Part 3 Gauss Curvature flow

Panagiota Daskalopoulos

Columbia University

Summer School on Extrinsic flows ICTP - Trieste June 4-8, 2018

The Gauss Curvature flow - Introduction

• Consider the evolution of a hypersurface M_t in \mathbb{R}^{n+1} by the α -Gauss Curvature flow

$$(*_k) \qquad \frac{\partial P}{\partial t} = \mathbf{K}^{\alpha} \, \nu$$

with speed $K^{\alpha} = (\lambda_1, \cdots, \lambda_n)^{\alpha}$, $\alpha > 0$.

- This is a well known example of fully-nolinear degenerate diffusion of Monge-Ampére type
- It was introduced by W. Firey in 1974 and has been widely studied especially in the compact case.
- We note important geometric works in the compact case by: K. Tso, B. Chow, R. Hamilton, J. Urbas, B. Andrews, K. Lee, X. Chen, P. Guan, L. Ni, S. Brendle, K. Choi among many others.

The Gauss Curvature Flow on compact surfaces

- Firey 1974: The GCF ($\alpha = 1$) models the wearing process of tumbling stones subjected to collisions from all directions with uniform frequency.
- Firey: The GCF shrinks strictly convex compact and centrally symmetric surfaces to round points.
- Firey's conjecture: The GCF shrinks any strictly convex compact hypersurface to spherical points.
- Tso 1985: Existence and uniqueness for compact strictly convex and smooth initial data up.
- Andrews 1999: Firey's Conjecture for strictly convex surfaces in dim n = 2.
- Brendle, Choi and D., 2017: Firey's Conjecture for the GCF^{α}, $\alpha > \frac{1}{n+2}$, flow in any dimension $n \ge 2$.
- Based on previous work by Andrews, Guan and Ni on convergence to self-similar solutions.
- Other works: Andrews, Guan-Ni, Kim-Lee.

We will discuss the following topics on GCF:

- GCF on complete non-compact convex hypersurfaces
- Optimal regularity of solutions
- Surfaces with Flat sides
- Firey's Conjecture

Gauss Curvature flow - the PDE

• If $x_{n+1} = u(x, t)$ defines M^n locally, then the GCF becomes equivalent to the Monge-Ampére type of eq.

$$u_t = rac{\det D^2 u}{(1+|Du|^2)^{rac{n+1}{2}}}.$$

• To understand the nature of the PDE let us look at the case n = 2:

$$u_t = \frac{u_{xx}u_{yy} - u_{xy}^2}{(1 + |Du|^2)^{\frac{3}{2}}}.$$

• The linearized equation at *u* is

$$h_t = \frac{u_{yy}h_{xx} + u_{xx}h_{yy} - 2u_{xy}h_{xy}}{(1 + |Du|^2)^{\frac{3}{2}}} + \text{lower order}$$

• One see that this equation becomes degenerate what points where *u* is not strictly convex .

The Regularity of solutions to GCF -Known Results

- Hamilton: Convex surfaces with at most one vanishing principal curvature, will instantly become strictly convex and hence smooth.
- Chopp, Evans and Ishii: If M^n is $C^{3,1}$ at a point P_0 and two or more principal curvatures vanish at P_0 , then P_0 will not move for some time $\tau > 0$.
- Andrews: A surface M^2 in \mathbb{R}^3 evolving by the GCF is always $C^{1,1}$ on 0 < t < T and smooth on $t_0 \le t < T$, for some $t_0 > 0$. This is the optimal regularity in dimension n = 2. Remark: The regularity of solutions M^n in dimensions $n \ge 3$ poses a much harder question.
- Hamilton: If a surface M^2 in \mathbb{R}^3 has flat sides, then the flat sides will persist for some time.

