# Non-Standard Interactions with light mediators

Yasaman Farzan

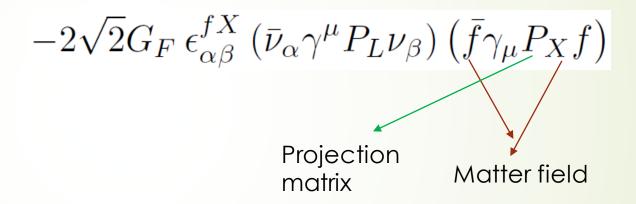
IPM, Tehran



#### Effects of NSI on neutrinos

Neutral current Non-Standard Interaction (NSI): propagation of neutrinos in matter

Charged current Non-Standard Interaction (NSI): production and detection


#### Effects of NSI on neutrinos

 Neutral current Non-Standard Interaction (NSI): propagation of neutrinos in matter

Focus of this talk

Charged current Non-Standard Interaction (NSI): production and detection

## Non-standard neutral current interaction



Neutrino propagation:  $\epsilon_{\alpha\beta}^f \equiv \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}$ .

#### Standard Oscillation

$$i\frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H^{\nu} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

$$H^{\nu} = H_{vac} + H_{matt}$$

$$H_{vac} = U \cdot \text{Diag}\left(\frac{m_1^2}{2E}, \frac{m_2^2}{2E}, \frac{m_3^2}{2E}\right) \cdot U^{\dagger}$$

$$H_{vac} = U \cdot \text{Diag}\left(\frac{m_1^2}{2E}, \frac{m_2^2}{2E}, \frac{m_3^2}{2E}\right) \cdot U^{\dagger} \qquad H_m = \begin{pmatrix} \sqrt{2}G_F N_e - \frac{\sqrt{2}}{2}G_F N_n & 0 & 0\\ 0 & -\frac{\sqrt{2}}{2}G_F N_n & 0\\ 0 & 0 & -\frac{\sqrt{2}}{2}G_F N_n \end{pmatrix}$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{bmatrix} \begin{bmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \end{bmatrix} \begin{bmatrix} \cos \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

#### Non-Standard matter effects

$$i\frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H^{\nu} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

$$H^{\nu} = H_{vac} + H_{matt}$$

$$H_{vac} = U \cdot \text{Diag}\left(\frac{m_1^2}{2E}, \frac{m_2^2}{2E}, \frac{m_3^2}{2E}\right) \cdot U^{\dagger}$$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F \sum_{f=e,u,d} N_f(r) \begin{pmatrix} \varepsilon_{ee}^f & \varepsilon_{e\mu}^f & \varepsilon_{e\tau}^f \\ \varepsilon_{e\mu}^f & \varepsilon_{\mu\mu}^f & \varepsilon_{\mu\tau}^f \\ \varepsilon_{e\tau}^f & \varepsilon_{\mu\tau}^f & \varepsilon_{\tau\tau}^f \end{pmatrix}$$

# Effects of NSI in long baseline experiments

- Renewed interest in NSI
- lacktriangle NSI can fake CP-violation and lead to wrong determination of  $\; heta_{23}\;$  octant

Masud and Mehta, PRD 94(2016); Forero and Huber, PLB 117 (2016); Liao, Marfatia and Whistnant PRD 93 (2016); Agarwalla, Chatterjee and Palazzo, PLB 762 (2016)

#### Underlying models for NSI with light mediators

Y.F., PLB 748 (2015) 311; Y.F. and I. Shoemaker, JHEP 1607 (2016) 033; Y.F. and J.

Heeck, PRD94 (2016) no 5, 53010, Y.F. and M. Tortola, Front. In Phys 6 (2018) 10

#### LMA-Dark solution

 LMA-Dark solution provides even a better fit. (suppression of low energy upturn)

$$-1.40 < \epsilon_{ee}^u - \epsilon_{\mu\mu}^u < -0.68$$
 and  $-1.44 < \epsilon_{ee}^d - \epsilon_{\mu\mu}^d < -0.87$  at  $3\sigma$  C.L.

$$\theta_{12} > \frac{\pi}{4}$$

#### Total flux measurement at SNO

- Neutral current
- Deuteron dissociation

$$\nu + D \rightarrow \nu + n + p$$

- Gamow-Teller transition
- Sensitive only to axial-vector interaction
- No effect from

$$\epsilon_{\alpha\beta}^f = \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}$$

## Scattering experiments

$$-2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \,(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) \,(\bar{f}\gamma_{\mu}P_X f)$$

NuTeV and CHARM rule out a large part (but not all) of parameter space of LMA-Dark solution.

Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003

### Scattering experiments

$$-2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \,(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) \,(\bar{f}\gamma_{\mu}P_X f)$$

NuTeV and CHARM rule out a large part (but not all of) parameter space of LMA-Dark solution.

Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003

But not in the model that we shall present

### Underlying theory for LMA-Dark?

$$-2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_X f\right)$$

$$\epsilon_{\alpha\beta}^f \equiv \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}.$$

Various model with heavy intermediate particle For a review see:

T. Ohlsson, "Status of non-standard neutrino interactions," Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710 [hep-ph]].

#### Too small NSI

$$-2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

$$\epsilon_{\alpha\beta}^f \equiv \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}.$$

$$\epsilon = \left(\frac{g_X^2}{m_X^2}\right)^2 G_F^{-1}$$

#### Suggestion

lacktriangle What if  $m_X \sim 10 \; \mathrm{MeV}$ 

YF, A model for large non-standard interactions leading to LMA-Dark solution, Phys. Lett. B748 (2015) 311-315; YF and J Heeck, Neutrinophilic nonstandard interactions, PRD 94 (2016) 53010; YF and I Shoemaker, lepton flavor violating NSI via light mediator, JHEP 1607 (2016) 33.

YF and M Tortola, "neutrino oscillations and non-standard interactions" to appear in Frontiers in physics

#### Suggestion

What if

$$m_X \sim 10 \ {\rm MeV}$$

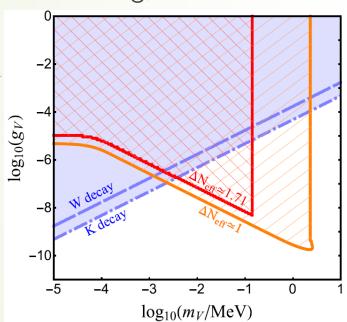


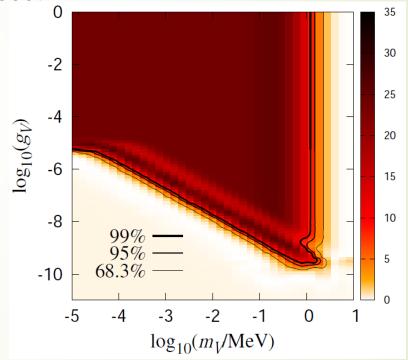


$$g_X \sim 10^{-5} - 10^{-4}$$

 Bounds can be avoided not because the mass of the intermediate state is high

But because coupling is small!


