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The Validation with Observations:
1. Annual and seasonal means for bias

and spatial correlation
What do | need??

e MONTHLY time series of the model and the
observed values

How should | process the data ??

* selection of the 4 seasons and than
average over time

e selection of sub-domains and average over
space > annual cycle
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The Validation with Observations:
2. the annual cycle

Precip Annual Cycle (NWSA)
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3. The Taylor Diagrams: information on spatial
correlation and signal variability

Provide a way of graphically summarizing how closely a pattern (or a
set of patterns) matches observations. The similarity between two
patterns is quantified in terms of their correlation, their centered
root-mean-square difference and the amplitude of their variations
(represented by their standard deviations).

Note that there is in aTaylor diagram, since
any difference in the means is first removed, before computing the
second-order statistics.
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3. The Taylor Diagrams: information on spatial
correlation and signal variability
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Figure 3. Taylor diagrams of the ensemble mean seasonal precipitation in the different analysis regions for the ERA-Interim, RCM44 and
RCM11 (both All Models and Med-CORDEX models) ensembles with respect to the corresponding regional observation datasets. The distance
from the point 1 measures the centered (bias removed) RMSE and the mean is taken over the different regional analysis periods.



The ability of a climate model to capture realistic interannual variability is an

important measure of its performance.

for temperature




Simulated versus observation-based interannual variability over land. (a) Simulated
interannual variability in surface temperature obtained by computing the standard
deviation of annual mean values from the unforced control simulation.



4. Interannual Variability

* The coefficient of variation ( ): it is a measure of

relative variability. It is the ratio of the standard deviation to the
mean (average):

Coefficient of Variation = (Standard Deviation / Mean) * 100

The coefficient of variation is useful because the standard deviation of
precipitation data must always be compared to the mean value.

This because of the large variability of precipitation values.

Moreover, the actual value of the CV is a dimensionless number, thus

it’s perfect for comparison between data sets with different units or
widely different means.
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Extremes Validation:

What do | need??

e DAILY (or sub-daily) time series of the model and
the observed values

For example: if | have a 10-year period, my daily time
series will have 3650 time steps.

e at a grid point level, without averaging over space

| need to keep BOTH the SPACE
and TIME resolution high!!



Extremes Validation:
1. the Probability Distribution Function

Temperature PDF - MPI - Tropics (Land Only) Precipitation PDF - MPI - Tropics (Land Only)
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Extremes Validation:
2. R95 and R99

Precipitation percent due to the sum of those days > 95t (or 99t")
percentile of the daily precipitation amount at WET days (precip >=1 mm)
for any period used as reference. (%)

mean R95 (1974—2004)
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Extremes Validation:
3. Consecutive Dry Days (CDD)

DEFINITION: Consecutive dry index per time period.

CALCULATION:
Given a daily time series of precipitation, the largest number of consecutive
dry days (where precip < 1 mm) is counted. Units are No. of days.
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Extremes Validation:
4. Simple Daily Intensity Index (SDII)

DEFINITION: Simple daily intensity index per time period, that is the mean
precipitation amount at wet days (precip >= 1 mm). Units are mm/day
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Extremes Validation:
5. WET/DRY Frequency

The number of wet (or dry) days are summed up and divided for the total number
of days in the period considered. Units are %.
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Extremes Validation:
6. Hydro-climatic Index (Hy-int)

DEFINITION: Product of normalized mean precipitation intensity (SDII) and normalized mean

dry spell length (DSL). It is a measure of change in hydroclimatic regimes, with increasing HY-

INT implying a shift towards a regime of more intense and less frequent precipitation events.

CALCULATION:

* given a daily time series of precipitation, the mean CDD for each year and the mean CDD
for all the period are computed.

* dividing CDDyearly / meanCDD = normalized CDD

e the same is done for SDII

. INT(2003) DSL(2003) HY—INT(2003)




Extremes Validation:
7. Psum>R950bs

DEFINITION: The total precipitation above the reference 95t percentile of OBSERVED DAILY

precipitation. Units are mm.

61N

60N 1 %

59N &
58N - Qj.?

57N - :éy

56N -
55N -
54N -

53N 1

52N 1

51N 1

SON 1

) n:’kw/r(

49N T T T T T T T T T T T
T1W 10W 9W 8W 7W 6W 5W 4W 3w 2W 1w 0
— [ [ [

0 100 150 200 300 400 600

1E 2E 3E

CALCULATION:

e given a daily time series of OBSERVED
precipitation, the 95t percentile is
calculated.

» each day of the model precipitation
time series is compared with this
threshold and is taken into account
only if it exceeds it.