Basic equations under GCF

•
$$\partial_t g_{ij} = -2K^{\alpha}h_{ij}, \quad \partial_t g^{ij} = 2K^{\alpha}h^{ij}$$

•
$$\partial_t \nu = -\nabla K^{\alpha}$$

•
$$\partial_t h_{ij} = \mathcal{L} h_{ij} + \alpha K^{\alpha} A_{klmn} \nabla_i h_{mn} \nabla_j h_{kl} + \alpha K^{\alpha} H h_{ij} - (1 + n\alpha) K^{\alpha} h_{ik} h_j^k$$

•
$$\partial_t K^{\alpha} = \mathcal{L} K^{\alpha} + \alpha K^{2\alpha} H$$

•
$$\partial_t b^{pq} = \mathcal{L} b^{pq} - \alpha K^{\alpha} b^{jp} b^{jq} B_{klmn} \nabla_j h_{kl} \nabla_j h_{mn} - \alpha K^{\alpha} H b^{pq} + (1 + n\alpha) K^{\alpha} g^{pq}$$

•
$$\partial_t \mathbf{v} = \mathcal{L} \, \mathbf{v} - 2 \mathbf{v}^{-1} \| \nabla \mathbf{v} \|_{\mathcal{L}}^2 - \alpha K^{\alpha} H$$

э

向 ト く ヨ ト

Basic equations under GCF

• The function
$$\psi_{eta}(p,t) = (M - eta t - ar{u}(p,t))_+$$
 satisfies

$$\partial_t \psi_{\beta} = \mathcal{L} \psi_{\beta} + (n\alpha - 1) v^{-1} K^{\alpha} - \beta$$

• The function $\bar{\psi}(p,t) = (R^2 - |F(p,t) - \bar{x}_0|^2)_+$ satisfies $\partial_t \bar{\psi} \leq \mathcal{L} \, \bar{\psi} + 2(n\alpha + 1)(\lambda_{\min}^{-1} + R)K^{\alpha}$

向 ト イヨ ト イヨ ト

The GCF-flow on complete non-compact graphs

 Jointly with K. Choi, L. Kim and K. Lee we studied the evolution of complete non-compact graphs M_t in ℝⁿ⁺¹ by the α-Gauss Curvature flow

$$(*_k) \qquad \frac{\partial P}{\partial t} = \mathbf{K}^{\alpha} \, \nu$$

with speed $K^{\alpha} = (\lambda_1, \cdots, \lambda_n)^{\alpha}$, $\alpha > 0$.

- Here ν is the inner normal.
- We assume that M₀ is a complete non-compact strictly convex graph over a domain Ω ⊂ ℝⁿ.
- The domain Ω may be bounded or unbounded (e.g. $\Omega = \mathbb{R}^n$).
- H. Wu (1974): a complete non-compact smooth and strictly convex hypersurface M₀ in ℝⁿ⁺¹ is the graph of a function u₀ defined on a domain Ω ⊂ ℝⁿ.

Examples of the initial hypersurface M_0

Figure: Examples of the initial hypersurface M_0

A 10

The Main Results

• Theorem 1. Let $M_0 = \{(x, u_0(x)) : x \in \Omega\}$ be a locally uniformly convex graph given by $u_0 : \Omega \to \mathbb{R}$ defined on a convex domain $\Omega \subset \mathbb{R}^n$. Then, for any $\alpha > 0$, there exists a smooth strictly convex solution $u : \Omega \times (0, +\infty) \to \mathbb{R}$ of the α -Gauss curvature flow

$$(**_{\alpha}) \quad u_t = \frac{(\det D^2 u)^{\alpha}}{(1 + |Du|^2)^{\frac{(n+2)\alpha-1}{2}}}$$

such that $\lim_{t\to 0} u(x, t) = u_0(x)$.

• Theorem 2. Let M_0 be a smooth complete non-compact and strictly convex hypersurface embedded in \mathbb{R}^{n+1} . Then, for any $\alpha > 0$, there exists a smooth complete non-compact and strictly convex solution M_t of the α -Gauss curvature flow defined for all time $0 < t < +\infty$ and having initial data M_0 .