 $g_{\nu}\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta}Z'_{\mu}$ 


$$\frac{g_B}{3}\bar{q}\gamma^\mu q Z'_\mu$$

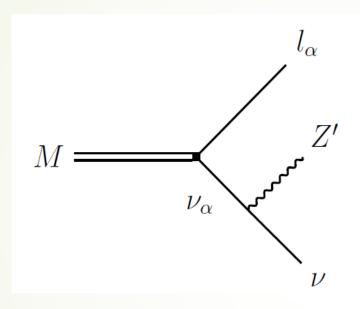
$$\epsilon_{\alpha\beta}^{u} = \epsilon_{\alpha\beta}^{d} = \frac{g_{\nu}g_{B}}{6\sqrt{2}G_{F}m_{Z'}^{2}}$$

## Big Bang Nucleosynthesis

Huang, Ohlsson and Zhou, PRD 97 (2018) 75009



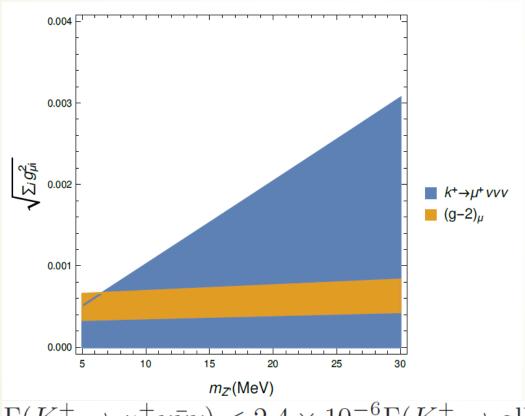



The contour plot and density map of the  $\chi^2$  function

 $m_{Z'} \lesssim 5 \text{ MeV}$ 


$$Y_{\rm p} = 0.2449 \pm 0.0040$$

$$D/H|_{p} = (2.53 \pm 0.04) \times 10^{-5}$$


#### Bounds on Couplings of neutrinos

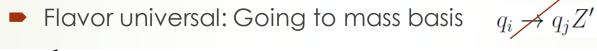


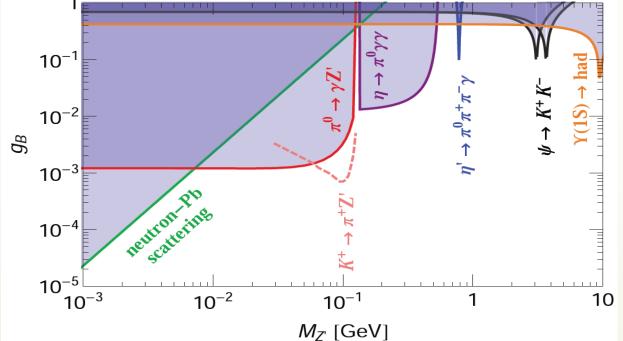
$$R_M \equiv \frac{Br(M^+ \to e^+ + \text{missing energy})}{Br(M^+ \to \mu^+ + \text{missing energy})} \quad M^+ = \pi^+, K^+$$



P Bakhti and YF, PRD 95 (2017) 095008




Artamonov et al., BNL-E494 collaboration, PRD 79 (2009) 092004


 $\Gamma(K^+ \to \mu^+ \nu \bar{\nu} \nu) < 2.4 \times 10^{-6} \Gamma(K^+ \to \text{all}) \text{ at } 90\% \text{ confidence level}$ 

P Bakhti and YF, PRD 95 (2017) 095008

### Coupling to quarks

Non-chiral couplings: No impact on total measurement at SNO





Y.F. and J Heeck, PRD 94 (2016) 053010

## Coupling to neutrinos

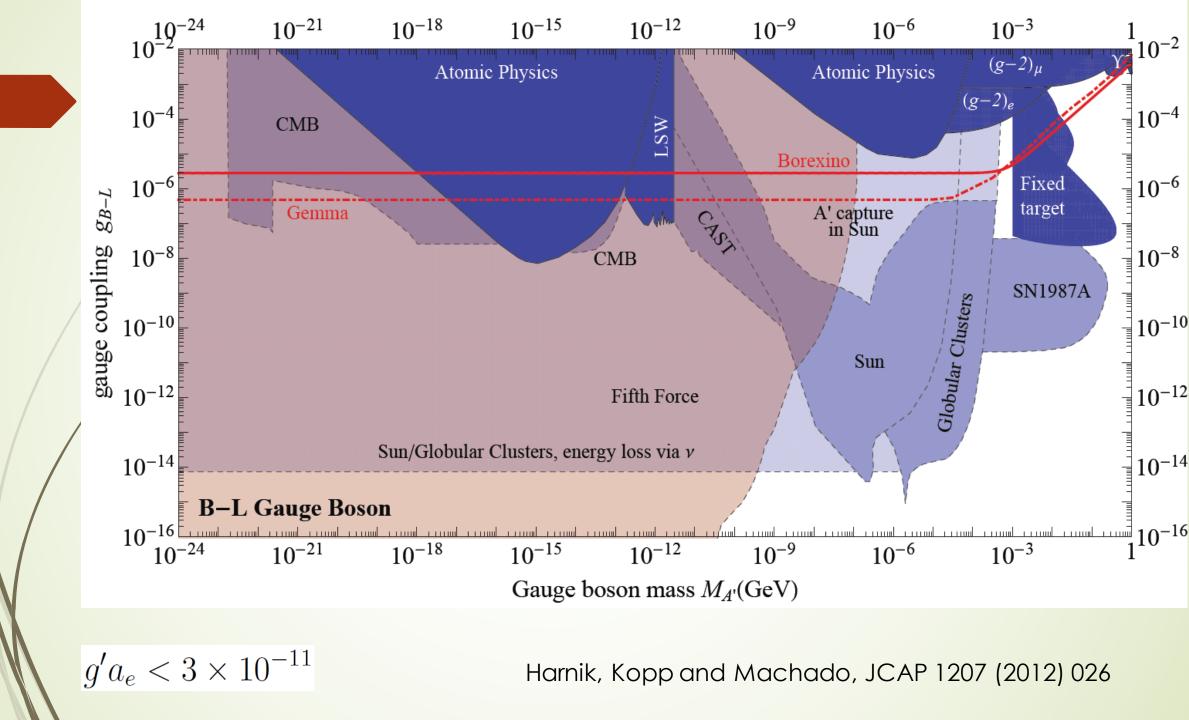
Direct coupling to neutrinos

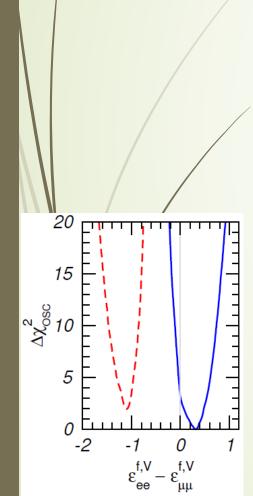
Gauge symmetry:

