Inelasticity in atmospheric ν experiments Measurement and importance of hadron energy measurements

Amol Dighe

Department of Theoretical Physics
Tata Institute of Fundamental Research, Mumbai

Advanced Workshop on Physics of Atmospheric Neutrinos ICTP Trieste, May 30th, 2018

 Measurement of hadron energy (inelasticity) event-by-event, and how it can improve detector performance in an atmospheric ν experiment

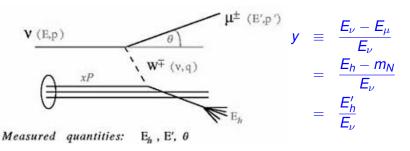
- Measurement of hadron energy (inelasticity) event-by-event, and how it can improve detector performance in an atmospheric ν experiment
- INO-ICAL taken as a sample detector, but the principles and results should be applicable to other current and future atmospheric neutrino experiments (SK, HK, ORCA, PINGU, ...)

- Measurement of hadron energy (inelasticity) event-by-event, and how it can improve detector performance in an atmospheric ν experiment
- INO-ICAL taken as a sample detector, but the principles and results should be applicable to other current and future atmospheric neutrino experiments (SK, HK, ORCA, PINGU, ...)
- Shall point out some examples where the effect of hadron energy / inelasticity measurements can be clearly demonstrated.

- Measurement of hadron energy (inelasticity) event-by-event, and how it can improve detector performance in an atmospheric ν experiment
- INO-ICAL taken as a sample detector, but the principles and results should be applicable to other current and future atmospheric neutrino experiments (SK, HK, ORCA, PINGU, ...)
- Shall point out some examples where the effect of hadron energy / inelasticity measurements can be clearly demonstrated.
- Quantifying information gain from hadron energy measurements would help in deciding priorities (bigger detector or closer active detector elements?)

Inelasticity in atmospheric neutrino experiments

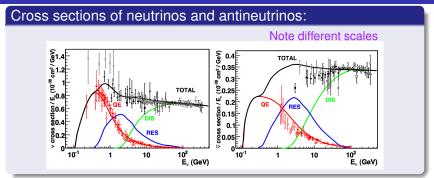
Inelasticity and hadron energy measurements


2 Inelasticity to improve detector performance

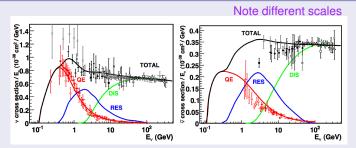
Inelasticity in atmospheric neutrino experiments

Inelasticity and hadron energy measurements

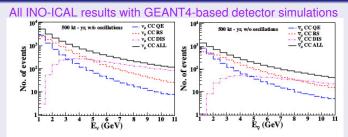
Inelasticity to improve detector performance


Inelasticity in neutrino interactions

The problem of unknown inelasticity


- ullet $E_
 u$ cannot be determined given only E_μ
- All "clean" probability expressions involve E_{ν}
- Statistical determination ⇒ dilutes results

QE, RS and DIS processes (CC interactions)



QE, RS and DIS processes (CC interactions)

Cross sections of neutrinos and antineutrinos:

Events spectrum at ICAL in different channels:

Differential cross sections of CC DIS events:

$$\frac{d\sigma^{CC}}{dy} = -[a + b(1 - y)^{2}] \times 10^{-38} \text{ cm}^{2} \frac{E_{\nu}}{1 \text{ GeV}}$$

Neutrinos: $a \gtrsim b$, Antineutrinos: $a \lesssim b$

Differential cross sections of CC DIS events:

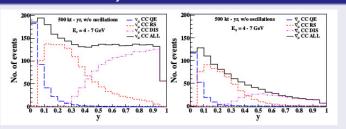
$$\frac{d\sigma^{\rm CC}}{dy} = -[a + b(1 - y)^2] \times 10^{-38} \text{ cm}^2 \frac{E_{\nu}}{1 \text{ GeV}}$$

Neutrinos: $a \gtrsim b$, Antineutrinos: $a \lesssim b$

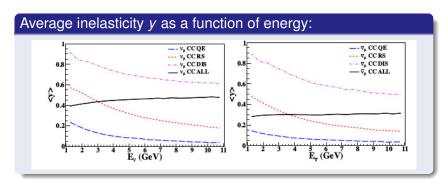
Normalized inelasticity distribution:

$$p \equiv -\frac{1}{\sigma} \frac{d\sigma}{dy} = \frac{a + b(y - 1)^2}{a + b/3}$$