Proof of Theorem 1 - Main steps for $\alpha = 1$

- For simplicity assume that $\alpha = 1$.
- Assume that M_0 is a convex graph in the direction of $\omega := e_{n+1}$. Then, M_t will remain a convex graph.
- Define the height function $\bar{u} := \langle F, e_{n+1} \rangle$.
- The proof of Theorem 1 replies on local a'priori geometric bounds which are shown by the maximum principle.
 - Local gradient estimate on v:= $\langle e_{n+1}, \nu \rangle^{-1} = \sqrt{1 + |Du|^2}$.
 - Local lower bound for the principal curvatures, i.e. on λ_{min}.
 - Social upper speed bound, i.e. on K.
- Linearized operator: $\mathcal{L} = K b^{ij} \nabla_i \nabla_j$, where $b^{ij} = (h_{ij})^{-1}$.
- Remark: It is easier to use geometric bounds, rather than pure PDE bounds on the evolution of *u*.

伺 ト く ヨ ト く ヨ ト

The Gradient Estimate

- Height function: $\bar{u} := \langle F, e_{n+1} \rangle$. It satisfies $(\bar{u})_t = n^{-1} \mathcal{L} \bar{u}$.
- Cut off function: $\psi_{\beta}(p,t) = (M \beta t \overline{u}(p,t))_+$. It satisfies

$$\partial_t \psi_{\beta} = \mathcal{L} \psi_{\beta} + (n-1) v^{-1} K - \beta.$$

• Gradient: $v = \langle e_{n+1}, \nu \rangle^{-1} = \sqrt{1 + |Du|^2}$ satisfies the equation

$$\partial_t v = \mathcal{L} v - 2v^{-1} \|\nabla v\|_{\mathcal{L}}^2 - K H v$$

• Gradient Estimate: Given $\beta > 0$ and $M \ge \beta$:

$$v(p,t) \psi_{\beta}(p,t) \leq M \max \left\{ \sup_{\bar{u} \leq M} v(p,0), \, \beta^{-1} n^{\frac{1}{n+1}} (n-1)
ight\}$$

Local lower bound on λ_{\min}

- Recall that $\psi_{\beta}(p,t) = (M \beta t \overline{u}(p,t))_+$.
- The most crucial estimate is the following lower curvature bound:

$$(\psi_{\beta}^{-2n}\lambda_{\min})(p,t) \ge M^{-2n} \min\left\{\inf_{\bar{u} \le M}\lambda_{\min}(p,0), B_{n,\beta}\right\}$$

where $B_{n,\beta}$ constant depending on parameters.

• Proof: By a rather involved Pogorelov type computation to bound from above $\psi_{\beta}^{2n} \lambda_{\min}^{-1}$.

Local upper bound on K

- Let $\psi := (M \bar{u})_+$, where $\bar{u} := \langle F, e_{n+1} \rangle$ is the height function.
- Recall that $v = \langle e_{n+1}, \nu \rangle^{-1} = \sqrt{1 + |Du|^2}$.
- We show the following local upper bound for the speed K.

$$\left(\frac{t}{1+t}\right)(\psi^2 \,\mathsf{K}^{\frac{1}{n}})(\mathsf{p},t) \leq (4n\alpha+1)^2(2\theta)^{1+\frac{1}{2n\alpha}}(\theta\Lambda+M^2)$$

where θ and Λ are constants given by

$$\begin{aligned} \theta &= \sup\{v^2(p,s) : \bar{u}(p,s) < M, \ s \in [0,t]\}, \\ \Lambda &= \sup\{\lambda_{\min}^{-1}(p,s) : \bar{u}(p,s) < M, \ s \in [0,t]\}. \end{aligned}$$

- Proof: Following the CGN trick we set $\varphi(\mathbf{v}) := \frac{\mathbf{v}^2}{2\theta \mathbf{v}^2}$ and apply the maximum principle on $K^2 \varphi(\mathbf{v})$.
- Remark: The upper bound on K at time t > 0 does not depend on an upper bound on K at time t = 0.