$$a_e L_e + a_\mu L_\mu + a_\tau L_\tau + B$$

Coupling to neutrinos through mixing with  $\psi$ :  $\kappa_{lpha}$  Gauge symmetry:

$$a_{\psi}L_{\psi}+B$$


### Coupling to neutrinos


Direct coupling to neutrinos

Gauge symmetry:

$$a_e L_e + a_\mu L_\mu + a_\tau L_\tau + B$$

$$\epsilon_{\alpha\alpha}^{u} = \epsilon_{\alpha\alpha}^{d} = \frac{g'^{2}a_{\alpha}}{6\sqrt{2}G_{F}m_{Z'}^{2}}$$
 and  $\epsilon_{\alpha\beta}^{u} = 0|_{\alpha \neq \beta}$ 





$$a_e L_e + a_\mu L_\mu + a_\tau L_\tau + B$$

$$a_e = 0$$

Anomaly cancelation: a

$$a_{\mu} = a_{\tau} = -3/2$$

Reproducing best fit

$$g' = 4 \times 10^{-5} \frac{m_{Z'}}{10 \text{ MeV}} \left(\frac{\epsilon_{ee} - \epsilon_{\mu\mu}}{0.3}\right)^{1/2}$$

#### Anomaly cancelation

$$3 + a_e + a_\mu + a_\tau \neq 0$$

Adding a new generation of leptons (quarks)

Non-perturbative Yukawa coupling

Adding a pair of fermions with opposite hypercharges

$$Y_1 S e_{R4}^T c e_{5R} + Y_2 S L_4^T c L_5 + \text{H.c.}$$

$$g' \lesssim \frac{5 \text{ TeV}}{M_{4,5}} \frac{2 \times 10^{-6}}{3 + a_{\mu} + a_{\tau}} \frac{m_{Z'}}{10 \text{ MeV}}$$

$$e_{4(5)}^- \to \nu_{4(5)} l \nu, \nu_{4(5)} q' \bar{q}$$

## Coupling of neutrinos through mixing

$$g' a_{\Psi} Z'_{\mu} \left( \sum_{\alpha,\beta} \kappa_{\alpha}^* \kappa_{\beta} \bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\beta} - \kappa_{\alpha}^* \bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \Psi - \kappa_{\alpha} \bar{\Psi} \gamma^{\mu} P_{L} \nu_{\alpha} \right)$$

$$\epsilon_{\alpha\beta}^{u} = \epsilon_{\alpha\beta}^{d} = \frac{g^{2}a_{\Psi}\kappa_{\alpha}^{*}\kappa_{\beta}}{6\sqrt{2}G_{F}m_{Z'}^{2}} \qquad \qquad \epsilon_{\alpha\alpha}^{u(d)}\epsilon_{\beta\beta}^{u(d)} = |\epsilon_{\alpha\beta}^{u(d)}|^{2}$$

$$|\kappa_e|^2 < 2.5 \times 10^{-3}$$
,  $|\kappa_\mu|^2 < 4.4 \times 10^{-4}$  and  $|\kappa_\tau|^2 < 5.6 \times 10^{-3}$  at  $2\sigma$ 

Fernandez-Martinez et al., JHEP 08 (2016) 033

## Coupling of neutrinos through mixing

$$g' a_{\Psi} Z'_{\mu} \left( \sum_{\alpha,\beta} \kappa_{\alpha}^* \kappa_{\beta} \bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\beta} - \kappa_{\alpha}^* \bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \Psi - \kappa_{\alpha} \bar{\Psi} \gamma^{\mu} P_{L} \nu_{\alpha} \right)$$

$$\epsilon_{\alpha\beta}^{u} = \epsilon_{\alpha\beta}^{d} = \frac{g^{2}a_{\Psi}\kappa_{\alpha}^{*}\kappa_{\beta}}{6\sqrt{2}G_{F}m_{Z'}^{2}}$$

$$\epsilon_{\alpha\alpha}^{u(d)}\epsilon_{\beta\beta}^{u(d)} = |\epsilon_{\alpha\beta}^{u(d)}|^{2}$$

$$\epsilon_{\alpha\beta}^{u} = \epsilon_{\alpha\beta}^{d} = g' a_{\Psi} \left( \frac{g'}{10^{-5}} \right) \frac{\kappa_{\alpha}^{*} \kappa_{\beta}}{10^{-3}} \left( \frac{10 \text{ MeV}}{m_{Z'}} \right)^{2}$$

Fernandez-Martinez et al., JHEP 08 (2016) 033

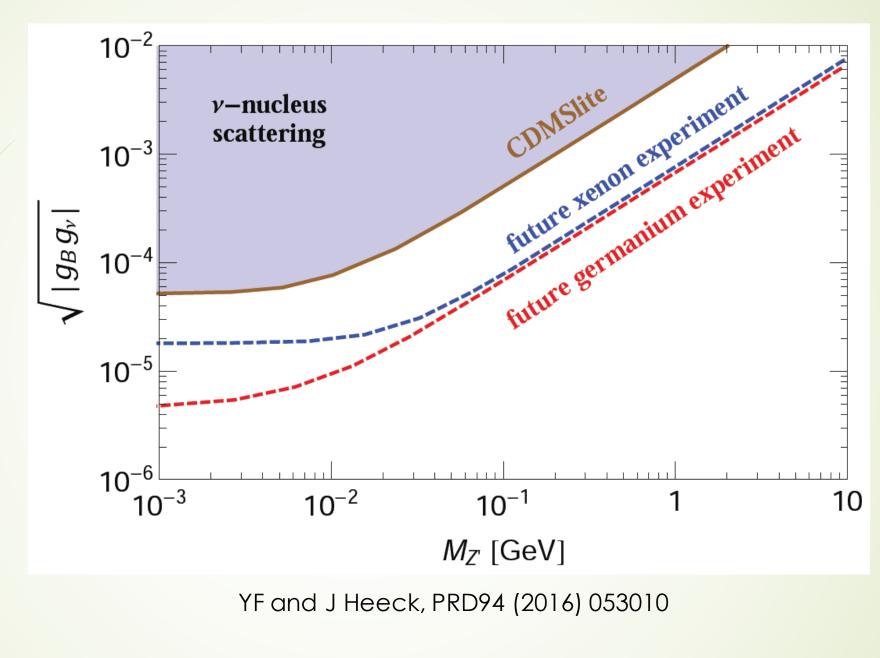
#### Neutrino scattering experiments

$$q^2 \gg m_{Z'}^2$$

$$-2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \,(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) \,(\bar{f}\gamma_{\mu}P_X f)$$

