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INO-ICAL taken as a sample detector, but the principles
and results should be applicable to other current and future
atmospheric neutrino experiments (SK, HK, ORCA,
PINGU, ...)

Shall point out some examples where the effect of hadron
energy / inelasticity measurements can be clearly
demonstrated.

Quantifying information gain from hadron energy
measurements would help in deciding priorities (bigger
detector or closer active detector elements ?)
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Inelasticity in neutrino interactions
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The problem of unknown inelasticity

@ E, cannot be determined given only E,
@ All “clean” probability expressions involve E,
@ Statistical determination = dilutes results




QE, RS and DIS processes (CC interactions)

Cross sections of neutrinos and antineutrinos:
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Events spectrum at ICAL in different channels:

All INO ICAL results with GEANT4-based detector simulations
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Differential cross sections of CC DIS events:

d UCC
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Normalized inelasticity distribution:




Differential cross sections of CC DIS events:

do“c 2 38 .2 E
dy =—[la+b(1—-y)]x107° cm T Gev

Neutrinos: a 2 b, Antineutrinos: a < b

Normalized inelasticity distribution:
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Distribution of inelasticity at ICAL :
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The average inelasticity (CC)

Average inelasticity y as a function of energy:
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@ IceCube will be able to access the high-energy limit, maybe
use it for their energy calibration of starting events, etc.

(Talk by Mauricio Bustamante)
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Hadron hit distribution at ICAL
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Determination of hadron energy
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Hadron direction reconstruction

Hadrons from CC v, and 7, lmin =2
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@ Fraction of hadrons for which direction may be
reconstructed: 50-80% depending on E;, and 6},

@ For E; > 4 GeV, direction may be reconstructed to within
20°-40°.



Comments on hadron energy measurement at ICAL

@ Currently, rather simplistic procedure for hadron energy
calibration, uses only the number of hits

@ Information on the shape of hadron shower not used in
hadron energy calibration (Desirable to employ
machine-learning methods)

@ Hadron energy reconstructed to
~ 30 — 50% for E] > 4 GeV

@ Hadron direction may be reconstructed to
~ 20° — 40° for E}, = 4 GeV (though not for all events),
but not used in further analyses in this talk.
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@ Inelasticity to improve detector performance



Inelasticity for learning about events

Ribordy and Smirnov, PRD 2013

Statistical separation of v and ©

@ For each (small enough) (E,, 6,,) bin, measure the
y-distribution, p(y).

@ Fit for the y-distribution p(y) = (1 — a)p.(¥) + apsz(y),
where « is the fraction of 7 events
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Statistical separation of v and ©

@ For each (small enough) (E,, 6,,) bin, measure the
y-distribution, p(y).

@ Fit for the y-distribution p(y) = (1 — a)p.(¥) + apsz(y),
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Identification of background events

@ v, events, with large y-values, may be tagged




Sensitivity to mass ordering: (E,, cos §) planes, y-bins

\ @ ORCA 1 year
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“3D” framework in ICAL: (E,,cosd,, E})

3D framework: (E,,cos 6, E})
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3D framework: (E,,cos 6, E})
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Correlations between E,, and Ej,

3D binning crucial, not just adding E}, to E,, reconstruct E,




Impact of hadron energy information on MH sensitivity

Without E}, information (2D) With 4 Ef bins (3D)
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Detector performance improvement with Ej

For mass ordering: ~ 30 — 40% improvement in Ay?
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Detector performance improvement with Ej
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For precision measurements
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Sterile neutrino sensitivity
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@ For higher Am?, information is mainly in the number of
events, so information about £}, not so useful

@ For lower Am?, oscillation information in the energy and
angular spectra, so Ej, crucial

S. P. Behera et al, EPJC 2017; T. Thakore et al, 1804.09613



Sterile neutrinos: mass ordering

Sterile mass ordering schemes
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Sterile neutrinos: mass ordering

Sterile mass ordering schemes
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@ Atmospheric neutrino detectors are long-term workhorses,
sensitive to a wide range in L and E. But statistics-limited.

@ Event-by-event hadron energy / direction information in
atmopheric v needs to be extracted and exploited.
(3D analysis crucial)

@ Inelasticity information may improve detector performance
by ~ 30 — 40% depending on the quantity.

@ Apart from charge-ID, another important advantage of
ICAL would be its ability to reconstruct energy and
direction of muti-GeV hadrons.

@ Improved algorithms to determine the hadron information,
and to use it for extracting quantities of interest

@ For future detectors: Detector development / planning
should also give due weightage for extraction of hadron
information (closely spaced active detector elements ?)
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