Nucleon Decay Searches in Atmospheric Neutrino Detectors

Volodymyr Takhistov

(University of California, Los Angeles)

PANE-2018, ICTP-Trieste

(5.31.2018)

Baryon number (B) is accidental global symmetry of Standard Model (SM)

 — lightest baryon (proton) stable

Baryon number (B) is accidental global symmetry of Standard Model (SM)

 — lightest baryon (proton) stable

• Already within SM, B is violated by a tiny amount (t'Hooft instantons)

Baryon number (B) is accidental global symmetry of Standard Model (SM)

 — lightest baryon (proton) stable

- Already within SM, B is violated by a tiny amount (t'Hooft instantons)
- SM incomplete, expect s from BSM physics
 - requirement for baryogensis (Sakharov conditions)
 - occurs in well motivated theories (GUTs, SUSY, extra-dimensions)
 - global symmetries violated by quantum gravity

Baryon number (B) is accidental global symmetry of Standard Model (SM)

 — lightest baryon (proton) stable

- Already within SM, B is violated by a tiny amount (t'Hooft instantons)
- SM incomplete, expect S from BSM physics
 - requirement for baryogensis (Sakharov conditions)
 - occurs in well motivated theories (GUTs, SUSY, extra-dimensions)
 - global symmetries violated by quantum gravity

Proton decay: GUTs

- Grand Unified Theories (GUTs) unify SM gauge groups
 - -- explain charge quantization, unification of couplings, anomaly cancellation
 - -- leptons <--> quarks interact via new gauge bosons --> mediate proton decay

Proton decay: GUTs

• Grand Unified Theories (GUTs) unify SM gauge groups

-- explain charge quantization, unification of couplings, anomaly cancellation

-- leptons <--> quarks interact via new gauge bosons --> mediate proton decay

• Dominant channel typically [$p
ightarrow e^+ \pi^0$]

SU(5)

$$\tau = \frac{1}{\Gamma} \approx \left[\frac{M_X^2}{\alpha^2}\right]^2 m_p^5$$

Proton decay: GUTs

• Grand Unified Theories (GUTs) unify SM gauge groups

-- explain charge quantization, unification of couplings, anomaly cancellation

-- leptons <--> quarks interact via new gauge bosons --> mediate proton decay

• Dominant channel typically [$p
ightarrow e^+ \pi^0$]

$$\tau = \frac{1}{\Gamma} \approx \left[\frac{M_X^2}{\alpha^2}\right]^2 m_p^5$$

- Predicted lifetime $\tau \sim 10^{29-36} {
 m yrs}$
- Minimal model ruled out (IMB-3, Kamiokande, Super-K)

V. Takhistov PANE-2018

Proton decay: SUSY GUTs

- Add supersymmetry (SUSY)
 - -- gauge coupling unification becomes precise (at higher energies)
 - -- super-partners can now also mediate proton decay

Proton decay: SUSY GUTs

Add supersymmetry (SUSY)

-- gauge coupling unification becomes precise (at higher energies)

-- super-partners can now also mediate proton decay

• Dominant channel typically $p
ightarrow \overline{
u} K^+$

 $\frac{\text{SUSY}}{SU(5)}$

$$\tau = \frac{1}{\Gamma} \approx \left[\frac{M_{\tilde{s}}M_T}{\alpha^2}\right]^2 m_p^5$$

Proton decay: SUSY GUTs

Add supersymmetry (SUSY)

-- gauge coupling unification becomes precise (at higher energies)

-- super-partners can now also mediate proton decay

• Dominant channel typically $p
ightarrow \overline{
u} K^+$

 $\frac{\text{SUSY}}{SU(5)}$

 $\frac{\text{lifetime}}{\tau = \frac{1}{\Gamma} \approx \left[\frac{M_{\tilde{s}}M_T}{\alpha^2}\right]^2 m_p^5$

- Predicted lifetime $\, au \sim 10^{29-36} {
 m \ yrs}$
- Minimal (TeV-)SUSY model ruled out (Super-K) [Kobayashi+ (SK), 2005]