Suppression factor

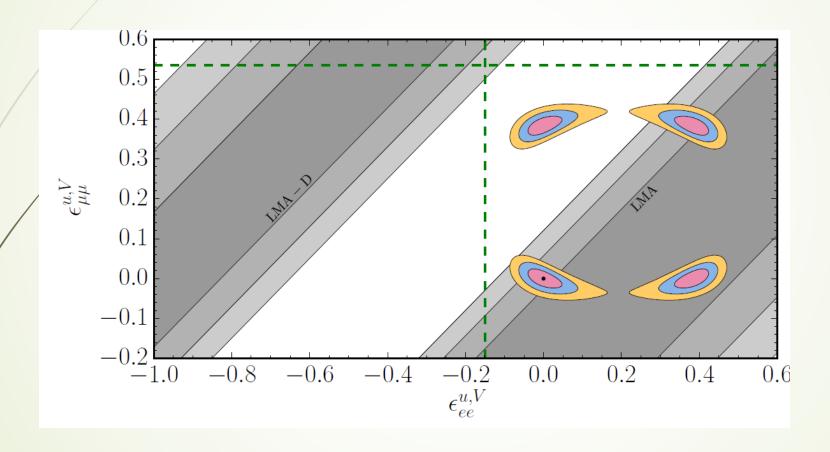
$$\frac{m_{Z'}^2}{q^2 - m_{Z'}^2} \ll 1$$


#### Neutrino scattering experiments

$$q^{2} \gg m_{Z'}^{2}$$

$$-2\sqrt{2}G_{F} \epsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}) (\bar{f}\gamma_{\mu}P_{X}f)$$

$$5~{\rm MeV} \lesssim m_{Z'} \ll 1~{\rm GeV}$$


Relaxing bounds from scattering experiments, NuTeV and CHARM



LUX-Zeplin

SuperCDMS SNOLAB

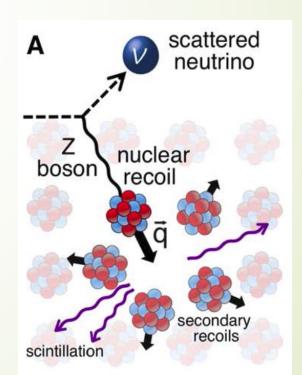
## COHERENT experiment



Coloma et al, JHEP 1704 (2017) 116

Neutrino source: Pion decay at rest

## COHERENT experiment


 Akimov et al., "Observation of Coherent Elastic neutrino Nucleus Scattering," science 357 (2017) No 6356, 1123

 $(CE\nu NS)$ 

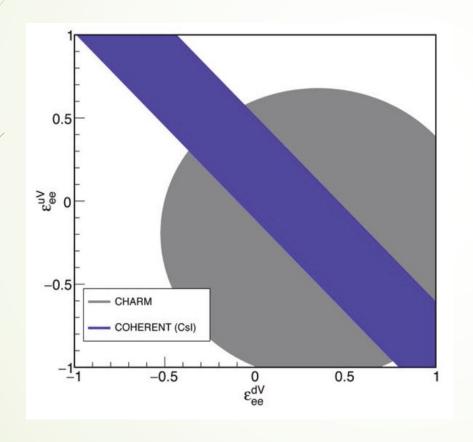
Freedman, PRD 9 (1974) 1389.

 $QR \stackrel{<}{\sim} 1$ 

They find  $6.7\sigma$  CL evidence for  $CE\nu NS$ 

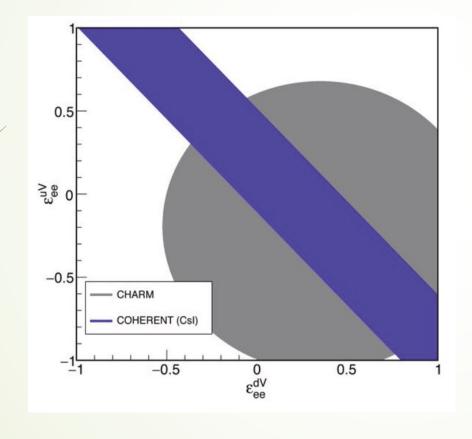


## Set-up of the COHERENT experiment


- Detector: 14.6 kg Csl scintillator
- Source: Spallation Neutron Source (SNS) at Oak Ridge National Lab

$$\pi^+ \to \mu^+ + \nu_\mu$$

$$\mu^+ \rightarrow e^+ + \bar{\nu}_\mu + \nu_e$$


$$N_{\rm POT} = 1.76 \times 10^{23}$$

$$L = 19.3 \text{ m}$$



Akimov et al., Science 357 (2017) No 6356, 1123

#### JHEP 1704 (2017) 116



P. Coloma, P. Denton, Gonzalez-Garcia, Maltoni and Schwetz, "curtailing the dark Side in non-standard neutrino interaction," JHEP 1704 (2017) 116

Akimov et al., Science 357 (2017) No 6356, 1123

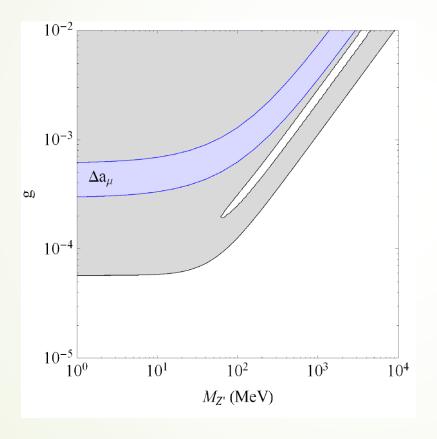
#### Standard coherent interaction

$$\frac{d\sigma_{\alpha}}{dE_r} = \frac{G_F^2}{2\pi} Q_{\alpha}^2 F^2(2ME_r) M \left(2 - \frac{ME_r}{E_{\nu}^2}\right)$$

$$Q_{\alpha,\mathrm{SM}}^2 = \left(Zg_p^V + Ng_n^V\right)^2$$

$$g_p^V = \frac{1}{2} - 2\sin^2\theta_W$$

$$g_n^V = -\frac{1}{2}$$


Liao and Marfatia, Phys Lett B775 (2017) 54

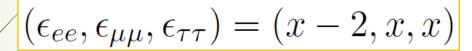
# Coherent interaction with light mediator

$$\frac{d\sigma_{\alpha}}{dE_r} = \frac{G_F^2}{2\pi} Q_{\alpha}^2 F^2 (2ME_r) M \left(2 - \frac{ME_r}{E_{\nu}^2}\right)$$

$$Q_{\alpha,\text{NSI}}^2 = \left[ Z \left( g_p^V + \frac{3g^2}{2\sqrt{2}G_F(Q^2 + M_{Z'}^2)} \right) + N \left( g_n^V + \frac{3g^2}{2\sqrt{2}G_F(Q^2 + M_{Z'}^2)} \right) \right]^2$$

