

Present Status and Physics Prospects of PINGU

Joshua Hignight for the IceCube-Gen2 Collaboration

May 30th, 2018

IceCube

- Instrument 1 Gton of ice
- Optimized for TeV-PeV neutrinos
 - Astrophysical ν discovered!
- DeepCore
 - ► ~10 Mton region with denser instrumentation
 - Pushes thresholds down to ≈ 5 GeV
 - Surrounding detector used as active veto against atmospheric μ

IceCube-DeepCore

IceCube DOM

IceCube Upgrade

 $\begin{array}{c} \text{color} \rightarrow \text{hit time} \\ \text{size} \rightarrow \text{hit charge} \end{array}$

IceCube Upgrade: Hardware

- Seven new strings in DeepCore with inter-string space of ∼22m
- Two planned PMT designs:
 - ▶ multi-PMTs mDOMs
 - Dual optical sensor in an Ellipsoid Glass for Gen2 (D-Egg)
- Both include new calibration devices to help better understand the ice
 - Onboard LEDs with wider range of angles accessible, including vertically
 - New camera for local ice calibration

IceCube Upgrade: Hardware

- multi-PMTs mDOMs
 - ▶ 24 × 3" PMTs housed in a 14" DOM
 - Double the photocathode area of IceCube DOMs
 - Provides extra directional information of photons

D-Egg

- ▶ Two 8" PMTs facing back-to-back
- Ellipsoid glass, optimal shape for glass transparency
- Single ADC with wide dynamic range

IceCube Upgrade: Science Goals

- ν_{τ} appearance analysis
 - PMNS unitarity tests
- Precision measurements of $\sin^2(\theta_{23})$ and Δm_{32}^2
 - Octant/Maximal mixing
 - Complementary to LBL experiments
- Neutrino mass ordering at 1.5-2 σ in 3 years
- Improvement on eV sterile ν searches, NSI, solar WIMP searches, and other BSM searches
- Better neutrino astronomy at high energies
 - Improved angular resolution and veto performance
 - ν_{τ} identification
 - Multi-messenger astronomy

IceCube Upgrade: Oscillation Physics

IceCube probes oscillation physics at baselines and energies inaccessible to LBL or reactor neutrino experiments.

IceCube Upgrade: ν_{τ} Appearance

- < 7% precision on the ν_{τ} normalization after 3 years of data.
- ~ 10% precision needed for real tests of the unitarity of the PMNS mixing matrix.
- Very few experiments can do this measurement!

lceCube Upgrade: ν_{μ} Disappearance

Projected limits on $\sin^2(\theta_{23})$ and Δm_{32}^2 competitive with dedicated LBL experiments.

IceCube Upgrade: Sterile Neutrinos

 Higher precision event reconstructions increase sensitivity considerably.

 Upgrade should produce similar improvements in searches for non-standard neutrino interactions (NSI), WIMPs, and other BSM physics - under current investigation.

IceCube Upgrade Timeline

Project timeline:

- ▶ 2019-Q1: Preliminary Design Review; drill recon season at Pole
- ▶ 2019: Preparation for final design; long lead procurement
- 2020-Q1: Final Design Review
- 2020-2021: Drill generators ship to Pole; refurbish drill structures at Pole
- 2021-2022: Firn drilling
- 2022-2023: Deploy 7 strings

IceCube-Gen2

- IceCube-Gen2 is a versitile facility for future South Pole physics
- Radio Array
- Surface Array
- High Energy Array
 - ► 120 strings × 90 sensors/string
 - ~ 8 km² area with wider string spacing

PINGU

- ► Low energy infill
- ► 17 strings × 125 sensors + Upgrade strings
- 24m inter-string spacing

The IceCube Gen2 Facility

PINGU

PINGU: Science Goals

- Augmenting the low-energy program of the upgrade.
 - ▶ ~ 70k up-going atmospheric neutrinos per year
- Neutrino mass ordering
- ν_{τ} appearance
- $\sin^2(\theta_{23})$ octant sensitivity
- Wide breadth of other science:
 - Dark matter searches
 - Earth tomography
 - ► SN
 - **...**

PINGU: Neutrino Mass Ordering

PINGU: Neutrino Mass Ordering

- PINGU cannot differentiate ν and $\bar{\nu}$: rely on difference in flux and cross-section
 - ► Large statistical samples: \sim 33k ν_{μ} + $\bar{\nu}_{\mu}$ CC per year, \sim 25k ν_{e} + $\bar{\nu}_{e}$ CC per year
- ullet Distinct ordering dependent signatures for tracks (mostly u_{μ} CC) and cascades
 - Intensity is statistical significance of each bin with 1 year data
 - ▶ Particular expected "distortion pattern" helps mitigate impact of systematics

PINGU: Neutrino Mass Ordering

- ullet Sensitivities calculated with 2 different methods (LLR and $\Delta\chi^2$) in agreement
- NMO sensitivity strongly depends on true $\sin^2(\theta_{23})$
- ullet Median sensitivity of $\sim 3\sigma$ with 4 years of data for current best-fit values
 - ▶ Current global best fit close to sensitivity minimum for both orderings!

