.6
Energy cut for stopping UP- μ			-0.043	0.9	-0.122	1.3	0.957	2	-0.122	1.7
Path length cut for through-going	UP-µ		-0.416	1.5	-0.826	2.3	0.993	2.8	1.47	1.5
Through-going UP-μ showering s			7.53	3.4	-4.68	4.4	2.90	2.4	-3.30	3
Background subtraction for UP-µ			10.0	16	-3.1	21	-4.9	20	-6.7	17
	Non-showering ^a		-3.6	18	-3.6	14	1.4	24	2.1	17
	Showering ^a		-12.3	18	-15.7	14	0.1	24	-0.9	24
$\nu_e/\bar{\nu}_e$ Separation			-0.98	7.2	6.96	7.9	0.45	7.7	2.46	6.8
Sub-GeV 1-ring π^0 selection	$100 < P_e < 250 \text{ MeV/c}$		1.7	9	7.0	10	0.98	6.3	5.2	4.6
	$250 < P_e < 400 \text{ MeV/c}$		1.7	9.2	9.8	14	0.76	4.9	3.4	3
	$400 < P_e < 630 \text{ MeV/c}$		3.0	16	7.7	11	3.7	24	14.8	13
	$630 < P_e < 1000 \text{ MeV/c}$ $1000 < P_e < 1330 \text{ MeV/c}$		2.6 2.2	14 12	11.2 6.8	16 9.8	1.3 1.7	8.2 11	19.4 27.4	17 24
Sub-GeV 2-ring π ⁰	1000 < F _e < 1550 MeV/C		1.3	5.6	-2.7	4.4	1.6	5.9	-0.72	5.6
Decay-e tagging			-3.2	10	-1.0	10	0.9	10	1.3	10
Solar Activity			-1.8	20	20.0	50	2.7	20	0.6	10