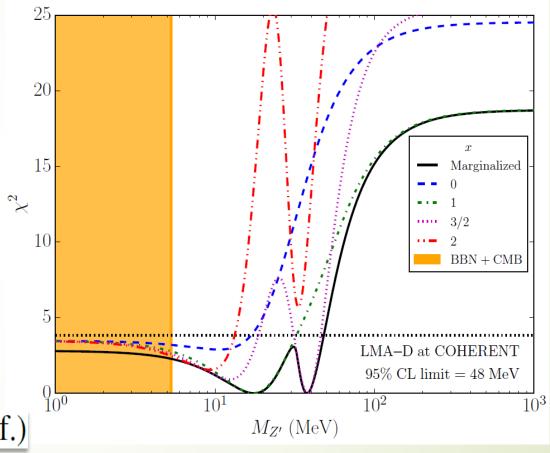
$$Q^2 = 2ME_r$$



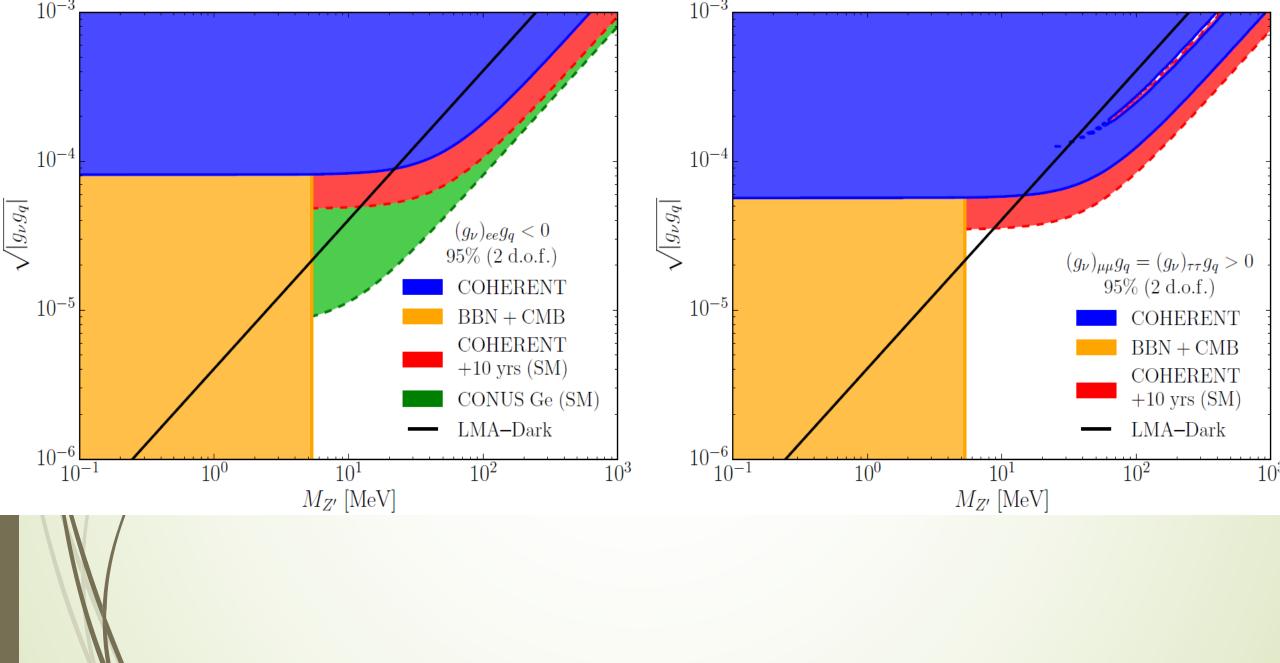

$$Q_{\alpha,\text{NSI}} = -Q_{\alpha,\text{SM}},$$

$$\frac{g^2}{M_{Z'}^2} = -\frac{4\sqrt{2}(Zg_p^V + Ng_n^V)}{3(Z+N)}G_F$$

$$M_{Z'} \gg \sqrt{2ME_r}$$
.

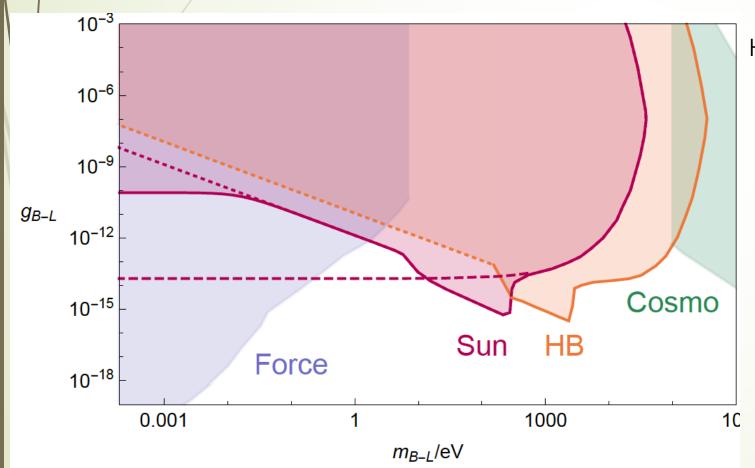

Liao and Marfatia, Phys Lett B775 (2017) 54

#### LMA-Dark after COHERENT data




$$\epsilon_{ee}^{u,V} = \epsilon_{ee}^{d,V} = \frac{x}{4} - \frac{1}{2}$$

 $M_{Z'} > 48$  MeV at 95% C.L. (1 d.o.f.)




Denton, YF Shoemaker, arXiv:1804.03660, to appear in JHEP

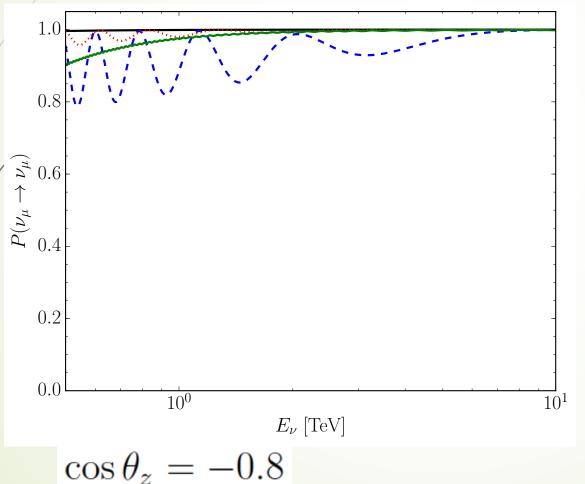


Denton, YF Shoemaker, arXiv:1804.03660, to appear in JHEP

## Even lighter mediator



Hardy and Lasenby, JHEP 1702 (2017) 33

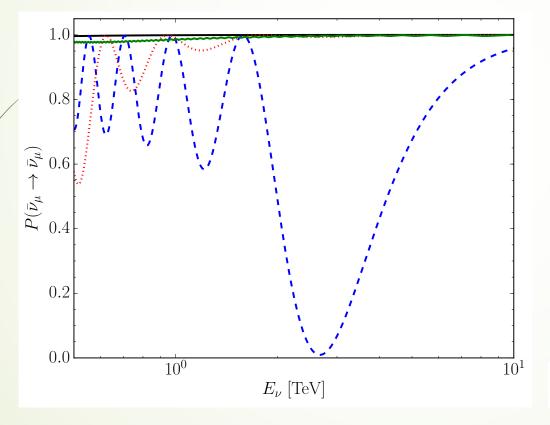

Free streaming at recombination:

$$g_{\nu} < 5 \times 10^{-5} \frac{m_{Z'}}{10 \ eV}$$

Cherry, Denton, YF and Shoemaker, Work in progress

$$g_{\nu_s} \sim 10^{-2}$$

$$\mathcal{L} = -2\sqrt{2}\epsilon G_F(\bar{\nu}_s \gamma^\mu \nu_s)(\bar{f}\gamma_\mu f)$$




