Measurement of Atmospheric Neutrino Oscillations with IceCube and DeepCore Tom Stuttard for the IceCube collaboration Niels Bohr Institute

PANE 2018

Oscillations in IceCube/DeepCore

- IceCube/DeepCore is an extremely **versatile** oscillations detector
- Huge range of neutrino energies and baselines observed
 GeV PeV km to astrophysical
- Matter effects for Earth-crossing v
- Enormous detector → high statistics
 - ~100% uptime, multiple v <u>per hour</u>
- Can test standard oscillations picture
 - v_{μ} disappearance, v_{τ} appearance, mass ordering
- Broad spectrum of **BSM** oscillation physics probed

Neutrino interactions in the ice

- Charged Current (CC) and Neutral Current (NC) v-ice interactions
 - **DIS** dominates above a few GeV
- Charged particles produce Cherenkov photons → detected by PMTs

Event types

- Events categorised by two distinct types
 - Also more exotic cases at high energies

Cherenkov/stochastic emission from μ

Tom Stuttard 5

Hadronic/EM showers

Event types

- Events categorised by two distinct types
 - Also more exotic cases at high energies

250 TeV

32 GeV

Picture is less clear at low energy!

- Search for 3D distortions in event rates: [E, cos(θ_{zenith}), PID]
- Atmospheric v_{μ} disappearance is dominant oscillation channel

Particle ID

7

- Search for 3D distortions in event rates: [E, cos(θ_{zenith}), PID]
- Atmospheric v_{μ} disappearance is dominant oscillation channel

- Search for 3D distortions in event rates: [E, cos(θ_{zenith}), PID]
- Atmospheric v_{μ} disappearance is dominant oscillation channel

- Search for 3D distortions in event rates: [E, cos(θ_{zenith}), PID]
- Atmospheric v_{μ} disappearance is dominant oscillation channel

- Search for 3D distortions in event rates: [E, cos(θ_{zenith}), PID]
- Atmospheric v_{μ} disappearance is dominant oscillation channel

- Search for 3D distortions in event rates: [E, cos(θ_{zenith}), PID]
- Atmospheric v_{μ} disappearance is dominant oscillation channel

Flux systematics with MCEq

13

Tom Stuttard

- Barr et al (2006) estimated uncertainty in inputs to atmospheric neutrino flux calculations
- MCEq can be used for fast flux calculations
 - Can use Barr –like inputs
- Combine to treat systematic uncertainty in analyses

π and K production uncertainty regions (Barr blocks)

Flux systematics with MCEq

- Implementation in analyses:
 - Treat "Barr blocks" as nuisance parameters (Gaussian priors)
 - Also normalisation and spectral index
 - Re-calculate flux using MCEq for each case and re-weight simulation accordingly
 - Fit to find best fit physics and nuisance parameters to data

v_{μ} disappearance

- v_{μ} disappearance measured in $E_{reco} = [5.6, 56]$ GeV energy range
 - θ_{23} and Δm^2_{32} measured
 - PMNS unitarity assumed, insensitive to other mixing parameters

v_{μ} disappearance results

- 2018 PRL published (3 years), arXiv:1707.07081
- New: 2018 high statistics sample (3 years) Paper in preparation (combined with v_t appearance)

ν_τ appearance (1 of 2)

- Decades of atmospheric and long baseline accelerator experiments have observed v_{μ} disappearance
- Standard 3 flavour picture: dominated by $\nu_{\mu} \rightarrow \nu_{\tau}$
- Want to detect these v_{τ} to confirm
 - Tests unitarity of PMNS mixing matrix
 - Directly measure $U_{\tau i}$

Tom Stuttard

17

ν_τ appearance (2 of 2)

- However, difficult to detect:
 - Large τ mass \rightarrow suppressed CC cross section for $E_v < 1$ TeV
 - DeepCore: v_{τ} are **cascade** events, cannot be distinguished from v_{e} , v_{NC}

v_{τ} appearance results

- First DeepCore results in last year (3 years of data)
 - Two analyses, comparable sensitivity and results Joint paper in preparation
- 6 year analysis underway

v_{τ} appearance results

- First DeepCore results in last year (3 years of data)
 - Two analyses, comparable sensitivity and results

v_{τ} appearance results

- First DeepCore results in last year (3 years of data)
 - Two analyses, comparable sensitivity and results

Mass ordering

- Sign of Δm^2_{atm} (mass ordering) unknown
- Atmospheric v experiments sensitive to mass ordering via matter effects
 - Resonance < 15 GeV
 - NO: $v_{\mu} \leftrightarrow v_{e}$ enhanced
 - IO: $\bar{\nu}_{\mu} \leftrightarrow \bar{\nu}_{e}$ enhanced
- Cannot discriminate $\nu/\overline{\nu}$ in DeepCore
- Net effect due to higher ν rate

Mass ordering results

- Two DeepCore analyses (2017) Joint paper in preparation
- Signal at/below detector threshold \rightarrow weak signal \rightarrow low sensitivity
 - Will improve with IceCube upgrade and PINGU