The Proof of Long time existence

• We obtain a solution $M_t := \{(x, u(\cdot, t)) : x \in \Omega_t \subset \mathbb{R}^n\}$ as

$$M_t := \lim_{j \to +\infty} \Gamma_t^j$$

where Γ_t^j is a strictly convex closed solution symmetric with respect to the hyperplane $x_{n+1} = j$.

- To pass to the limit we show that our a'priori estimates imply a uniform local $C^{2,\alpha}$ bound for Γ_t^j .
- Finally we construct barriers to show that $\Omega_t = \Omega$ for all $0 < t < +\infty$.
- This is expected since $K(x, u(x, t)) \rightarrow 0$, as $x \rightarrow \partial \Omega_t$.

The Regularity of solutions to GCF

• If $x_{n+1} = u(x, t)$ defines M^n locally, then u evolves by the PDE

$$u_t = \frac{\det D^2 u}{(1 + |Du|^2)^{\frac{n+1}{2}}}$$

- A strictly convex surface evolving by the GCF remains strictly convex and hence smooth up to its collapsing time *T*.
- The problem of the regularity of solutions in the weakly convex case is a difficult question. It is related to the regularity of solutions of the evolution Monge-Ampére equation

$$u_t = \det D^2 u.$$

• Question: What is the optimal regularity of weakly convex solutions to the Gauss Curvature flow ?

Optimal regularity for weakly convex surfaces

- Theorem (Andrews): Solutions to GCF of dim n = 2 in \mathbb{R}^3 are always $C^{1,1}$.
- Theorem (D., Savin): Solutions to GCF of dim n = 3 in ℝ⁴ are always of class C^{1,α}.
- Example (D., Savin): In dim $n \ge 4$ there exist self-similar solutions of $u_t = \det D^2 u$ with edges persisting.
- Theorem (D., Savin): If the initial surface Mⁿ₀, n ≥ 3 is of class C^{1,β}, then the solution Mⁿ_t is of class C^{1,α}, 0 < α ≤ β.
- Remark: Same results hold for motion by K^p, p > 0 and for viscosity solutions to

 $\lambda (\det D^2 u)^p \leq u_t \leq \Lambda (\det D^2 u)^p$

for $0 < \lambda < \Lambda < \infty$ and p > 0.

Surfaces with Flat Sides

- Assume that the initial surface M_0 has a flat side.
- Because of the degenenary of the equation, the flat side will persist at t > 0.

- The equation becomes degenerate at the fat side.
- The boundary of the flat side Γ_t behaves like a free-boundary propagating with finite speed. It will shrink to a point before the surface M_t does.
- Question: What is the optimal regularity of solutions near Γ_t, t > 0 ? Does Γ_t become smooth for t > 0 ?

Surfaces in \mathbb{R}^{n+1} , $n \geq 3$ with flat sides

• Jointly with Kyeongsu Choi we study the optimal regularity of solutions to the Gauss curvature flow with flat sides.

- We establish the optimal $C^{1,\frac{n}{n-1}}$ -regularity of the solution.
- The case n = 2 was previously studied by D. jointly with R. Hamilton (sort time) and K. Lee (long time).
- The *n*-dim case for $n \ge 3$ is much harder.

Weakly convex case - Flat sides

• The pressure $p := (\frac{n}{n-1}u)^{\frac{n-1}{n}}$ satisfies:

$$\partial_t p = rac{p \det(p_{ij} + rac{1}{n-1}p^{-1}p_ip_j)}{\left(1 + p^{rac{2}{n-1}}|Dp|^2\right)^{rac{n+1}{2}}}.$$

Non-degenecary condition: We assume that at time t = 0 the pressure p := (ⁿ/_{n-1}u)ⁿ⁻¹/_n satisfies:

(*) $|Dp| \ge \lambda > 0$ and $p_{\tau\tau} \ge \lambda > 0$.

