The INO-ICAL sensitivity to measure the difference between ν_{μ} and $\bar{\nu_{\mu}}$ mass-squared splittings

Daljeet Kaur¹, Zubair Ahmad Dar², Sanjeev Kumar³, Md. Naimuddin³

¹S.G.T.B. Khalsa college, University of Delhi, India

²Aligarh Muslim University, India

³Department of Physics and Astrophysics, University of Delhi.

Abstract

We present an experimental observation for the differences in the mass-squared splittings of atmospheric ν and $\overline{\nu}_{\mu}$ oscillations for the magnetised Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO). The ICAL detector is enriched with an excellent charge-identification capability for neutrino and anti-neutrino detection on an event by event basis. A Charged-Current (CC) ν_{μ} and $\overline{\nu}_{\mu}$ interactions with the detector, assuming three flavor oscillations along with the inclusion of the Earth matter effect have been simulated for ten years exposure of the detector. The observed ν_{μ} and $\overline{\nu}_{\mu}$ events spectrum folded with realistic detector resolutions and efficiencies are separately binned to direction and energy bins, and a χ^2 is minimized with respect to each bin to find out the oscillation parameters for ν_{μ} and $\overline{\nu}_{\mu}$ independently. Assuming non-identical atmospheric oscillation parameters for neutrinos and antineutrinos, we estimate the detector sensitivity to confirm a non-zero difference in the mass-squared splittings ($|\Delta m_{32}^2| - |\Delta \overline{m^2}_{32}|$).

Introduction and Physics goals of INO:	Analysis:	Contour plots at 68%, 90% and 99% C.L. for different true values of $ \Delta m_{32}^2 $, $ \Delta \overline{m^2}_{32} $, $\sin^2 \theta_{23}$ and $\sin^2 \overline{\theta}_{23}$ as shown in table below. Here, X-axis corresponds to the differences of $\sin^2 \theta_{23}$ and $\sin^2 \overline{\theta}_{23}$ and Y-axis
• The INO-ICAL is unique in its ability to distinguish between Neutrino	• Non-identical atmospheric oscillation parameters for neutrinos and an-	corresponds to differences in $ \Delta m^2_{32} $ and $ \Delta m^2_{32} $ values. In these
and anti-Neutrino by measuring the charge of secondary muons pro-	tineutrinos are considered.	plots diamond shows the best fit value of the observed parameters.
duced by the neutrino interaction with ICAL detector.	• All the four atmospheric oscillation parameters i.e. $ \Delta m_{32}^2 $, $ \Delta \overline{m^2}_{32} $,	$0.6 \begin{bmatrix} \times 10^{-3} \\ -90\% \\ -99\% \end{bmatrix} \qquad 0.6 \begin{bmatrix} -68.27\% \\ -90\% \\ -99\% \end{bmatrix}$
- India based Neutrine Observatory is set to be with a medam Iron	$0 \qquad 1 \overline{0} \qquad \cdot 1 \cdot 1$	

- India-based Neutrino Observatory is set to be with a modern Iron CALorimeter (ICAL) detector with the Resistive Plate Chamber (RPCs) as the active detector element.
- Unambiguous and more precise determination of oscillation parameters using atmospheric neutrinos.
- Study of matter effects through electric charge identification, that may lead to the determination of the unknown sign of one of the mass differences.
- Study of charge-conjugation and parity (CP) violation in the leptonic sector as well as possible charge-conjugation, parity, time-reversal (CPT) violation studies.
- Neutrino-less double beta decay, to determine whether neutrinos are Dirac or Majorana particles
- High-precision determination of the oscillation parameters when ICAL is (perhaps upgraded and) used in the future as a far-end detector for a long base-line neutrino oscillation experiment.

ICAL specifications:

- Dimension : $16m \times 16m \times 14.5m$ (for one module)
- Absorber material : Iron (5.6 cm thick plates)
- Active Detector : Resistive Plate Chambers

- θ_{23} and θ_{23} are varied within their marginalization range.
- Using the results of the four parameters analysis, we study the prospects of the scenario when both the differences $(|\Delta m_{32}^2| |\Delta \overline{m^2}_{32}|)$ and $(\sin^2 \theta_{23} \sin^2 \overline{\theta}_{23})$ are non-zero.
- Extracted a two oscillation parameters plot from Four oscillation parameter fit data to show the comparison with MINOS result.

Event Generation and Event Selection:

- We use the atmospheric neutrino data which was obtained by HONDA et.al. 3-D neutrino flux with ICAL detector specifications using NU-ANCE event generation.
- Unoscillated neutrino/anti-neutrino events are generated for 1000 years of exposure of ICAL and it scaled to 10 years of ICAL running for estimation of sensitivity.

Detector's Resolutions and Efficiency:

- Reconstruction and charge identification efficiencies (Obtained by INO) are implemented.
- Muon energy resolutions and hadron energy resolutions are implemented.
- Only the Muon angle resolution has been used for the analysis.