Cherry, Denton, Y.F. and shoemaker, Work in progress

$$\epsilon_{ss} = 6$$

Liao and Marfatia, PRL 117 (2016) 71802

$$\epsilon_{\mu\mu} = -6.26 \qquad \epsilon_{\tau\tau} = -6.26$$



Cherry, Denton, Y.F. and shoemaker, Work in progress

$$\epsilon_{ss} = 6$$

Liao and Marfatia, PRL 117 (2016) 71802

$$\epsilon_{\mu\mu} = -6.26 \qquad \epsilon_{\tau\tau} = -6.26$$

$$\cos \theta_z = -0.8$$

## Summary

U(1)' gauge boson with  $m_{Z'}\sim 10~{\rm MeV}$  and  $\sqrt{g_{\nu}g_B}=10^{-4}-10^{-5}$  can lead to sizeable NSI.

COHERENT has not ruled out LMA-Dark yet!

Upcoming CEvNS experiments can test this scenario



Observational consequences

## Emission in Supernova

lacksquare Similar to  $\mathcal{L}_{\mu}-\mathcal{L}_{ au}$ 

Kamada and Yu, arXiv:1504.00711

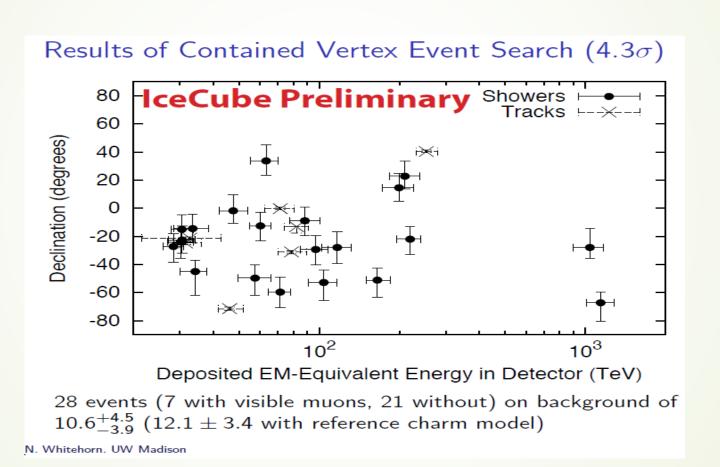
$$c\tau_{Z'} \sim 10^{-9} \text{km} (g'/7 \times 10^{-5})^{-2} (T/10 \text{ MeV}) (10 \text{ MeV}/m_{Z'})^2$$

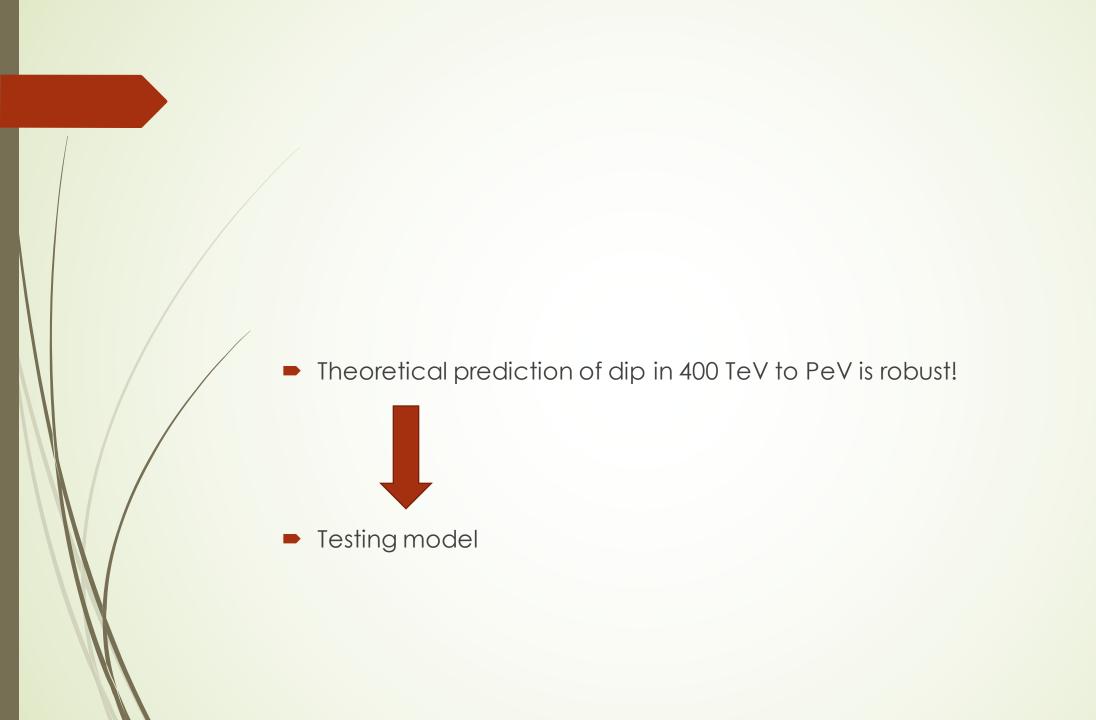
- Reduced mean free path for  $\,
u_{\mu}\,\,{
m and}\,\,
u_{ au}$ 