Differential cross sections of CC DIS events:


$$\frac{d\sigma^{\rm CC}}{dy} = -[a + b(1 - y)^2] \times 10^{-38} \text{ cm}^2 \frac{E_{\nu}}{1 \text{ GeV}}$$

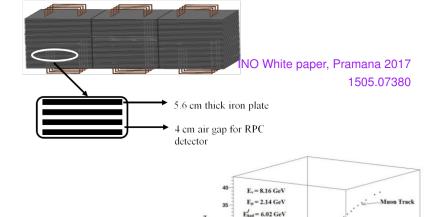
Neutrinos: $a \gtrsim b$, Antineutrinos: $a \lesssim b$


Normalized inelasticity distribution:

$$p \equiv -\frac{1}{\sigma} \frac{d\sigma}{dy} = \frac{a + b(y - 1)^2}{a + b/3}$$

Distribution of inelasticity at ICAL:

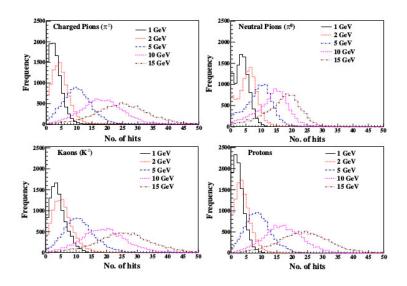
The average inelasticity (CC)



 IceCube will be able to access the high-energy limit, maybe use it for their energy calibration of starting events, etc.

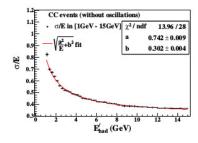
(Talk by Mauricio Bustamante)

Hadron showers at INO-ICAL

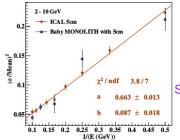

(layer no.) 30 25

Interaction Vertex

Hadron Shower

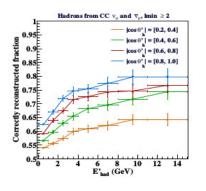

.7 6 5.5 5 4.5 4 3.5 3 2.5

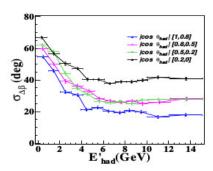
Hadron hit distribution at ICAL


M. M. Devi et al, JInst 2013

Determination of hadron energy

Hadron energy resolution


M. M. Devi et al, JInst 2013



Comparison of simulations with beam tests

S. M. Lakshmi et al, JInst 2014

Hadron direction reconstruction

M. M. Devi et al, JInst 2018

- Fraction of hadrons for which direction may be reconstructed: 50-80% depending on E'_h and θ'_h
- For $E_h' \gtrsim 4$ GeV, direction may be reconstructed to within $20^{\circ}-40^{\circ}$.

Comments on hadron energy measurement at ICAL

- Currently, rather simplistic procedure for hadron energy calibration, uses only the number of hits
- Information on the shape of hadron shower not used in hadron energy calibration (Desirable to employ machine-learning methods)
- Hadron energy reconstructed to $\sim 30-50\%$ for $E_h'\gtrsim 4$ GeV
- Hadron direction may be reconstructed to $\sim 20^\circ 40^\circ$ for $E_h' \gtrsim 4$ GeV (though not for all events), but not used in further analyses in this talk.

Inelasticity in atmospheric neutrino experiments

Inelasticity and hadron energy measurements

Inelasticity to improve detector performance

Inelasticity for learning about events

Ribordy and Smirnov, PRD 2013

Statistical separation of ν and $\bar{\nu}$

- For each (small enough) (E_{μ}, θ_{μ}) bin, measure the *y*-distribution, p(y).
- Fit for the *y*-distribution $p(y) = (1 \alpha)p_{\nu}(y) + \alpha p_{\bar{\nu}}(y)$, where α is the fraction of $\bar{\nu}$ events

Inelasticity for learning about events

Ribordy and Smirnov, PRD 2013

Statistical separation of ν and $\bar{\nu}$

- For each (small enough) (E_{μ}, θ_{μ}) bin, measure the *y*-distribution, p(y).
- Fit for the *y*-distribution $p(y) = (1 \alpha)p_{\nu}(y) + \alpha p_{\bar{\nu}}(y)$, where α is the fraction of $\bar{\nu}$ events