Energy and Direction Binning:

• 20 muon energy bins ranging from 0.8 GeV to 12.8 GeV

0.4

0.5

0.5

0.4

 0.3×10^{-3} 0.1

 $|-0.4 \times 10^{-3}|$ -0.1

 2.5×10^{-3}

 2.0×10^{-3}

 2.2×10^{-3}

 2.4×10^{-3}

Set-3

Set-4

- Total No. of layers : 150
- Magnetic field : 1.5 Tesla
- Total Mass : 50k Tons
- Location : Bodi Hills,Tamilnadu, India

Neutrino Interactions:

- Cosmic rays from galactic sources interact with Earth's atmosphere continuously producing pions and kaons which are then source of atmospheric neutrinos.
- Neutrinos interact in the detector through Charge Current (CC) and Neutral Current (NC) interactions.
- ICAL detector at INO is sensitive to atmospheric neutrinos and anti-neutrinos. Neutrino interaction within the detector results in the production of muons and hadrons.
- Muons can be identified and

- 20 muon direction bins($\cos \theta$ bins ranging from -1 to +1)
- 5 hadron bins ranging from 0.0 GeV to 15.0 GeV
- Binning is done in similar way for neutrinos and anti-neutrinos with $20 \times 20 \times 5 = 2000$ bins with optimised bin size.
- Random number smearing is applied both for expected and observed events.

Systematic Errors:

• A 20% error on atmospheric neutrino flux normalization, a 10% error on neutrino cross-section, an overall 5% statistical error, a 5% uncertainty due to zenith angle dependence of the fluxes, and an energy-dependent tilt error have been implemented without correlation.

χ^2 analysis:

- Poisson χ^2 function with method of pulls is used.
- χ² has been calculated for neutrino and anti-neutrino seoparately.
 χ²_{total}=χ²_ν + χ²ν̄

Results

INO-ICAL sensitivity for $(|\Delta m_{32}^2| - |\Delta \overline{m^2}_{32}|)_{True}(eV^2)$ at 1σ , 2σ and 3σ confidence levels using four oscillation parameter fit technique (Left) and with two oscillation parameter fit (Right).

Conclusion:

- 1. Keeping ICAL's good charge-identification feature in mind, neutrino and anti-neutrino oscillations parameters can be measured separately.
- 2. With fixed true values for non-identical oscillation parameters of ν_{μ} and $\bar{\nu}_{\mu}$, we measured the sensitivity of ICAL detector for difference in oscillation parameters of ν_{μ} and $\bar{\nu}_{\mu}$.
- 3. An extraction of two parameter fit from the four-fit plot has been shown for a comparitive study with the MINOS experiment
- 4. The ICAL sensitivity for neutrinos mass-squared splitting is almost comparable to that of MINOS while the ICAL is more sensitive for the anti-neutrinos mass-squared splittings (12.87 % at 90 % CL) compared to MINOS (20 % at 90 % CL), by using the atmospheric events only.
- 5. With the variation of true as well as observed values, ICAL can rule out the null hypothesis of $|\Delta m_{32}^2| = |\Delta \overline{m^2}_{32}|$ at more than 3σ level if the difference of true values of $|\Delta m_{32}^2| - |\Delta \overline{m^2}_{32}| \ge +0.7 \times 10^{-3} eV^2$ or $|\Delta m_{32}^2| - |\Delta \overline{m^2}_{32}| \le -0.7 \times 10^{-3} eV^2$.

reconstructed using their tracks in the magnetized detector and hadrons can be calibrated with

Oscillation Parameters and their marginalisation range

True values and marginalization range of the used oscillation parameters are listed in the below table:

Neutrino/anti-neutrino oscillation parameters			
Oscillation Parameters	(ν) True values	Marginalization range	
$\sin^2(2\theta_{12})$	0.86	Fixed	
$\sin^2(\theta_{23})$	varied	0.3-0.7	
$\sin^2(\theta_{13})$	0.0234	Fixed	
$\Delta m^2 (sol.ineV^2)$	7.6×10^{-5}	Fixed	
$\Delta m^2 (Atm.ineV^2)$	varied	$(2.0-3.0) \times 10^{-3} (3\sigma)$	
δ_{CP}	0.0	Fixed	

The ICAL sensitivity on $(\delta_m = |\Delta \overline{m^2}_{32}| - |\Delta m^2_{32}|)$ and $(\delta_\theta = \sin^2 \overline{\theta}_{23} - \sin^2 \theta_{23})$ plane at 68%, 90% and 99% confidence levels. Origin is the point where, neutrino and antineutrino parameters are identical. Here, $|\Delta m^2_{32}| = 2.38 \times 10^{-3} (eV^2)$, $|\Delta \overline{m}^2_{32}| = 2.5 \times 10^{-3} (eV^2)$ such that the difference $(|\Delta \overline{m^2}_{32}| - |\Delta m^2_{32}| = 0.12)$, and $\sin^2 \theta_{23} = \sin^2 \overline{\theta}_{23} = 0.5$ such that $(\sin^2 \overline{\theta}_{23} - \sin^2 \theta_{23} = 0)$.

The 68% and 90% confidence level contours on the $|\Delta m_{32}^2|$ and $|\Delta \overline{m^2}_{32}|$ parameter space. Right shows the sensitivity obtained by MINOS experiment using combined beamline and atmospheric data. Left shows the sensitivity of the ICAL experiment using atmospheric data only.

References:

• The Technical design report of INO-ICAL (2006)

- D. Kaur et al., Search for the differences in atmospheric neutrino and antineutrino oscillation parameters at the INO-ICAL experiment, Phys. Rev. D **95**, 093005 (2017).
- M. M. Medeiros et al., Neutrino and Antineutrino Oscillation Parameters Measured by the MINOS Atmospheric and Beam Data, Proceedings, 33rd International Cosmic Ray Conference (ICRC2013), Braz.J.Phys. 44, no.5, pp.415-608 (2014).

Acknowledgement:

Authors would like to acknowledge Department of Science and Technology of India (DST) for providing financial support for this work.
 We also thank INO collaborators for their continuous support.