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The Gauss Curvature flow - Introduction

o Consider the evolution of a hypersurface M; in R™! by the
a-Gauss Curvature flow

oP
() 5=
with speed K¢ = (A1, -+, Ap)%,

@ This is a well known example of fully-nolinear degenerate
diffusion of

@ It was introduced by and has been widely
studied especially in the compact case.

@ We note important geometric works in the compact case by:

. : . ) among many
others.
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The Gauss Curvature Flow on compact surfaces

° The GCF (o = 1) models the wearing process of
tumbling stones subjected to collisions from all directions with
uniform frequency.

° The GCF shrinks strictly convex compact and centrally
symmetric surfaces to round points.

@ Firey's conjecture: The GCF shrinks any strictly convex
compact hypersurface to spherical points.

° Existence and uniqueness for compact strictly
convex and smooth initial data up.

° Firey's Conjecture for strictly convex surfaces
in dim n=2.

° Firey's Conjecture for the GCF¢,
a > m, flow in any dimension n > 2.

@ Based on previous work by on
convergence to self-similar solutions.

@ Other works:
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We will discuss the following topics on GCF:

@ GCF on complete non-compact convex hypersurfaces
@ Optimal regularity of solutions
@ Surfaces with Flat sides

@ Firey's Conjecture
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Gauss Curvature flow - the PDE

o If xp+1 = u(x, t) defines M" locally, then the GCF becomes
equivalent to the Monge-Ampére type of eq.

det D2u
(1 +|Du2)"

@ To understand the nature of the PDE let us look at the case
n=2: )
UxxUyy — Uy,

(1+|Duf?)?

@ The linearized equation at u is

By hy, — 20, hy
hy = i 4 Y+ lower order

@ One see that this equation becomes degenerate what points
where u is not strictly convex .
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The Regularity of solutions to GCF -Known Results

° Convex surfaces with at most one vanishing
principal curvature, will instantly become strictly convex and
hence smooth.

° If M"is C3! at a point Py and two
or more principal curvatures vanish at Py, then Py will not
move for some time 7 > 0.

° A surface M? in R3 evolving by the GCF is always
Cllon0< t< T and smooth on ty < t < T, for some
to > 0. This is the optimal regularity in dimension n = 2.

Remark: The regularity of solutions M" in dimensions n > 3
poses a much harder question.

@ Hamilton: If a surface M? in R3 has flat sides, then the flat
sides will persist for some time.
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Basic equations under GCF

o Oigj = —2K%h;j, 0O:g" = 2K*h¥
L atV = —VK¢

(] 8th,] =L h,J + aK® Ak/mn V,-hm,,thk/ + OéKaHh,'j
—(1 aF na)K"‘h,-khj’-‘

° 0;:K* = LK + aK?>*H

@ 0:bP9 = L bPI — aKo‘bipquBk/m,,V;hk/thmn — aK*HbPI
+(1 + na)K*gP9

o dv=Lv—2v1VV|2 - aK*H
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Basic equations under GCF

e The function vg(p,t) = (M — Bt — i(p, t)) satisfies

Oetpp = L1pg + (na — 1) v I K™ —

o The function 9 (p, t) = (R? — |F(p, t) — Xo|?) satisfies

Orp < L1+ 2(na+ 1) (A5 + R)K®

min
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The GCF-flow on complete non-compact graphs

@ Jointly with we studied the
evolution of complete non-compact graphs M; in R"+1
by the a-Gauss Curvature flow

oP
(*k) ot v
with speed
@ Here v is the inner normal.

@ We assume that My is a complete non-compact strictly
convex graph over a domain Q C R”.

@ The domain Q may be bounded or unbounded (e.g. 2 =R").

° : a complete non-compact smooth and strictly
convex hypersurface My in R™1 is the graph of a function ug
defined on a domain 2 C R".
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Examples of the initial hypersurface My

Figure: Examples of the initial hypersurface My
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The Main Results

@ Theorem 1. Let My = {(x, up(x)) : x € Q} be a locally
uniformly convex graph given by ug : Q — R defined on a
convex domain  C R". Then, for any a > 0, there exists a
smooth strictly convex solution u: Q x (0, +00) — R of the
a-Gauss curvature flow

(det D2u)°
(**a) ur = (n2)a—1
7

(1 + [Duf?)

such that lim u(x, t) = up(x).
t—0
@ Theorem 2. Let My be a smooth complete non-compact and
strictly convex hypersurface embedded in R™1. Then, for
any a > 0, there exists a smooth complete non-compact and
strictly convex solution M; of the a-Gauss curvature flow
defined for all time 0 < t < 400 and having initial data M.
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Proof of Theorem 1 - Main steps for a =1

@ For simplicity assume that av = 1.

@ Assume that My is a convex graph in the direction of
w = ept1. Then, M; will remain a convex graph.

@ Define the i:=(F,ept1).