Angle β between muon and incoming neutrino

Kinematical smearing:
$$\langle \beta \rangle \approx 0.75 \sqrt{\frac{y}{1-y}} \frac{1}{\sqrt{E_{\nu}/1~{\rm GeV}}}$$

Inelasticity for learning about events

Ribordy and Smirnov, PRD 2013

Statistical separation of ν and $\bar{\nu}$

- For each (small enough) (E_{μ}, θ_{μ}) bin, measure the *y*-distribution, p(y).
- Fit for the *y*-distribution $p(y) = (1 \alpha)p_{\nu}(y) + \alpha p_{\bar{\nu}}(y)$, where α is the fraction of $\bar{\nu}$ events

Angle β between muon and incoming neutrino

Kinematical smearing:
$$\langle \beta \rangle \approx 0.75 \sqrt{\frac{y}{1-y}} \frac{1}{\sqrt{E_v/1~{\rm GeV}}}$$

Identification of background events

• ν_{τ} events, with large *y*-values, may be tagged

Sensitivity to mass ordering: $(E_{\mu}, \cos \theta)$ planes, *y*-bins

- ORCA 1 year
- $\sigma_E = \sqrt{0.35E}$
- ullet $\sigma_{\psi}=10^{\circ}\sqrt{rac{m_{N}}{E_{\mu}}}$

Using *y*-information would increase the significance of MH identifiation by 20-50%

Ribordy and Smirnov, PRD 2013

"3D" framework in ICAL: $(E_{\mu}, \cos \theta_{\mu}, E'_{h})$

3D framework: $(E_{\mu}, \cos \theta_{\mu}, E'_{h})$

$$\chi^2_- = \min_{\xi_l} \sum_{i=1}^{N_{E'_{\rm had}}} \sum_{j=1}^{N_{E\mu}} \sum_{k=1}^{N_{\rm cos}\theta_{\mu}} \left[2(N_{ijk}^{\rm theory} - N_{ijk}^{\rm data}) - 2N_{ijk}^{\rm data} \, \ln\left(\frac{N_{ijk}^{\rm theory}}{N_{ijk}^{\rm data}}\right) \right] + \sum_{l=1}^5 \xi_l^2 \,, \label{eq:chi_loss}$$

$$N_{ijk}^{\text{theory}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \xi_l \right).$$

2D: A. Ghosh et al, JHEP 2013

3D: M. M. Devi et al, JHEP 2014

Systematic errors on fluxes, cross section, spectral tilt, zenith angle distribution etc. taken care of through the method of pulls.

"3D" framework in ICAL: $(E_{\mu}, \cos \theta_{\mu}, E'_{h})$

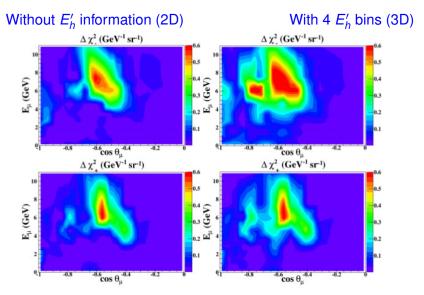
3D framework: $(E_{\mu}, \cos \theta_{\mu}, E'_{h})$

$$\chi^2_- = \min_{\xi_l} \sum_{i=1}^{N_{E'_{\rm had}}} \sum_{j=1}^{N_{E_\mu}} \sum_{k=1}^{N_{\rm cos}\theta_\mu} \left[2(N_{ijk}^{\rm theory} - N_{ijk}^{\rm data}) - 2N_{ijk}^{\rm data} \, \ln\left(\frac{N_{ijk}^{\rm theory}}{N_{ijk}^{\rm data}}\right) \right] + \sum_{l=1}^5 \xi_l^2 \,, \label{eq:chi_loss}$$

$$N_{ijk}^{\mathrm{theory}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \xi_l \right).$$

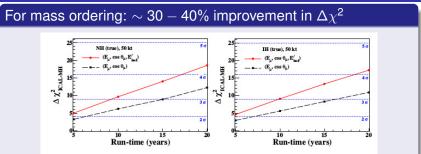
2D: A. Ghosh et al, JHEP 2013

3D: M. M. Devi et al, JHEP 2014

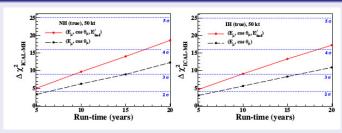

Systematic errors on fluxes, cross section, spectral tilt, zenith angle distribution etc. taken care of through the method of pulls.