PINGU: ν_{τ} Appearance

- Expected to reach 5σ exclusion of no ν_{τ} appearance with a month of data
 - ▶ Can even reach 5σ exclusion of no ν_{τ} appearance within a year if ν_{τ} normalization is 0.6.

Can reach Upgrade precision with less than 1 year of data.

PINGU: ν_{μ} Disappearance

• Precision of $\sin^2(\theta_{32})$ and Δm_{32}^2 measurement is as good as LBL experiments

• 4 year octant sensitivity $\gtrsim 3\sigma$ if:

▶ NO: $\sin^2(\theta_{32}) \lesssim 0.38 \text{ or } \gtrsim 0.62$

▶ IO: $\sin^2(\theta_{32}) \lesssim 0.38$ or $\gtrsim 0.58$

Conclusion

- IceCube Upgrade proposal is under review
 - Stepping stone towards full IceCube-Gen2 program
 - ightharpoonup Anticipated world leading sensitivity to ν_{τ} appearance
 - ★ expected precision better than 7% after 3 years
 - Improvement to wide range of measurements expected
 - ★ inparticularly improvements to neutrino astronomy!
- PINGU goes beyond IceCube Upgrade
 - Potential low-energy extension to IceCube-Gen2
 - Rich physics reach

Backup

Methods for estimating sensitivity to the NMH

- Currently two methods used: the χ^2 method and Likelihood Ratio
 - Output of full simulation and reconstruction parametrized and used
 - Analysis done in $E_{\nu} \times \cos(\text{zenith})$ space in 2 PID bins
 - χ^2 method: Relatively fast evaluation by scanning nonlinear parameters and propagating error for linear parameters and minimizing the $\Delta\chi^2$
 - Likelihood Ratio: Full analysis from pseudo data sets. While method is slower it does not pre-suppose any shapes

LLR method

- Greatly improved statistical analysis method since Lol
 - Ability to include many more systematics (from 2 → ~10) by using a minimizer to find optimal LLH fit rather than grid scan
 - Run optimizer twice to search for solutions in both octants of θ_{23} .
- To test for significance of true hierarchy (TH)/rejection of other hierarchy (OH)
 - pull pseudo data from template of TH, with parameters: $\pi^{TH} = (\Delta m^2 _{31}|^{TH}, \theta_{23}|^{TH}, \theta_{13}|^{TH}, all other params at nominal)$
 - + Then following procedure is performed:

LLR method

- Greatly improved statistical analysis method since Lol
 - Ability to include many more systematics (from 2 → ~10) by using a minimizer to find optimal LLH fit rather than grid scan
 - + Run optimizer twice to search for solutions in both octants of θ₂₃.
- To test for significance of true hierarchy (TH)/rejection of other hierarchy (OH)
 - + Next: parameters in OH that fit best to TH are found: $\pi^{OH} = (\Delta m^2_{31}I^{OH}, \theta_{23}I^{OH})$
 - Find LLR distribution at these parameters, π^{OH}, to find probability of mis-identifying OH as TH.
 - p value then converted to significance of rejecting OH.

Systematics for PINGU Studies

	LLR	$\overline{\Delta\chi 2}$	
	LLI	$\Delta \chi z$. 0 2 - 2 2 2 2 2 2
	*	*	$\Delta m_{31}^2 = 2.46 \times 10^{-3} \text{eV}^2, -2.37 \times 10^{-3} \text{eV}^2 [47]$
Oscillation	*	*	$\theta_{23} = 42.3^{\circ}, \ 49.5^{\circ} \ [47]$
	*	*	$\theta_{13} = 8.5^{\circ} \pm 0.2^{\circ} [47]$
		†	$\delta_{\mathrm{CP}} = 0^{\circ}$
	*	*	Event rate = nominal
	*	*	$\nu_{\rm e}/\nu_{\mu}$ flux ratio = nominal $\pm 3\%$ [53]
Flux &	*	*	$\nu/\overline{\nu}$ flux ratio = nominal $\pm 10\%$ [53]
Cross Section	*	*	Atmospheric spectral index = nominal ± 0.05 [53]
		†	Air-shower interactions [53]
		†	Neutrino cross-section (see Sec. Appendix B)
Detector	*	*	Energy scale = $1.0 \pm 10\%$ († $\pm 0.5\%$)
		†	Individual module efficiency = nominal $\pm 10\%$
			Ice properties