Proton decay: models

Model	Ref.	Modes	τ_N (years)
Minimal $SU(5)$	Georgi, Glashow [2]	$p \rightarrow e^+ \pi^0$	$10^{30}-10^{31}$
Minimal SUSY $SU(5)$	Dimopoulos, Georgi [11], Sakai [12]	$p \rightarrow \bar{\nu}K^+$	
	Lifetime Calculations: Hisano,	$n \rightarrow \bar{\nu} K^0$	$10^{28} - 10^{32}$
	Murayama, Yanagida [13]		
SUGRA $SU(5)$	Nath, Arnowitt [14, 15]	$p \rightarrow \bar{\nu}K^+$	$10^{32} - 10^{34}$
SUSY $SO(10)$	Shafi, Tavartkiladze [16]	$p \rightarrow \bar{\nu}K^+$	
with anomalous		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{35}$
flavor $U(1)$		$p \rightarrow \mu^+ K^0$	
SUSY $SO(10)$	Lucas, Raby [17], Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
MSSM (std. $d = 5$)		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{33}$
SUSY $SO(10)$	Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
ESSM (std. $d = 5$)			$\lesssim 10^{35}$
SUSY $SO(10)/G(224)$	Babu, Pati, Wilczek 19, 20, 21],	$p \rightarrow \bar{\nu}K^+$	$\lesssim 2 \cdot 10^{34}$
MSSM or ESSM	Pati [18]	$p \rightarrow \mu^+ K^0$	
$(new \ d = 5)$	0`	Br	$\sim (1 - 50)\%$
SUSY $SU(5)$ or $SO(10)$	Pati [18]	$p \rightarrow e^+ \pi^0$	$\sim 10^{34.9\pm1}$
MSSM $(d = 6)$			
Flipped $SU(5)$ in CMSSM	Ellis Danopoulos and Wlaker[22]	$p \rightarrow e/\mu^+ \pi^0$	$10^{35}-10^{36}$
Split SU(5) SUSY	Arkani-Hamed, et. al. [23]	$p \rightarrow e^+ \pi^0$	$10^{35}-10^{37}$
SU(5) in 5 dimensions	Hebecker, March-Russell[24]	$p \rightarrow \mu^+ K^0$	$10^{34} - 10^{35}$
		$p \rightarrow e^+ \pi^0$	
SU(5) in 5 dimensions	Alciati et.al.[25]	$p \rightarrow \bar{\nu}K^+$	$10^{36} - 10^{39}$
option II			
GUT-like models from	Klebanov, Witten[26]	$p \rightarrow e^+ \pi^0$	$\sim 10^{36}$
Type IIA string with D6-branes			

TABLE I: Summary of the expected nucleon lifetime in different theoretical models.

A. Bueno et al. hep-ph/0701101

V. Takhistov PANE-2018

Proton decay: general

Proton decay: general

- Many related processes ($n \overline{n}$, di-/tri-nucleon decays, exotic n-decays)
- Specific predictions for main channel and lifetimes strongly model-dependent

Proton decay: searches

• Proton lives $> 10^{30}$ years how to test if decays?

A) look at 1 proton for VERY long time

B) look at many protons simultaneously for few years

Proton decay: searches

• Proton lives $> 10^{30}$ years how to test if decays?

A) look at 1 proton for VERY long time

B) look at many protons simultaneously for few years

Proton decay: searches

• Proton lives $> 10^{30}$ years how to test if decays?

A) look at 1 proton for VERY long time

B) look at many protons simultaneously for few years

large underground water Cherenkov experiments

cheap, proven technology

State of the Art

Super-Kamiokande

State of the Art

Kamioka Nucleon Decay Experiment

The Super-Kamiokande Experiment

- <u>Experimental setup</u> (Kamioka, Japan)
 - -- 22.5 kton fiducial volume
 - -- inner (11k PMTs, 40% coverage) & outer (2k PMTs) detectors

-- 4 run periods: SK-I (1996 - 2001)

- **SK-II** (2003 2005): accident, $\frac{1}{2}$ PMT coverage
- **SK-III** (2006 2008): restore PMT coverage
- **SK-IV** (2008 now): upgraded electronics

The Super-Kamiokande Experiment

- Experimental setup (Kamioka, Japan)
 - -- 22.5 kton fiducial volume
 - -- inner (11k PMTs, 40% coverage) & outer (2k PMTs) detectors

-- 4 run periods: SK-I (1996 - 2001) SK-II (2003 - 2005): accident, ½ PMT coverage SK-III (2006 - 2008): restore PMT coverage SK-IV (2008 - now): upgraded electronics

• **<u>AMAZING</u>** multipurpose physics detector ($\sim 10 - 10^4$ MeV)

-- v-oscillations, Lorentz invariance, sterile-v

- -- nucleon decay
- -- solar-v, day/night effect, supernovae relic v's
- -- indirect dark matter detection
- -- exotics (monopoles, Q-balls, etc.)