prolong the diffusion time

# High energy cosmic neutrino

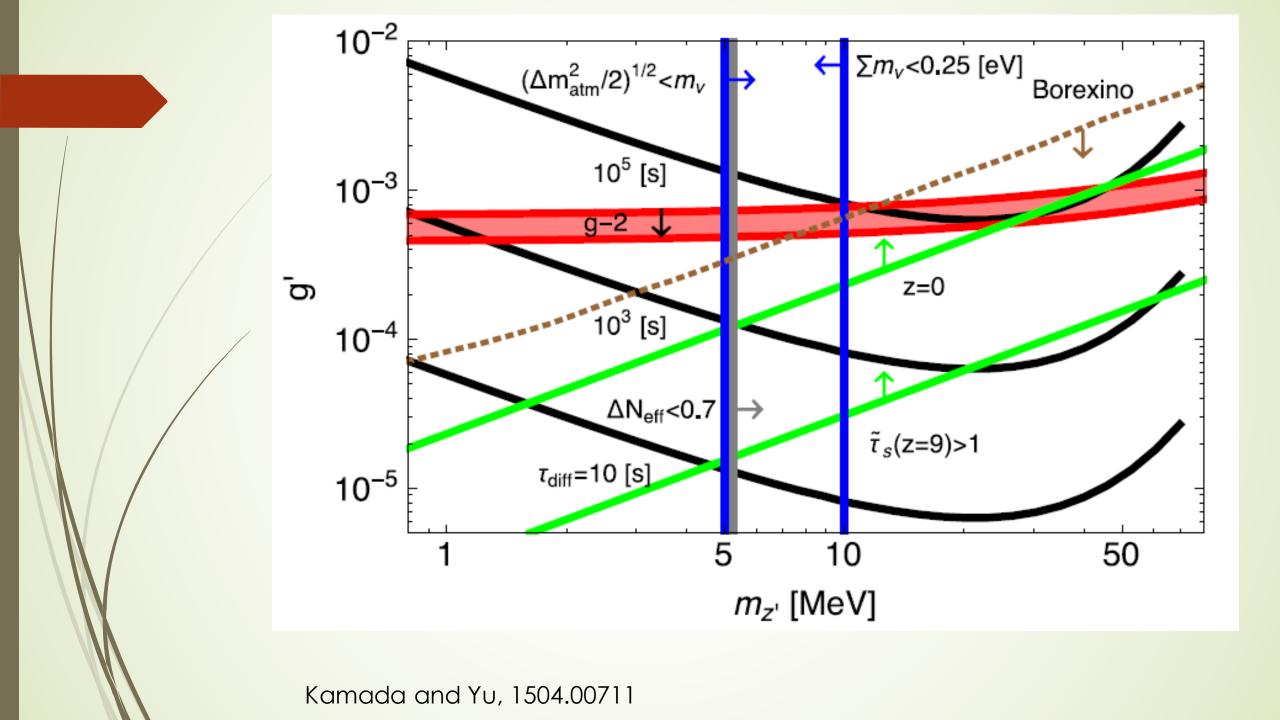
Kamada and Yu, arXiv:1504.00711


$$\mathcal{L}_{\mu} - \mathcal{L}_{ au}$$


$$\nu\nu \to Z' \to \nu\nu$$

Background neutrino at rest

400 TeV to PeV


### Dip or gap in ICECUBE spectrum





|                                                     |          | 90% CL         |                         | $3\sigma$      |                         |
|-----------------------------------------------------|----------|----------------|-------------------------|----------------|-------------------------|
| Param.                                              | best-fit | LMA            | $LMA \oplus LMA-D$      | LMA            | $LMA \oplus LMA-D$      |
| $\varepsilon_{ee}^u - \varepsilon_{\mu\mu}^u$       | +0.298   | [+0.00, +0.51] | $\oplus$ [-1.19, -0.81] | [-0.09, +0.71] | $\oplus$ [-1.40, -0.68] |
| $\varepsilon_{\tau\tau}^u - \varepsilon_{\mu\mu}^u$ | +0.001   | [-0.01, +0.03] | [-0.03, +0.03]          | [-0.03, +0.20] | [-0.19, +0.20]          |
| $\varepsilon^u_{e\mu}$                              | -0.021   | [-0.09, +0.04] | [-0.09, +0.10]          | [-0.16, +0.11] | [-0.16, +0.17]          |
| $\varepsilon^u_{e	au}$                              | +0.021   | [-0.14, +0.14] | [-0.15, +0.14]          | [-0.40, +0.30] | [-0.40, +0.40]          |
| $\varepsilon^u_{\mu	au}$                            | -0.001   | [-0.01, +0.01] | [-0.01, +0.01]          | [-0.03, +0.03] | [-0.03, +0.03]          |
| $\varepsilon_D^u$                                   | -0.140   | [-0.24, -0.01] | $\oplus$ [+0.40, +0.58] | [-0.34, +0.04] | $\oplus$ [+0.34, +0.67] |
| $\varepsilon_N^u$                                   | -0.030   | [-0.14, +0.13] | [-0.15, +0.13]          | [-0.29, +0.21] | [-0.29, +0.21]          |
| $\varepsilon_{ee}^d - \varepsilon_{\mu\mu}^d$       | +0.310   | [+0.02, +0.51] | $\oplus$ [-1.17, -1.03] | [-0.10, +0.71] | $\oplus$ [-1.44, -0.87] |
| $\varepsilon_{	au	au}^d - \varepsilon_{\mu\mu}^d$   | +0.001   | [-0.01, +0.03] | [-0.01, +0.03]          | [-0.03, +0.19] | [-0.16, +0.19]          |
| $\varepsilon_{e\mu}^d$                              | -0.023   | [-0.09, +0.04] | [-0.09, +0.08]          | [-0.16, +0.11] | [-0.16, +0.17]          |
| $\varepsilon_{e	au}^d$                              | +0.023   | [-0.13, +0.14] | [-0.13, +0.14]          | [-0.38, +0.29] | [-0.38, +0.35]          |
| $\varepsilon_{\mu\tau}^d$                           | -0.001   | [-0.01, +0.01] | [-0.01, +0.01]          | [-0.03, +0.03] | [-0.03, +0.03]          |
| $\varepsilon_D^d$                                   | -0.145   | [-0.25, -0.02] | $\oplus$ [+0.49, +0.57] | [-0.34, +0.05] | $\oplus$ [+0.42, +0.70] |
| $arepsilon_N^d$                                     | -0.036   | [-0.14, +0.12] | [-0.14, +0.12]          | [-0.28, +0.21] | [-0.28, +0.21]          |

Maltoni and Gonzalez-Garcia, JHEP 2013



## Yukawa coupling of neutrinos

$$\lambda_1 \bar{N}_1 H^T c L_e + \lambda_2 \bar{N}_2 H^T c L_\mu + \lambda_3 \bar{N}_3 H^T c L_\tau + \lambda_4 \bar{N}_2 H^T c L_\tau + \lambda_5 \bar{N}_3 H^T c L_\mu + \text{H.c.}$$

Basis change:  $\lambda_4 = 0 \text{ or } \lambda_5 = 0$ 

Mix:  $\nu_{\mu}$  and  $\nu_{\tau}$ 

No mixing:  $u_e$  and  $u_\mu$   $u_e$  and  $u_ au$ 

# Majorana masses

If there is no Majorana mass for right-handed neutrinos:

$$m_{N_i} \sim m_{\nu}$$

$$(\Delta N_{eff})$$

2) Smallness of neutrino mass

## Majorana masses

$$M_1 N_1^T c N_1 +$$

$$S_1 (A_2 N_2^T c N_2 + A_3 N_3^T c N_3 + A_{23} N_2^T c N_3) +$$

$$S_2 (B_2 N_1^T c N_2 + B_3 N_1^T c N_3) + \text{H.c.}$$

# Neutrino trident scattering

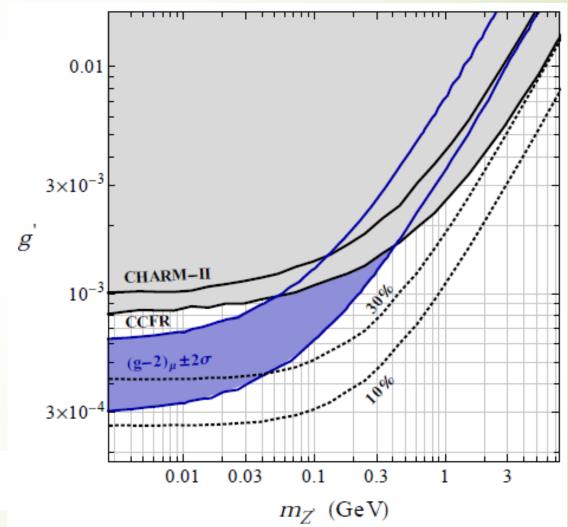
$$\nu + A \to \nu + A + \mu^{+} + \mu^{-}$$

