Status and Physics Prospects of KM3NeT/ORCA PANE/ICTP 30/05/18

Jürgen Brunner Centre de Physique des Particules de Marseille

ORCA

KM3No

Data sample

- 9 years of data (2007-2016) 2830 days of lifetime
- 7710 events selected, two reconstruction procedures
- track channel only, E_{reco} from muon range
- A binned likelihood fit (Poisson statistics) is performed in two dimensions $(\log_{10}(E_{reco}), \cos\theta_{23}^{reco})$

Systematics

- Unconstrained normalization for neutrinos
- Normalization for atmospheric muons
 - Prior from data
 - exponential extrapolation into signal region
- Unconstrained spectral index
- Flux shape systematics from Barr et al.
 - Implementation from IceCube
 - Kindly provided by Th. Stuttard
- Cross section from Genie
 - Leading effect M_A
- Test MC with variation in detector response
 - 15% absorption length variations
 - 10% PMT efficiencies variations
 - → both effects are well described by normalization•spectral index

- The E/cos θ plot illustrates the oscillation effect
 - The fit is NOT performed on this 1D distribution !

Comparison with earlier Antares result

- Factor three larger data sample
- Many more systematics taken into account
- Still significant improvement
- No-oscillation hypothesis excluded at 4.6 σ (was 2.2 σ in former analysis)

Comparison with World Data

- Result comparable to sensitivity estimate
- Data prefer slightly lower value of Δm_{32}^2

Search for sterile Neutrinos

- Same data sample, similar fit
- 3+1 model with $\Delta m_{41}^2 > 0.5 \text{ eV}^2$
- Modifies oscillation minimum
- Improvements of earlier SuperK and IceCube results

KM3NeT

KM3NeT is a research infrastructure with <u>2 main physics topics</u>:

- The origin of cosmic neutrinos (high energy)
- Measurement of fundamental neutrino properties (low energy)
- Deep Sea Observatory (Oceanography, bioacoustics, bioluminescence, seismology)

Single Collaboration Single Technology Single Management

ARCA- Astroparticle Research with Cosmics in the Abyss ORCA- Oscillation Research with Cosmics in the Abyss

KM3NeT Collaboration

Australia Cities of KM3NeT Amsterdam Delft Leiden Bucharest Vale ssilonik Georgia Athens Catania ^{abat} Oujda South Africa

10

KM3NeT Lol, <u>arXiv:1601.07459</u> [astro-ph.IM] Journal of Physics G: Nuclear and Particle Physics, 43 (8), 084001, 2016

15 Countries >40 Institutes >220 Scientists

From MeV ν to PeV ν

KM3NeT Building Block

KM3NeT Technology

Neutrino Signatures

Effective Mass

After triggering, atmospheric muon rejection and containment cuts:

- Energy threshold determined by DOM spacing
- 8 Mton@10 GeV
- 50% Efficiency at 5 GeV

Energy Resolutions

- Energy resolution better than 30% in relevant range
- Close to Gaussian

16

Shower/Track Identification

Discrimination of track-like and shower-like events via Random Decision Forest

At 10 GeV:

- 90% correct identification of $v_e^{\ CC}$
- 70% correct identification of $v_{\mu}^{\ \ CC}$

Measuring NeutrinoMassHierarchy

- Measure neutrino direction and energy
- Search for oscillation patterns from matter effects
- Requires large statistics and good energy and direction res

Neutrino Mass Hierarchy

Measuring Oscillation Parameters

90% measurement contours for Δm_{32}^2 and $\sin^2\theta_{23}$ 2% in Δm_{32}^2 and 5% in θ_{23}

SuperK (2015) T2K (2015) NOVA (2018) IceCube (2017) MINOS (2014)

SuperNovae

Count coincidence signals on individual Optical Modules Excess of DOMs where 6-10 PMTs fire together 10 MeV anti-nu e from core-collapse SN >80% of all Galactic SN with single building block