The proof of Theorem 1 replies on
which are shown by the maximum principle.
@ Local gradient estimate on v:= (e, 1,v) "1 = /1 + |Dul?.

@ Local lower bound for the principal curvatures, i.e.
on )\min-

© Local upper speed bound, i.e. on K.
L= KbUV;Vj, where bl = (h,-j)_l.
Remark: It is easier to use geometric bounds, rather than pure
PDE bounds on the evolution of w.

(]
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The Gradient Estimate

° i:=(F,en1). It satisfies (&) = n~1La.
° Yp(p,t) = (M — Bt — d(p, t)). It satisfies

Orbg = Lvg+ (n—1) v IK — B.

° v = (ensr1,v) "t = \/1+ |Dul? satisfies the

equation
dv=Lv—-2v|Vv|2 -KHv

° Given 8 >0 and M > §:
v(p, t) ¥s(p, t) < M max{ sup v(p,0), Bilnn%l(n -1)}

a<M
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Local lower bound on A,

@ Recall that ¢g(p, t) = (M — Bt — d(p, t))+.

@ The is the following lower curvature
bound:

(5% Amin) (P, t) = M~2" min { inf Amin(p, 0), Bn,ﬂ}
where B, 3 constant depending on parameters.

@ Proof: By a rather involved computation to
bound from above w%”)\_l

min-
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Local upper bound on K

o Let ¢ := (M — @)+, where i := (F,epy1) is the

@ Recall that v = (ep11,v) "1 = /1 + |Dul2.

@ We show the following local upper bound for the speed K.
t
(m)W Ka)(p, t) < (4na + 1)2(20) 2 (OA + M?)

where 6 and A are given by

0 = sup{v2(p,s) : (p,s) < M, s € [0, 1]},
_1 .
N= Sup{)\min(pv 5) : U(p, 5) <M,se [07 t]}
@ Proof: Following the CGN trick we set ¢(v) := ﬁ and
apply the maximum principle on K2 ¢(v).
@ Remark: The upper bound on K at time t > 0
on an upper bound on K at time t = 0.
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The Proof of Long time existence

@ We obtain a solution M; := {(x, u(+,t)) : x € Q; C R"} as

where FJ; is a strictly convex closed solution symmetric with
respect to the hyperplane x,11 = J.

@ To pass to the limit we show that our imply
a uniform local C>% bound for I%.

@ Finally we construct barriers to show that ©; = Q for all
0<t<+o0.

@ This is expected since K(x, u(x,t)) — 0, as x — 0%Q;.
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The Regularity of solutions to GCF

o If xp4+1 = u(x,t) defines M" locally, then u evolves by the

PDE
det D2u

(1+|Duf?)™s

uy =

@ A strictly convex surface evolving by the GCF remains strictly
convex and hence smooth up to its collapsing time T.

@ The problem of the regularity of solutions in the weakly convex
case is a difficult question. It is related to the regularity of
solutions of the evolution Monge-Ampére equation

uy = det D?u.

@ Question: What is the optimal regularity of weakly convex
solutions to the Gauss Curvature flow ?

Panagiota Daskalopoulos Part 3 Gauss Curvature flow



Optimal regularity for weakly convex surfaces

@ Theorem Solutions to GCF of dim n =2 in R3
are always CbH1,
@ Theorem Solutions to GCF of dim n = 3 in R*

are always of class Ch.

@ Example In dim n > 4 there exist self-similar
solutions of u; = det D?u with edges persisting.

@ Theorem If the initial surface My, n > 3 is of
class C1P, then the solution M{ is of class Ch* 0<a<p.

@ Remark: Same results hold for motion by KP, p > 0 and for
viscosity solutions to

A (det D?u)P < up < A(det D?u)P

for0O< A< A<ooandp>0.
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Surfaces with Flat Sides

@ Assume that the initial surface My has a flat side.

@ Because of the degenenary of the equation, the flat side will
persist at t > 0.

Strictly convex
side

Y

z=u(x,y,t)
x>0,yeRn—1
@ The equation becomes degenerate at the fat side.

@ The '+ behaves like a free-boundary
propagating with finite speed. It will before
the surface M; does.

@ Question: What is the optimal regularity of solutions near I'¢,
t >0 7 Does 'y become smooth for t >0 ?
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Surfaces in R™1, n > 3 with flat sides

e Jointly with we study the optimal regularity of
solutions to the Gauss curvature flow with flat sides.

Strictly convex
side

x>0,yeRn—1
@ We establish the optimal Cl’m—regularity of the solution.

@ The case n = 2 was previously studied by D. jointly with
(sort time) and (long time).

@ The n-dim case for n > 3 is much harder.
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Weakly convex case - Flat sides

@ The pressure satisfies:

_ pdet(p; + 27p"'pip))

Oep n
(1+p7T|Dp2) %

@ Non-degenecary condition: We assume that at time t = 0 the
pressure satisfies:

o We will establish that p is C* smooth up to the interface,
1
which implies the optimal Cl’ﬁ—regularity of the solution.
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Weakly convex case - Flat sides

@ Theorem. Denote by T the of the flat side.
Let B, C (M7, )#at, for some . Then:

© The non-degenecary condition
(x) |Dp| > A(p) >0 and p-r > A(p) >0

holds for 0 < t < Tj.
@ the interface I'; is smooth for0 < t < T.