* the total precipitation is then
calculated summing up the
precipitation of all the selected days.
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Extremes Validation:
8. Heat waves

DEFINITION: Heat wave duration index, that is the number of heat wave days, where a heat
wave occurs when for at least Nd consecutive days the daily maximum temperature exceeds

the long term average (TXnorm) by at least Nt degrees.
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CALCULATION (of TXnorm):

given a time series of daily
maximum temperature, the
mean of maximum temperature
of a 5 day window centered on
each calendar day of a given
climate reference period is
computed. (the so-called
running mean)

The ensemble average change in number of heat wave days (HWD) per year per degree of
(local) warming, when both Nd and Nt are equal to 5



Extremes Validation:
8. Heat waves
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The last case would be indicative of the
occurrence of extremely severe heat waves in
which anomalies of at least 10°C would
persist for at least 10 days. When only Nd is
increased to 10 days, we do not find strong
differences with respect to the first figure,
while the increase in HWD is inhibited when

Nt is increased to 10°C with change values
HWD/year.
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than the occurrence of peak
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Extremes Validation:
9. Return Period and Flood Maps

DEFINITION:
The probability that the event will be equalled or exceeded in any one year. This does not mean that a 100-year

flood will happen regularly every 100 years, or only once in 100 years. Despite the connotations of the name
"return period". In any given 100-year period, a 100-year event may occur once, twice, more or never.
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The Regional Added Value: a necessary introduction
regarding observations uncertanty

Gridded observed dataset

1. to move from the station based information to the grid
based, we need to go trough several steps, for example:
e quality control
* homogenization of the data
e statistical procedure to interpolate the data on the grid

2. Moreover between gridded observations there can be many
differences due for example to:

* the grid resolution

* station density

* interpolation method

e sampling error, that for precipitation depends on the
spatial variability that is influenced by the orography,
season, temporal resolution, and type of precipitation
(Schneider et al., 2014; Rudolf et al. 1994).



Latitude

N— R A comparison between 3 different datasets of
observed precipitation

Rain for the European area on a common 0.11 degree
resolution grid. One is the High resolution Regional
Observation dataset (HRO) that is composed of 9 regional
observed datasets described in Fantini et al. 2016, with
resolution spanning between 1 km and 12 km resolution;
the E-OBS dataset (Haylock et al., 2008) of 25 km resolution
and the CRU dataset (Harris et al., 2014) 0.5 degree
resolution.

OdH-NdO

The main differences between these datasets are more
evident in the region of complex topography like the Alps
to start with, but also Norway, the Apennine in Italy, the
Carpathian, the west coast of England and the Pyrenees.
The magnitude of the differences are bigger and up to 6
mm/day between the HRO and CRU due to differences in
resolution and station density, but also evident between
E-OBS and HRO. Like for example there is a clear
difference in spatial distribution of precipitation in JIA
over the Alpine region where the HRO show less
precipitation than E-OBS on the top of the mountain and
more on the side probably due to the bigger difference in
station density (Prein and Gobiet, 2016).
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Figure 1: Seasonal average precipitation differences in DJF (left) and JJA (right) between CRU and the HRO
(first row), E-OBS and CRU (second row), and E-OBS and HRO (third row).



Another example of model validation with multiple observation dataset:
for each season (DJF and JJA) and each of the 9 European regions, we computed the
average regional bias for each regional climate models ensemble.
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Due to the well known problem of precipitation under-catch, especially under cold season
snow-blowing conditions (Adam and Lettenmaier 2003; Adam et al. 2006) , when wind can
affect what really is detected by the device.

We added a gauge correction for the datasets that do not include it, i.e. the Alps, Spain,
Germany, Italy, UK and the Carpathians.

For the other regional datasets, a similar correction was already included or was implicit in
the use of a reanalysis, as reported in the literature.
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The Regional Added Value: where can | find it?
4. in the Mesoscale Signal

It can be obtain by decomponing the RegCM signal into a large-scale
component and a mesoscale signal (Coppola et al., 2010):

 The large-scale component, for example, can be identified by carrying out a
spatial average of the RCM fields to reach a resolution of ~ 100 km.

e The mesoscale signal is then obtained by simply subtracting the calculated
large-scale component from the full RCM fields.

* This generates an anomaly field in which the large-scale component is
filtered out.



RegCM 50km Mesoscale Signal (JJA)
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Climate Change Signal (ensemble of models):
1. the mean change

ENSEMBLE Precipitation CHANGE (mm /day)
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1. theindividual change for each member of the ensemble is computed
2. the ensemble CHANGE is the ensemble mean of all the changes



Climate Change Signal (ensemble of models):
2. the change in the extreme indices

Example: the R95 DEFINITION is

“Precipitation percent due to the sum of those days > 95t (or 99t")
percentile of the daily precipitation amount at WET days (precip >= 1 mm)
for any period used as reference”
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mean R95 CHANGE (fut—ref) — Correct
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year 2 Tlme
mean
5 3 3
4 1 2
The result will be
a MAP of mean 3.5 3 3.5
values with only 1 —_—

timestep:




year 1
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year 2 —
—
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Space
4 1 2 mean
The result will be 1 single
value for each single year:
e

year 1: 2,7; year2: 3 ...