CCFR collaboration:

scattering of  $\sim 160 \text{ GeV}$  neutrino beam off an iron target

PRL66 (1991)

CHARM II collaboration


scattering of  $\sim 20~{\rm GeV}$  neutrino beam off a glass target

PLB 245 (1990)

## Neutrino trident scattering

Altmannshofer et al., PRL113 (2014)

$$\nu + A \rightarrow \nu + A + \mu^+ + \mu^-$$



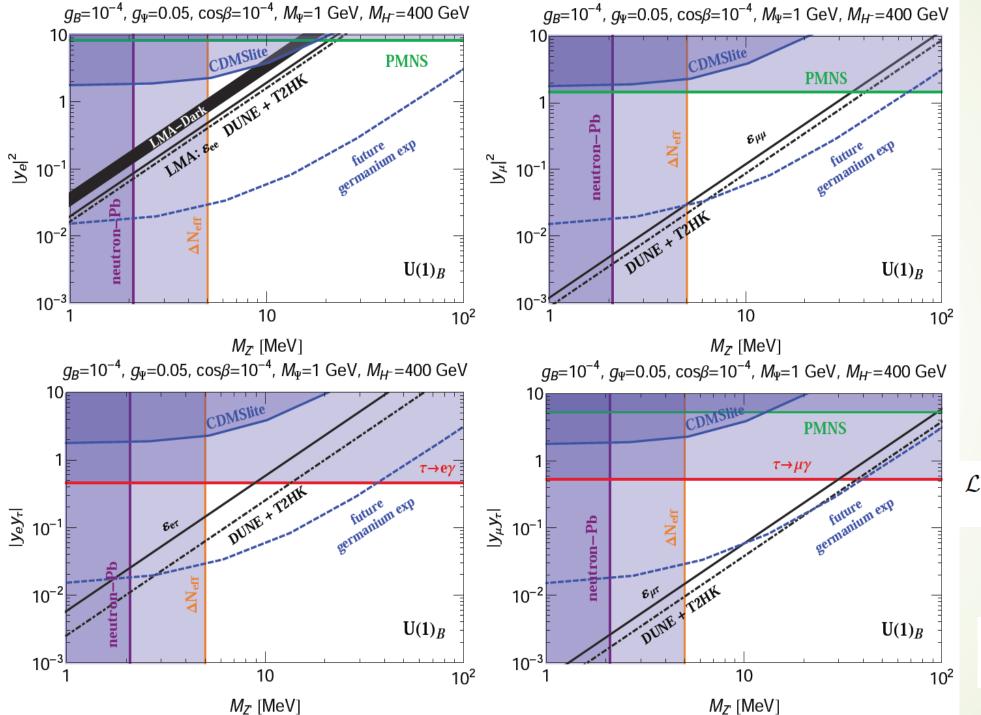
| $(\bar{u}\gamma^{\rho}Pu)(\bar{\nu}_{\mu}\gamma_{\rho}L\nu_{\mu})$ | $ \varepsilon_{\mu\mu}^{uL}  < 0.003$        | $ \varepsilon_{\mu\mu}^{uL}  < 0.001$  |  |
|--------------------------------------------------------------------|----------------------------------------------|----------------------------------------|--|
|                                                                    | $-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$ | $ \varepsilon_{\mu\mu}^{uR}  < 0.002$  |  |
|                                                                    | NuTeV                                        | $s_W^2$ in DIS at nufact               |  |
| $(\bar{d}\gamma^{\rho}Pd)(\bar{\nu}_{\mu}\gamma_{\rho}L\nu_{\mu})$ | $ \varepsilon_{\mu\mu}^{dL}  < 0.003$        | $ \varepsilon_{\mu\mu}^{dL}  < 0.0009$ |  |
|                                                                    | $-0.008 < arepsilon_{\mu\mu}^{dR} < 0.015$   | $ \varepsilon_{\mu\mu}^{dR}  < 0.005$  |  |
|                                                                    | NuTeV                                        | $s_W^2$ in DIS at nufact               |  |

Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003

NuTeV: Muon neutrino energy~75 GeV

| $(\bar{u}\gamma^{\rho}Pu)(\bar{\nu}_e\gamma_{\rho}L\nu_e)$ | $-1 < \varepsilon_{ee}^{uL} < 0.3$   | $ \varepsilon_{ee}^{uL}  < 0.001$  |  |
|------------------------------------------------------------|--------------------------------------|------------------------------------|--|
|                                                            | $-0.4 < \varepsilon_{ee}^{uR} < 0.7$ | $ \varepsilon_{ee}^{uR}  < 0.002$  |  |
|                                                            | CHARM                                | $s_W^2$ in DIS at nufact           |  |
| $(\bar{d}\gamma^{\rho}Pd)(\bar{\nu}_e\gamma_{\rho}L\nu_e)$ | $-0.3 < \varepsilon_{ee}^{dL} < 0.3$ | $ \varepsilon_{ee}^{dL}  < 0.0009$ |  |
|                                                            | $-0.6 < \varepsilon_{ee}^{dR} < 0.5$ | $ \varepsilon_{ee}^{dR}  < 0.005$  |  |
|                                                            | CHARM                                | $s_W^2$ in DIS at nufact           |  |

Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003


 $\nu_e q \rightarrow \nu q$  scattering

#### Standard coherent interaction

$$\frac{d\sigma_{\alpha}}{dE_r} = \frac{G_F^2}{2\pi} Q_{\alpha}^2 F^2(2ME_r) M \left(2 - \frac{ME_r}{E_{\nu}^2}\right)$$

$$Q_{\alpha,\mathrm{SM}}^2 = \left(Zg_p^V + Ng_n^V\right)^2$$

$$g_p^V = \frac{1}{2} - 2\sin^2\theta_W \qquad g_n^V = -\frac{1}{2}$$



$$\mathcal{L} = -\sum_{\alpha} y_{\alpha} \overline{L}_{\alpha} \tilde{H}' P_R \Psi + \text{h.c.},$$

$$\kappa_{\alpha} = \frac{y_{\alpha} \langle H' \rangle}{M_{\Psi}} = \frac{y_{\alpha} v \cos \beta}{\sqrt{2} M_{\Psi}}$$