Degeneracy with octant

High energy steriles

- Search for sterile v signatures via mixing with active states ullet
- Expect matter-induced resonance in v_{μ} disappearance in 3+1 scenario
 - $|\Delta m_{41}^2| = O(1eV^2) \rightarrow O(1 \text{ TeV})$, up-going v_{μ}
 - v_{μ} for $\Delta m_{41}^2 < 0$ (lighter), \bar{v}_{μ} for $\Delta m_{41}^2 > 0$ (heavier)

24

Tom Stuttard

High energy steriles

- Search for sterile v signatures via mixing with active states
- Expect matter-induced resonance in v_{μ} disappearance in 3+1 scenario
 - $|\Delta m^2_{41}| = O(1eV^2) \rightarrow O(1 \text{ TeV})$, up-going v_{μ}
 - v_{μ} for Δm^2_{41} < 0 (lighter), \bar{v}_{μ} for Δm^2_{41} > 0 (heavier)

High energy sterile results

- PRL 2016 (1 year)
 - arXiv:1605.01990
 - $\Delta m_{41}^2 > 0$ (conservative)
 - Null result
 - Tension with LSND/MiniBooNE
- Also DeepCore sterile result (2017)
 - arXiv:1702.05160
- New results soon:
 - 7 year
 - $\Delta m_{41}^2 < 0$

Non Standard Interactions (NSI)

- Search for coherent forward scattering of neutrinos in matter due to new mediator (e.g. Z')
- Additional effective matter potential (coupling to u/d quarks)

NSI results

- PRL 2017, arXiv:1709.07079 (DeepCore, 3 years)
 - $\epsilon_{\mu\tau}$ measured (modifies ν_{μ} disappearance), null result

• New DeepCore analysis underway Higher stats, more $\epsilon_{\alpha\beta}$, 1D and 2D

See poster by T. Ehrhardt

$$\epsilon = \begin{pmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$$

Lorentz Violation (LV)

- Lorentz symmetry underpins the SM
- SM Extension (SME) includes LV terms \rightarrow modified neutrino oscillations
- 2017 IceCube search for modified in ν_{μ} disappearance due to isotropic LV field
 - Null result, strong constraints on SME operators

Neutrino decoherence

- Weak coupling between neutrino and environment \rightarrow decoherence
 - Prediction of e.g. "foamy" quantum gravity
- Damping of oscillation probability over distance/time

Tom Stuttard

30

Poster

Tom Stuttard 31

Lisi et al, arXiv:hep-ph/0002053 Farzan et al, arXiv:0805.2098

Decoherence phenomenology

- Open quantum system
- Decoherence \rightarrow mixed quantum states: use density matrices: $\rho = \sum p_i |\psi_i\rangle \langle \psi_i |$
- Introduce general decoherence operator (Lindblad form): $\mathcal{D}[
 ho]$

$$\dot{\rho} = -i[H,\rho] - \mathcal{D}[\rho]$$

- Microphysics-independent, minimal assumptions (physicality)
- 3 effective damping parameters, Γ_{ij}
 - Could be energy-dependent

$$\mathcal{D}[\rho] = \begin{pmatrix} 0 & \rho_{12}\Gamma_{21} & \rho_{13}\Gamma_{31} \\ \rho_{21}\Gamma_{21} & 0 & \rho_{23}\Gamma_{32} \\ \rho_{31}\Gamma_{31} & \rho_{32}\Gamma_{32} & 0 \end{pmatrix}$$

Decoherence signal in IceCube

- Dominant signal is modified v_{μ} disappearance
- Varies with zenith angle (and energy)

ν_{μ} disappearance

Neutrino decoherence in IceCube

DeepCore/IceCube analyses underway (6 years)

 $\mathcal{D}[\rho] = \begin{pmatrix} 0 & \rho_{12}\Gamma & \rho_{13}\Gamma \\ \rho_{21}\Gamma & 0 & \rho_{23}\Gamma \\ \rho_{31}\Gamma & \rho_{32}\Gamma & 0 \end{pmatrix}$

Poster

The future

- Next-generation oscillation analyses underway now
 - **Double** or more **statistics** (6/7 years)
 - More sophisticated event selections, reconstructions, systematics treatment
 - Expanding BSM scope
- In the pipeline:
 - 3 year NSI (expanded parameter space, high stats sample)
 - 7 year high energy sterile search
 - 6 year v_{μ} disappearance
 - 6 year v_{τ} appearance
 - 6 year decoherence, + more...

See talk by J. Hignight

- Oscillations measurements will hugely benefit from the IceCube upgrade
 - Lower energy threshold, improved stats, reconstruction, calibration, ...

Summary

- IceCube/DeepCore has established itself as potent detector for oscillation measurements
- Standard oscillation picture tested at O(10 GeV), consistent with SM
 - World-leading v_{τ} appearance measurement
- Rich potential for BSM oscillation searches
 - Only just starting to be realised
- Other atmospheric physics measurements not covered here
 - Cross section, inelasticity, flux
- Expect much more in the next few years...