Super-Kamiokande (SK)

Technique: Cherenkov ring imaging

Cherenkov radiation

charged particle travels in medium (ref. index n) faster than light, builds up wave-front

Technique: Cherenkov ring imaging

Cherenkov radiation

charged particle travels in medium (ref. index n) faster than light, builds up wave-front

Technique: Cherenkov ring imaging

SK event display

(recorded on 1998.04.04 08:35:22)

- -- energy 603 MeV
- -- time width 162 ns

(recorded on 1998.04.04 21:26:08)

-- energy 492 MeV -- time width 130 ns

Detecting nucleon decay

(1) Signal – proton decay

"Golden channel":
$$p \rightarrow \pi^0 e^+$$
 $p_{\pi} = p_e = 459 \text{ MeV}$
 $\pi^0 \rightarrow 2\gamma$ $p_{Y/\pi R} = 68 \text{ MeV}$

Detecting nucleon decay

(2) Background – atmospheric neutrinos

V. Takhistov PANE-2018

Detecting nucleon decay

(3) Setting Limit

• Motivation: "golden" dominant GUT channel

- [Abe+ (SK), 2016]
- Signature: $e^+, \pi^0 (\rightarrow 2\gamma)$ visible --> fully reconstruct parent proton
- Analysis:

• Motivation: "golden" dominant GUT channel

[Abe+ (SK), 2016]

- Signature: $e^+, \pi^0 (\rightarrow 2\gamma)$ visible --> fully reconstruct parent proton
- Analysis:

exposure: 306 kt-yrs

· · · ·	•
SK I-IV	R1+R2
Efficiency	~ 40 %
BKG	0.62
Data	0

• Motivation: "golden" dominant GUT channel

- [Abe+ (SK), 2016]
- Signature: $e^+, \pi^0(\rightarrow 2\gamma)$ visible --> fully reconstruct parent proton
- Analysis:

exposure: 306 kt-yrs

SK I-IV	R1+R2
Efficiency	~ 40 %
BKG	0.62
Data	0

• Motivation: "golden" dominant GUT channel

[Abe+ (SK), 2016]

- Signature: $e^+, \pi^0 (\rightarrow 2\gamma)$ visible --> fully reconstruct parent proton
- Analysis:

Search: $\mathbf{p} \rightarrow \mu^+ \pi^0$

Motivation: dominates in some models (flipped SU(5))

[Abe+ (SK), 2016]

- Signature: $\mu^+ (\rightarrow e^+ 2\nu), \pi^0 (\rightarrow 2\gamma)$ visible --> fully reconstruct proton
- Analysis:

Search: $\mathbf{p} \rightarrow \mu^+ \pi^0$

- Motivation: dominates in some models (flipped SU(5))
- Signature: $\mu^+ (\rightarrow e^+ 2\nu), \pi^0 (\rightarrow 2\gamma)$ visible ---> fully reconstruct proton
- Analysis:

• Results:

exposure: 306 kt-yrs

SK 1-1V	KI+KZ
Efficiency	~ 35 %
BKG	0.88
Data	2

[Abe+ (SK), 2016]

Search: $\mathbf{p} \to \mu^+ \pi^0$

- Motivation: dominates in some models (flipped SU(5))
- Signature: $\mu^+(\rightarrow e^+ 2\nu), \pi^0(\rightarrow 2\gamma)$ visible ---> fully reconstruct proton
- Analysis:

• Results: 2 candidates, consistent with background

exposure:306 kt-yrsSK I-IVR1+R2Efficiency~ 35 %BKG0.88Data2

[Abe+ (SK), 2016]

• Motivation: "silver" dominant SUSY-GUT channel

[Abe+ (SK), 2014]

- Signature: $\nu, K^+(\rightarrow \mu^+ \nu, \pi^0 \pi^+)$ both invisible --> reconstruct Kaon decays
- Analysis:

Motivation: "silver" dominant SUSY-GUT channel

[Abe+ (SK), 2014]