• We will establish that p is C^{∞} smooth up to the interface, which implies the optimal $C^{1,\frac{1}{n-1}}$ -regularity of the solution.

Weakly convex case - Flat sides

- Theorem. Denote by *T* the extinction time of the flat side. Let B_ρ ⊂ (M_{T1})_{flat}, for some 0 < T₁ < *T*. Then:
 - The non-degenecary condition

(*) $|Dp| \ge \lambda(\rho) > 0$ and $p_{\tau\tau} \ge \lambda(\rho) > 0$

holds for $0 < t < T_1$.

- 2 the interface Γ_t is smooth for 0 < t < T.
- 3 the solution is of optimal class $C^{1,\frac{1}{n-1}}$, on 0 < t < T.
- Proof. Assume that $B_{\rho} \subset (M_{T_1})_{flat}$, for some $0 < T_1 < T$. We establish sharp geometric estimates which hold on the strictly convex part of M_t , for $0 < t < T_1$. Our estimates depend on ρ and deteriorate as $\rho \rightarrow 0$.

伺 ト く ヨ ト く ヨ ト

Speed and curvature of the level sets

• Let *u* be a strictly convex and smooth solution of the (GCF)

$$u_t = \sqrt{1 + |Du|^2} \, K.$$

• Each level set of $u(\cdot, t)$ shrinks with the speed $u_t/|Du|$ along the normal direction to the level set. Hence, the speed of each level set is given by

$$\sigma = \frac{\sqrt{1 + |Du|^2}}{|Du|} K$$

• It follows that in our setting to bound the speed of the flat side is equivalent to bound

$$KS^{-1}$$
, for $S := -\langle F, \nu \rangle > 0$.

Weakly convex case - Main Geometric estimates

Denote by M_t^* the strictly convex part of our solution M_t and $S := -\langle F, \nu \rangle > 0$ the support function.

• Speed estimate:

.

 $t^{\frac{n}{n+1}}K \leq C(n, T, \rho, sup|F|)$

• Lower bound on level set speed:

$$\sup_{M_t^*} S \, K^{-1} \leq C \, \sup_{M_0} S \, K^{-1}.$$

• Short time upper bound on level set speed:

$$KS^{-1}(p,t) \leq [\mathcal{K}_0^{-1} - (n+1)t]^{-1}$$

for $\mathcal{K}_0 := \sup_{M_0^*} K S^{-1}$ and on $t < \mathcal{K}_0^{-1}/(n+1)$.

Weakly convex case - Crucial Geometric estimates

• Crucial estimate:

 $t \operatorname{K} \lambda_{\min}^{-1}(p,t) + |F|^2(p,t) \leq \gamma (Q+R)^2$

where $\gamma = \max\{5, n\}$, $Q = \sup(tK)$, and $R = \sup|F|$.

• Proof: By a rather involved Pogorelov type computation on

$$\bar{Z} := t^2 \, \mathcal{K} \lambda_{\min}^{-1}(\boldsymbol{p},t) + t \, |\mathcal{F}|^2(\boldsymbol{p},t) - t\gamma \, (\boldsymbol{Q}+\boldsymbol{R})^2.$$

- Remark: We applied later a similar computation to prove Firey's conjecture.
- Upper bound on level set speed: If $B^+_{\theta\rho}(0) \prec M_t$, then

$$tKS^{-1} \leq C_n (\theta^2 - 1)^{-\gamma} (\frac{R}{\rho})^{2\gamma+2} \Big[1 + QR^{-1} + \Lambda R^{-2} \Big]$$

where $\gamma = \max \{1, \frac{1}{4}(n+1)\}, Q = \sup tK, R = \sup |F|, \Lambda = \sup tK\lambda_{\min}^{-1}$.

Optimal Regularity up to the extinction of the flat side

- The above a priori bounds imply that the non-degeneracy condition is preserved under the GCF.
- The non-degeneracy condition together with linear regularity theory for degenerate equations imply the C^{∞} regularity of the free-boundary up to the extinction of the flat side.
- One concludes the optimal $C^{1,\frac{1}{n-1}}$ regularity of the solution.

