Indirect searches of Galactic diffuse dark matter @ MagICAL^a

Amina Khatun¹, Ranjan Laha, Sanjib K. Agarwalla

¹ Presenter, amina@iopb.res.in

^aThe "MagICAL" name is used here as the abbreviation of Magnetized Iron CALorimeter which is commonly known as ICAL detector at the India-based Neutrino Observatory (INO). We prefer the name MagICAL to emphasize that magnetic field is present in the ICAL detector, which enable us to separate neutrino and anti-neutrino events.

Dark Matter

- \bullet Unknown non-baryonic matter, called Dark Matter (DM), contribute \sim 26% of the total energy density of the Universe
- The astrophysical and cosmological observations confirm the existence of dark matter from the length scales of a few kpc to a few Gpc.

Dark Matter Density in the Universe

✓ Due to large uncertainty in DM density, we produce all the results with two DM profiles

NFW (1, 3, 1, 0) 0.471 16.1 Burkert (2, 3, 1, 1) 0.487 9.26		$(\alpha, \beta, \gamma, \delta)$	$ ho_{sc}$ [GeV cm $^{-3}$]	r_s [kpc]
Burkert (2, 3, 1, 1) 0.487 9.26	NFW	(1, 3, 1, 0)	0.471	16.1
	Burkert	(2, 3, 1, 1)	0.487	9.26

These values are taken from M. G. Aartsen et al.(IceCube) Eur.Phys.J.C75, 492 (2015)

Dark Matter induced $\nu/\bar{\nu}$ Flux

ullet Flavor ratio of u/ar
u at the source and also at the surface of the Earth is 1:1:1.

Here, m_χ : mass, $\langle \sigma_A v \rangle$: self-annihilation cross-section, and τ : decay life time of dark matter.

✓ We use $\mathcal{J}_{\Delta\Omega}^{dec}$ ($\psi=180^\circ$) in our analysis which is 2.04 (1.85) for the NFW (Burkert) profile. ✓ We take $\mathcal{J}_{\Delta\Omega}^{ann}(\psi=180^\circ)$ = 3.33 (1.6) for the NFW (Burkert) profile.

The MagICAL detector at INO

- The proposed MagICAL detector consists of 50 kt iron as target and glass Resistive Plate Chambers as active detector elements.
- Iron plates will be magnetized with an uniform magnetic field of strength around 1.5 Tesla.
- \bullet In the detector, μ^- and μ^+ will be separated.

Energy resolution (σ_E) (GeV) $0.1 \times (E/\text{GeV})$ Angular resolution $(\Delta \theta)$ 10° Detection efficiency (\mathcal{E}) 80%CID efficiency (\mathcal{C}) 90%

Table 2: The detector characteristics for μ^- and μ^+ events as used in the analysis.

√These representative choices of detector response produce similar results for oscillation studies as obtained by the INO simulation code.

Event Distributions in MagICAL

$$\frac{\mathrm{d}^2 N^{ATM}(\mu^-)}{\mathrm{d}\cos\theta\,\mathrm{dE}} = N_{\mathrm{t}} \mathcal{T} \sigma_{\nu_{\mu}}^{CC}(E) \left\{ \frac{d^2 \Phi_{\nu_{\mu}}}{d\cos\theta\,dE} P_{\mu\mu} + \frac{d^2 \Phi_{\nu_{e}}}{d\cos\theta\,dE} P_{e\mu} \right\}. \tag{2}$$

$$\frac{\mathrm{d}^2 N^{DM}(\mu^-)}{\mathrm{d}\cos\theta\,\mathrm{dE}} = N_{\mathrm{t}} \mathcal{T} \sigma_{\nu_{\mu}}^{CC}(E) \frac{d^2 \Phi^{dm}}{d\cos\theta\,dE} \left\{ P_{e\mu} + P_{\mu\mu} + P_{\tau\mu} \right\}. \tag{3}$$

Here, $P_{\alpha\beta}$ is oscillation probability of $\nu_{\alpha} \to \nu_{\beta}$, \mathcal{T} is time of exposure, and $N_{\rm t}$ is the number of target nuclei in the detector.

- Dark matter induced neutrino fluxes are contributed from ν_e , ν_μ , as well as ν_τ , whereas atmospheric neutrinos contain only ν_e and ν_μ at the source. Same is true for antineutrino.
- √We fold events with the detector properties properly and show the event distributions in MagICAL bellow in absence (ATM) and in presence (ATM+DM) of dark matter induced neutrinos using arbitrary choice of self-annihilation cross-section and decay lifetime.

Expected Bound on $\langle \sigma v \rangle$ and τ

Using χ^2 method, we obtain upper limit on self-annihilation cross-section and lower limit on decay life time of dark matter.

Expected Bound on dark matter induced $\nu/\bar{\nu}$ Flux

Concluding remarks

- At low energy (2-30 GeV), MagICAL will be able to place most stringent bound on $\langle \sigma v \rangle$. For decay, MagICAL is better than Super-Kamiokande at high energy.
- Using 500 kt·yr exposure of the MagICAL detector, the expected limits on $\langle \sigma v \rangle$ and τ are \leq 1.87 \times 10^{-24} cm 3 s $^{-1}$ and \geq 4.8 \times 10^{24} s respectively at 90% C.L. (1 d.o.f.) for m_{χ} = 10 GeV assuming the NFW profile.
- Data of the MagICAL can also give constraints on exotic lepton number violating dark matter interactions.
- For details, please see our paper JHEP 1706(2017)057 (arXiv:1703.10221).