- Signature: $\nu, K^+(
 ightarrow \mu^+
 u, \pi^0 \pi^+)$ both invisible --> reconstruct Kaon decays
- Analysis:

Search (A) $(K^+ \to \mu^+ \nu)$ spectral fit to μ^+ momentum Search (B) $(K^+ \to \mu^+ \nu)$ tag γ from nuclear de-excitation Search (C) $(K^+ \to \pi^0 \pi^+)$ reconstruct pions

SK I-IV

V. Takhistov PANE-2018

• Motivation: "silver" dominant SUSY-GUT channel

[Abe+ (SK), 2014]

- Signature: $u, K^+(
 ightarrow \mu^+
 u, \pi^0 \pi^+)$ both invisible --> reconstruct Kaon decays
- Analysis:

		'	'	
	SK I-IV	Α	В	С
SK I-IV	Efficiency	~ 34%	~ 8%	~ 8%
	BKG	579.4	0.39	0.56
	Data	566	0	0

exposure: 260 kt-yrs

• Motivation: "silver" dominant SUSY-GUT channel

[Abe+ (SK), 2014]

- Signature: $\nu, K^+(\rightarrow \mu^+ \nu, \pi^0 \pi^+)$ both invisible ---> reconstruct Kaon decays
- Analysis:

		· · · · ·	•	
	SK I-IV	Α	В	С
	Efficiency	~ 34%	~ 8%	~ 8%
SK 1-1V	BKG	579.4	0.39	0.56
	Data	566	0	0

exposure: 260 kt-yrs

• Results: NO excess
$$\tau_p > 6.6 \times 10^{33} \text{ yrs.}$$

Search: $n - \overline{n}$ oscillation

- Motivation: $\Delta B = 2$, parametrizes $U(1)_{B-L}$ (as Majorana v's), test intermediate scales
- Signature: \overline{n} captured by nucleon (n or p) produces pions ---> reconstruct initial state
- Analysis:

[Abe+ (SK), 2015]

Search: $n - \overline{n}$ oscillation

- Motivation: $\Delta B = 2$, parametrizes $U(1)_{B-L}$ (as Majorana v's), test intermediate scales
- Signature: \overline{n} captured by nucleon (n or p) produces pions ----> reconstruct initial state

Search: $n - \overline{n}$ oscillation

- Motivation: $\Delta B = 2$, parametrizes $U(1)_{B-L}$ (as Majorana v's), test intermediate scales
- Signature: \overline{n} captured by nucleon (n or p) produces pions ---> reconstruct initial state

(improved machine learning-based analysis on SK I-IV yields similar results)

Search: spectral 1-ring modes

- Motivation: broad search, Pati-Salam & extended Higgs models
- Signature: visible $e^+/\mu^+/\gamma$ --> spectral fit to ring momenta [Takh

[Takhistov+ (SK), *PRL* 2014] [Takhistov+ (SK), *PRL* 2015]

• Analysis:

Search: spectral 1-ring modes

- Motivation: broad search, Pati-Salam & extended Higgs models
- Signature: visible $e^+/\mu^+/\gamma$ --> spectral fit to ring momenta
- [Takhistov+ (SK), *PRL* 2014] [Takhistov+ (SK), *PRL* 2015]

• Analysis:

Search: spectral 1-ring modes

- Motivation: broad search, Pati-Salam & extended Higgs models
- Signature: visible $e^+/\mu^+/\gamma$ --> spectral fit to ring momenta
- [Takhistov+ (SK), *PRL* 2014] [Takhistov+ (SK), *PRL* 2015]

• Analysis:

Search: 2-body final states w/o hadrons

- Motivation: broad search, extended Higgs, $H \overline{H}$, probe low energy
- Signature: 2 visible leptons/gammas --> fully reconstruct initial state
- Analysis:

Results:

from S. Sussman (PRELIMINARY)

Search: 2-body final states w/o hadrons

- Motivation: broad search, extended Higgs, $H \overline{H}$, probe low energy
- Signature: 2 visible leptons/gammas --> fully reconstruct initial state
- Analysis:

• Results:

from S. Sussman (PRELIMINARY)

Search: 2-body final states w/o hadrons

- Motivation: broad search, extended Higgs, $H \overline{H}$, probe low energy
- Signature: 2 visible leptons/gammas --> fully reconstruct initial state
- Analysis:

from S. Sussman (PRELIMINARY)

SK searches improve >1 order over past results for most channels, some entirely novel

--> constrain models

- SK searches improve >1 order over past results for most channels, some entirely novel
 - --> constrain models

- SK searches improve >1 order over past results for most channels, some entirely novel
 - --> constrain models

Probing lifetime $\tau \gtrsim 10^{32} \text{ yrs}$ across channels !