Tau Appearance

- About 3000 v_{τ} CC events/year detected Rate constrained within 10% in 1 year
- Weak constraints from other experiments

Tau Appearance

- v_{τ} appearance tests PMNS unitarity and BSM theories 20% deviation of unitarity can be detected with 5σ in 3y

Dark Matter

ORCA 3 years, track+showers Competitive for Spin Dependent coupling

ORCA Status

Construction started First Data arrived in 2017

Main Cable, 2015

Junction Box, Sept 2016

First ORCA string: Sep 2017

Deployment First Line 22/09/2017

https://www.youtube.com/watch?v=omlFkdCkbYk

Early Muon bundle

ORCA1: Data vs MC

Early Neutrino Candidate

Evt: id=3860 run_id=2609 #hits=87 #mc_hits=0 #trks=0 #mc_trks=0

First Neutrino Analysis

82 days of data taking with first ORCA line

Typical Neutrino Candidate

- From the selected sample
- Estimated neutrino energy : 5-15 GeV

Evt: id=11163 run_id=2973 #hits=46 #mc_hits=0 #trks=0 #mc_trks=0

2nd Line ready for deployment

Deployment of 4 lines planned after summer 2018 in a single sea operation

32

P2O: Protvino to ORCA

- Baseline 2588km ; beam inclination : 11.7° ($\cos\theta = 0.2$)
- First oscillation maximum 5.1 GeV
- Matter resonance maximum 3.8 GeV

Protvino accelerator complex (100 km South of Moscow)

U-70 accelerator constructed in 1967 Now operates at 8 - 15 kW for ~ 60 days / yr Upgrade to 450 kW feasible

Possible location of the near beam detector

Comparison of LBL Projects

• Energy versus baseline

Comparison of LBL Projects

• Main Signal : Appearance of $v_e : P(v_\mu \rightarrow v_e)$

Neutrino Flux

Focus π^+ (Neutrino beam)

- Used for current study : IHEP Protvino internal note 2015-5
- Designed for Beam to Gran Sasso (2200km)
- Beam power 450kW → 4•10²⁰ p.o.t. per year
- Fermilab-Nova : 700kW → 6•10²⁰ p.o.t. per year

Oscillation Probabilities $P(v_{\mu} \rightarrow v_{e})$

Event numbers – Neutrino Beam

Event numbers – Neutrino Beam

Modified Multi-Parameter fit

- Combined fit of nuisance and oscillation parameters
- Choice of nuisance parameters and priors inspired by LBNO study

Parameter	True value	Prior	Start value	Parameter	True value	Prior	Start value
θ ₁₂	33.4°	fix	fix	Norm $v_e^{}$ CC	from v_{μ} CC	fix	fix
$\Delta m^2 [eV^2]$	7.53 10 ⁻⁵	fix	fix	Norm v_{μ} CC	1	0.05	1
θ ₁₃	8.42°	0.15°	8.42°	Norm v_{τ} CC	1	0.10	1
θ ₂₃	41.5°	1.3°	41.5°	Norm NC	1	0.05	1
$\Delta M^2 [eV^2]$	2.44 10 ⁻³	0.06	2.44 10 ⁻³	PID	1	0.10	1
δ_{CP}	many	no	many				

Only used for CP fits, not for NMH

NMH determination

- ORCA detector, 1 year neutrino beam
- Better than 5σ for all combination of parameters

Sensitivity to δ_{CP}

- Sensitivity of measuring non-zero CP-violation, i.e. $\delta_{\rm CP}$ different from 0° AND 180°
- After 6 years non CP-violation excluded for 35% of δ_{CP} values at about 3σ

Measurement of δ_{CP}

Conclusion

- KM3NeT / ORCA construction has started
- First atmospheric neutrino signal has been seen
- End 2018 : several detector lines operational
- 2021 : detector completed
- Rich physics program beyond determination of neutrino mass hierarchy
- Interesting options for "Phase 3" \rightarrow CP violation
 - Neutrino Beam from Protvino
 - Denser detector SuperORCA → Jannik Hofestaedt