Firey's Conjecture

- We will now point out how one of our crucial estimates from the regularity of the free-boundary can be modified to give us the proof of Firey's conjecture !
- Consider a family of compact strictly convex hypersurfaces in \mathbb{R}^{n+1} which evolve by the α -Gauss Curvature flow

$$(*_{\alpha}) \qquad \frac{\partial P}{\partial t} = \mathbf{K}^{\alpha} \nu$$

- 1974 -Firey's conjecture: The GCF ($\alpha = 1$) shrinks a compact surface to a round sphere.
- Theorem (S. Brendle, K. Choi, D. 2016) Let $\alpha \ge 1/(n+2)$. Then, a solution M_t of $(*_{\alpha})$ converges to a round sphere after rescaling, or we have $\alpha = 1/(n+2)$ and the hypersurfaces M_t converges to an ellipsoid after rescaling.

伺 ト く ヨ ト く ヨ ト

Frirey's conjecture - Previous results

- B. Chow (1985): the result holds for $\alpha = 1/n$.
- B. Andrews (1999): the result holds for $\alpha = 1$, n = 2 and $\alpha = 1/(n+2)$.
- Andrews-Guan-Ni, Andrews, Guan-Ni, Kim-Lee: The solution M_t of the α -GCF converges after rescaling to a self-similar solution.
- K. Choi and D. (2016): the result holds for $\frac{1}{n} \leq \alpha < 1 + \frac{1}{n}$.

Classification of self-similar solutions

- Andrews-Guan-Ni, Andrews, Guan-Ni, Kim-Lee: The solution M_t of the α -GCF converges after rescaling to a self-similar solution.
- Hence it is sufficient to classify compact self-similar solutions $M = F(M^n)$ which satisfy

 $(**_{\alpha}) \qquad \mathsf{K}^{\alpha} = \langle \mathsf{F}, \nu \rangle.$

- Theorem (S. Brendle, K. Choi, D 2016) Let $\alpha \ge 1/(n+2)$. Then, a compact strictly convex solution M of $(**_{\alpha})$ is the round sphere, unless $\alpha = 1/(n+2)$ in which case M is an ellipsoid.
- Remark: In the case that $\alpha = 1/(n+2)$ this was shown by Calabi 1972.

The Proof

• Case 1: $\alpha \in [\frac{1}{n+2}, \frac{1}{2}]$. Let $b = (h_{ij})^{-1}$ and set

$$Z = K^{lpha}\operatorname{tr}(b) - rac{nlpha - 1}{2lpha}|F|^2.$$

- Motivation: Z is constant when $\alpha = \frac{1}{n+2}$ and M is an ellipsoid.
- We show that Z satisfies

 $\alpha K^{\alpha} b^{ij} \nabla_i \nabla_j Z + (2\alpha - 1) b^{ij} \nabla_i K^{\alpha} \nabla_j Z \ge 0.$

- The strong maximum principle implies that Z is constant.
- By examining the case of equality, we show that either $\nabla_i h_{kj} = 0$ or $\alpha = \frac{1}{n+2}$.
- This implies that either M is a round sphere, or $\alpha = \frac{1}{n+2}$ and M is an ellipsoid.

The Proof

• Case 2: $\alpha \in (1/2, +\infty)$. We consider the quantity

$$W = n \, K^{lpha} \lambda_{\min}^{-1} - rac{nlpha - 1}{2lpha} \, |F|^2.$$

- By applying the maximum principle, we show that any maximum point for *W* is umbilic.
- Recall that $Z = K^{\alpha} \operatorname{tr}(b) \frac{n\alpha 1}{2\alpha} |F|^2$, $b := (h_{ij})^{-1}$.
- Hence a maximum point of W is also a maximum point of Z.
- Applying the strong maximum principle to Z, we are able to show that Z and W are both constant.
- This implies that *M* is a round sphere.
- The proof is complete !!!