© the solution is of optimal class CY'7 1, on 0 <t < T.
p

@ Proof. Assume that B, C (M1,)f¢, for some
We establish sharp geometric estimates which hold on the
strictly convex part of My, for 0 < t < T;. Our estimates

depend on p and deteriorate as p — 0.
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Speed and curvature of the level sets

@ Let u be a strictly convex and smooth solution of the (GCF)

ug — \/1—|—|DU|2 K.

@ Each level set of u(-, t) shrinks with the speed u;/|Du| along
the . Hence, the speed of each

level set is given by

1 Du|?
5o V1+|Dul? o

| Dul

o It follows that in our setting to bound the speed of the flat
side is equivalent to bound

KS™1, for S := —(F,v) > 0.
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Weakly convex case - Main Geometric estimates

Denote by M} the strictly convex part of our solution M; and
S := —(F,v) > 0 the support function.

@ Speed estimate:

tatiK < C(n, T, p, sup|F|)

@ Lower bound on level set speed:

supSK 1< CsupSK1
M; Mo

@ Short time upper bound on level set speed:

KS(p,t) < [Kgt = (n+1)t]

for and on t < Kyt/(n+1).
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Weakly convex case - Crucial Geometric estimates

@ Crucial estimate:
t KA—3 (p, t) + |FI2(p, t) < v(Q + R)?

where v = max{5, n}, Q = sup(tK), and R = sup |F|.
@ Proof: By a rather involved Pogorelov type computation on

Z:=t? K\t (p,t) +t|F(p,t) — tv(Q + R)?.

@ Remark: We applied later a similar computation to prove
Firey's conjecture.

o Upper bound on level set speed: If By (0) < Mk, then
RS S G (2 — )R [1+ QR+ AR
p

where v = max{l, %(n%— 1)} Q =suptK, R =sup|F]|,
N\ = sup tKA;iln.
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Optimal Regularity up to the extinction of the flat side

@ The above a priori bounds imply that the non-degeneracy
condition is preserved under the GCF.

@ The non-degeneracy condition together with
for degenerate equations imply the C* regularity of
the free-boundary up to the

1
@ One concludes the optimal Cha1 regularity of the solution.
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Firey's Conjecture

@ We will now point out how one of our crucial estimates from
the regularity of the free-boundary can be modified to give us
the proof of Firey's conjecture !

@ Consider a family of compact strictly convex hypersurfaces in
R"*1 which evolve by the a-Gauss Curvature flow

oP
(*a) ot v

@ 1974 -Firey's conjecture: The GCF (a = 1) shrinks a compact
surface to a round sphere.

@ Theorem Let « > 1/(n—+2).
Then, a solution M; of (o) converges to a round sphere after
rescaling, or we have o = 1/(n + 2) and the hypersurfaces M;
converges to an ellipsoid after rescaling.
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Frirey's conjecture - Previous results

° the result holds for o = 1/n.

° the result holds for « =1, n = 2 and
a=1/(n+2).

o

The solution M; of the a-GCF converges after rescaling to a
self-similar solution.

° the result holds for % <a<l+ %
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Classification of self-similar solutions

° The solution
M; of the a-GCF converges after rescaling to a self-similar
solution.

@ Hence it is sufficient to classify compact self-similar solutions
M = F(M") which satisfy

(+%a) K = (F,v).
@ Theorem Let a > 1/(n+2).
Then, a compact strictly convex solution M of (xx,) is the

round sphere, unless & = 1/(n+ 2) in which case M is an
ellipsoid.

@ Remark: In the case that & = 1/(n + 2) this was shown by
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The Proof

o Case 1: . Let b= (h;)~! and set
na—1
Z = K*tx(b) — F|?
r(b) - 5= F|
@ Motivation: Z is constant when oo = ﬁ and M is an
ellipsoid.

@ We show that Z satisfies
aK*bIV;V;Z + (2o — 1)bYV;K*V;Z > 0.

@ The implies that Z is constant.
@ By examining the case of equality, we show that either
v,'hkj =0ora= 2
1

@ This implies that either M is a round sphere, or o = s and
M is an ellipsoid.
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The Proof

o Case 2: . We consider the quantity
o — no—1 5
W=nK )\mm % |F|-.

@ By applying the maximum principle, we show that any
maximum point for W is umbilic.

o Recall that Z = K tr(b) — 29=L(F|?, b:= (h;)~ L.
@ Hence a maximum point of W is also a maximum point of Z.

@ Applying the to Z, we are able to
show that Z and W are both constant.

@ This implies that M is a round sphere.

@ The proof is complete !!!
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