Correlations between E_{μ} and E'_{h}

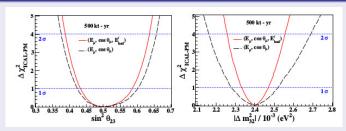
3D binning crucial, not just adding E'_h to E_μ reconstruct E_ν


Impact of hadron energy information on MH sensitivity

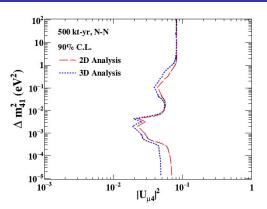
Top panels: μ^- (neutrinos), bottom panels: μ^+ (antineutrinos)


Detector performance improvement with E'_h

M. M. Devi et al, JHEP 2014

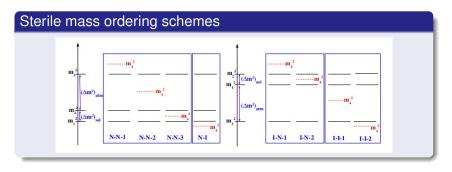

Detector performance improvement with E'_h

For mass ordering: \sim 30 - 40% improvement in $\Delta\chi^2$

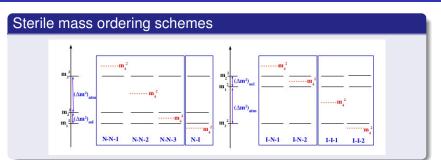


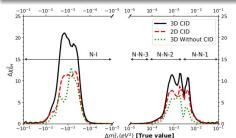
M. M. Devi et al, JHEP 2014

For precision measurements



Sterile neutrino sensitivity




- For higher Δm^2 , information is mainly in the number of events, so information about E'_h not so useful
- For lower Δm², oscillation information in the energy and angular spectra, so E'_h crucial

Sterile neutrinos: mass ordering

Sterile neutrinos: mass ordering

Addition of E_h' information improves sterile MH sensitivity by $\sim 40\%$ for $\Delta m_{41}^2 \sim (0.5-5) \times 10^{-3} \ {\rm eV}^2$

T. Thakore et al, 1804.09613

• Atmospheric neutrino detectors are long-term workhorses, sensitive to a wide range in *L* and *E*. But statistics-limited.

- Atmospheric neutrino detectors are long-term workhorses, sensitive to a wide range in L and E. But statistics-limited.
- Event-by-event hadron energy / direction information in atmopheric ν needs to be extracted and exploited.
 (3D analysis crucial)

- Atmospheric neutrino detectors are long-term workhorses, sensitive to a wide range in L and E. But statistics-limited.
- Event-by-event hadron energy / direction information in atmopheric ν needs to be extracted and exploited.
 (3D analysis crucial)
- Inelasticity information may improve detector performance by $\sim 30-40\%$ depending on the quantity.

- Atmospheric neutrino detectors are long-term workhorses, sensitive to a wide range in L and E. But statistics-limited.
- Event-by-event hadron energy / direction information in atmopheric ν needs to be extracted and exploited.
 (3D analysis crucial)
- Inelasticity information may improve detector performance by $\sim 30-40\%$ depending on the quantity.
- Apart from charge-ID, another important advantage of ICAL would be its ability to reconstruct energy and direction of muti-GeV hadrons.

- Atmospheric neutrino detectors are long-term workhorses, sensitive to a wide range in L and E. But statistics-limited.
- Event-by-event hadron energy / direction information in atmopheric ν needs to be extracted and exploited.
 (3D analysis crucial)
- Inelasticity information may improve detector performance by $\sim 30-40\%$ depending on the quantity.
- Apart from charge-ID, another important advantage of ICAL would be its ability to reconstruct energy and direction of muti-GeV hadrons.
- Improved algorithms to determine the hadron information, and to use it for extracting quantities of interest

- Atmospheric neutrino detectors are long-term workhorses, sensitive to a wide range in L and E. But statistics-limited.
- Event-by-event hadron energy / direction information in atmopheric ν needs to be extracted and exploited.
 (3D analysis crucial)
- Inelasticity information may improve detector performance by $\sim 30-40\%$ depending on the quantity.
- Apart from charge-ID, another important advantage of ICAL would be its ability to reconstruct energy and direction of muti-GeV hadrons.
- Improved algorithms to determine the hadron information, and to use it for extracting quantities of interest
- For future detectors: Detector development / planning should also give due weightage for extraction of hadron information (closely spaced active detector elements?)