Future Prospects

Near term (~2019): SK-Gd

Super-K Gadolinium upgrade

--> efficient neutron tagging (~80%) will help reduce background

--> allows to claim discovery if candidates observed

Medium term (~2020+): JUNO

Large liquid scintillator detector

- 20 kt FV liquid scintillator (China)
- Clean timing signature --> specialize in charged Kaon (+ invisible mode)

Long term (~2025): Hyper-Kamiokande

Next generation water Cherenkov detector

- Well established technology,
 builds on success of Super-K
- 650m underground in Kamioka
- 10x Super-K FV
- Photo-sensors with

2x single-photon sensitivity

V. Takhistov

PANE-2018

Long term (~2025): Hyper-Kamiokande

• Shear Hyper-K size allows up to an order gain in lifetime sensitivity across the board, can finally probe $au \sim 10^{35}~{
m yrs}$

$\begin{array}{ll} p \to e^+ \pi^0 & 6.3 \ (8.0) \times 10^{34} \\ p \to \overline{\nu} K^+ & 2.0 \ (2.5) \times 10^{34} \\ \hline p \to \mu^+ \pi^0 & 6.9 \ (8.7) \times 10^{34} \\ p \to e^+ \eta^0 & 3.0 \ (3.9) \times 10^{34} \\ p \to \mu^+ \eta^0 & 3.4 \ (4.7) \times 10^{34} \\ p \to e^+ \rho^0 & 3.4 \ (5.0) \times 10^{33} \\ p \to \mu^+ \rho^0 & 1.3 \ (1.6) \ \times 10^{33} \\ p \to e^+ \omega & 5.4 \ (6.9) \times 10^{33} \\ p \to \mu^+ \omega & 0.78 \ (1.0) \times 10^{34} \end{array}$	Mode	$\tau_{disc} \ 3\sigma$ [years]
$p \rightarrow \overline{\nu}K^+$ $2.0 (2.5) \times 10^{34}$ $p \rightarrow \mu^+ \pi^0$ $6.9 (8.7) \times 10^{34}$ $p \rightarrow e^+ \eta^0$ $3.0 (3.9) \times 10^{34}$ $p \rightarrow \mu^+ \eta^0$ $3.4 (4.7) \times 10^{34}$ $p \rightarrow e^+ \rho^0$ $3.4 (5.0) \times 10^{33}$ $p \rightarrow \mu^+ \rho^0$ $1.3 (1.6) \times 10^{33}$ $p \rightarrow e^+ \omega$ $5.4 (6.9) \times 10^{33}$ $p \rightarrow \mu^+ \omega$ $0.78 (1.0) \times 10^{34}$	$p \to e^+ \pi^0$	$6.3 (8.0) \times 10^{34}$
$\begin{array}{ll} p \to \mu^+ \pi^0 & 6.9 \ (8.7) \times 10^{34} \\ p \to e^+ \eta^0 & 3.0 \ (3.9) \times 10^{34} \\ p \to \mu^+ \eta^0 & 3.4 \ (4.7) \times 10^{34} \\ p \to e^+ \rho^0 & 3.4 \ (5.0) \times 10^{33} \\ p \to \mu^+ \rho^0 & 1.3 \ (1.6) \ \times 10^{33} \\ p \to e^+ \omega & 5.4 \ (6.9) \times 10^{33} \\ p \to \mu^+ \omega & 0.78 \ (1.0) \times 10^{34} \end{array}$	$p \to \overline{\nu} K^+$	$2.0~(2.5) \times 10^{34}$
$\begin{array}{ll} p \to e^+ \eta^0 & 3.0 \ (3.9) \times 10^{34} \\ p \to \mu^+ \eta^0 & 3.4 \ (4.7) \times 10^{34} \\ p \to e^+ \rho^0 & 3.4 \ (5.0) \times 10^{33} \\ p \to \mu^+ \rho^0 & 1.3 \ (1.6) \ \times 10^{33} \\ p \to e^+ \omega & 5.4 \ (6.9) \times 10^{33} \\ p \to \mu^+ \omega & 0.78 \ (1.0) \times 10^{34} \end{array}$	$p ightarrow \mu^+ \pi^0$	$6.9~(8.7) \times 10^{34}$
$p \rightarrow \mu^+ \eta^0$ $3.4 (4.7) \times 10^{34}$ $p \rightarrow e^+ \rho^0$ $3.4 (5.0) \times 10^{33}$ $p \rightarrow \mu^+ \rho^0$ $1.3 (1.6) \times 10^{33}$ $p \rightarrow e^+ \omega$ $5.4 (6.9) \times 10^{33}$ $p \rightarrow \mu^+ \omega$ $0.78 (1.0) \times 10^{34}$	$p ightarrow e^+ \eta^0$	$3.0~(3.9) \times 10^{34}$
$p \to e^+ \rho^0$ $3.4 (5.0) \times 10^{33}$ $p \to \mu^+ \rho^0$ $1.3 (1.6) \times 10^{33}$ $p \to e^+ \omega$ $5.4 (6.9) \times 10^{33}$ $p \to \mu^+ \omega$ $0.78 (1.0) \times 10^{34}$	$p \to \mu^+ \eta^0$	$3.4~(4.7) \times 10^{34}$
$p \to \mu^+ \rho^0$ $1.3 (1.6) \times 10^{33}$ $p \to e^+ \omega$ $5.4 (6.9) \times 10^{33}$ $p \to \mu^+ \omega$ $0.78 (1.0) \times 10^{34}$	$p \rightarrow e^+ \rho^0$	$3.4~(5.0) \times 10^{33}$
$p \to e^+ \omega$ $5.4 \ (6.9) \times 10^{33}$ $p \to \mu^+ \omega$ $0.78 \ (1.0) \times 10^{34}$	$p ightarrow \mu^+ ho^0$	$1.3~(1.6)~\times 10^{33}$
$p \to \mu^+ \omega$ 0.78 (1.0)×10 ³⁴	$p \rightarrow e^+ \omega$	$5.4~(6.9) \times 10^{33}$
	$p \to \mu^+ \omega$	$0.78~(1.0) \times 10^{34}$