Normalized DSL (%)

Climate Change Signal (ensemble of models):
3. Spaghetti plots

DSL (Tropics—Land only)
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Time evolution of annual values of the 2 hydroclimatic indices considered averaged over
tropical land areas for 10 GCM and their ensemble mean. Also shown for the historical
period are the corresponding values for the CPC_GLOBAL observations. The two values
in parentheses are the linear trends for the 1976-2005 and 2006-2100 periods,

respectively and an asterisk indicates that the trend in statistically significant at the 95%
confidence level. Units are % / 100 yrs.




Added Value: R95 change for the historical period 1976—-2005 and the three resolution grids. Units are in pe

of total precipitation accounted for by events above the 95th percentile.
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Ensemble mean linear trend values for the future period 2006-2100
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Climate Change Signal (ensemble of models):
4. Model consensus

DSL Future Trend (2006-2100)
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Ensemble mean and inter-model 90% significance range of the linear trend values for the period 2006-2100, averaged
over global (60 S - 60 N) and tropical (30 S - 30 N) land areas and over 7 continental regions. Units are % / 100 yrs



Climate Change Signal (ensemble of models):
5. Change of Inter-annual variability

mean value of temp (for example)

the value of a S,iﬁyear for the period considered
2

%@’Q—l{g

\ N

O —

number of years

* to be calculated both for teh REFERENCE period and
for the FUTURE

e the change will be:

Ofut = Oref
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Climate Change Signal (ensemble of models):
5. Inter-annual variability

A decrease in variability is projected to
extend from northern to central (and
Tem pe rature some areas of southern) Italy. This is
consistent with the decrease in cold
climate temperature variability found in
previous analyses of climate change
simulations (Ra" isa” nen, 2002; Giorgi
and Bi, 2005b). It has been attributed
primarily to the reduction of snow cover
and associated weakening of the snow
albedo feedback mechanism (which
tends to increase variability)
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least partially, to an enhancement of
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Coppola et al. (2009) of future warmer climates.
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Climate Change Signal (ensemble of models):
5. Inter-annual variability

Precipitation
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only small changes in the
winter, but a marked
increase throughout the
peninsula in summer.

It is likely that in the
summer the increase in
temperature and pre-
cipitation variability are
coupled to each other, as
clear (rainy) conditions are
associated with higher
(lower) insolation and
higher (lower)
temperatures.




The list of the variables created by
pycordex postprocessor

e G T +
| variable | RegCM file | Description |
- e e - +

| tas | SRF,STS | Near-Surface Air Temperature |
e e R, +

| pr | SRF,STS | Precipitation |
e == e - +

| prc | SRF | Convective Precipitation |
e S e +

| huss | SRF | Near-Surface Specific Humidity |
dr e de e B e +

| hurs | SRF | Near-Surface Relative Humidity |
- - I +

| evspsbl | SRF | Evaporation |
. R - +

| mrros | SRF | Surface Runoff |
= e e +

| ps | SRF | Surface Air Pressure |
. S e +

| psl | ATM | Sea Level Pressure |
e de e T +

| tasmax | STS | Daily Maximum Near-Surface Air Temperature |



e R e +

| tasmin | STS | Daily Minimum Near-Surface Air Temperature
A = e +

| sfcWindmax | STS | Daily Maximum Near-Surface Wind Speed
e R — e +

| mrro | SRF | Total Runoff |

(R e e +

| sfcWind | SRF | Near-Surface Wind Speed |
e A e e +

| ua850 | ATM,ATMp | Eastward Wind (at 850 hPa) |
s A R +

| va850 | ATM,ATMp | Northward Wind (at 850 hPa) |
e A B e +

| ta850 | ATM,ATMp | Air Temperature (at 850 hPa) |
R [ e +

| hus850 | ATM,ATMp | Specific Humidity (at 850 hPa) |
e RS e +

| ua500 | ATM,ATMp | Eastward Wind (at 500 hPa) |
NSRS Ao e +



I R I +
| ta500 | ATM,ATMp | Air Temperature (at 500 hPa) |
S e e +

| z8500 | ATM,ATMp | Geopotential Height (at 500 hPa) |
e — e G e SR +

| ua200 | ATM,ATMp | Eastward Wind (at 200 hPa) |
Ao e e +

| va200 | ATM,ATMp | Northward Wind (at 200 hPa) |
IR e e +

| ta200 | ATM,ATMp | Air Temperature (at 200 hPa) |
mmmmm o R e, +

| z8200 | ATM,ATMp | Geopotential Height (at 200 hPa)|
I TE— e +

...and other 2 levels will be extracted (700 and 925 hPa)...
...Is there anything else to add??

Do you think that these variables are enough to capture the
climatic processes of your domain?



.and finally.. here is the archive of the

data to be analized:

/home/clima-archive4/WORKSHOP/daily/ and
monthly/ folders

example: /home/clima-archive4/WORKSHOP/
daily/South_America -->will contain daily
pycordex generated precip and temperature for
South America

/home/clima-archive4/WORKSHOP/monthly/
South_America -->will contain monthly pycordex
generated precip and temperature for South
America

/home/clima-archive4/WORKSHOP/scripts/