Mode	$\tau_{disc} \ 3\sigma$ [years]
$n \to e^+ \pi^-$	$1.3~(1.6) \times 10^{34}$
$n \to \mu^+ \pi^-$	$1.1 (1.5) \times 10^{34}$
$n \rightarrow e^+ \rho^-$	$1.1 (1.5) \times 10^{33}$
$n ightarrow \mu^+ ho^-$	$6.2 (8.1) \times 10^{32}$

from HK design report

Deep Underground Neutrino Experiment (DUNE)

--> flagship experiment for US neutrino program

- 1 km underground in Sanford Lab (Homestake, South Dakota)
- 40 kton FV liquid Argon detector

LArTPC technique

Final state Kaon visible in LArTPC (below threshold in w. Cherenkov)
 --> well suited to probe SUSY modes

 $p \to K^+ \overline{\nu}$

Multi-prong events without neutrinos clearly visible

--> potential for strong background descrimination

$n - \overline{n}$ oscillations

Where do we stand?

from E. Kearns

• Probing baryon number violation remains a key experimental priority

- Probing baryon number violation remains a key experimental priority
- Nucleon decay and related processes offer unique window into energies not accessible to accelerators as well as plethora of BSM physics

- Probing baryon number violation remains a key experimental priority
- Nucleon decay and related processes offer unique window into energies not accessible to accelerators as well as plethora of BSM physics
- Uncertainty in theory predictions requires a broad search program, well suited for large underground experiments, with the field led by Super-K

--> many modes left to search (e.g. $n \rightarrow \nu \nu \nu, p \rightarrow e^+ e^- e^+$)

- Probing baryon number violation remains a key experimental priority
- Nucleon decay and related processes offer unique window into energies not accessible to accelerators as well as plethora of BSM physics
- Uncertainty in theory predictions requires a broad search program, well suited for large underground experiments, with the field led by Super-K --> many modes left to search (e.g. $n \rightarrow \nu\nu\nu$, $p \rightarrow e^+e^-e^+$)
- Approaching interesting limit range of $\tau \sim 10^{35} {
 m yrs.}$

→ great complimentary physics program to neutrinos (Hyper-K/DUNE)