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The Gauss Curvature flow - Introduction

Consider the evolution of a hypersurface Mt in Rn+1 by the
α-Gauss Curvature flow

(∗k)
∂P

∂t
= Kα ν

with speed Kα = (λ1, · · · , λn)α, α > 0.

This is a well known example of fully-nolinear degenerate
diffusion of Monge-Ampére type

It was introduced by W. Firey in 1974 and has been widely
studied especially in the compact case.

We note important geometric works in the compact case by:
K. Tso, B. Chow, R. Hamilton, J. Urbas, B. Andrews, K. Lee,
X. Chen, P. Guan, L. Ni, S. Brendle, K. Choi among many
others.
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The Gauss Curvature Flow on compact surfaces

Firey 1974: The GCF (α = 1) models the wearing process of
tumbling stones subjected to collisions from all directions with
uniform frequency.

Firey: The GCF shrinks strictly convex compact and centrally
symmetric surfaces to round points.

Firey’s conjecture: The GCF shrinks any strictly convex
compact hypersurface to spherical points.

Tso 1985: Existence and uniqueness for compact strictly
convex and smooth initial data up.

Andrews 1999: Firey’s Conjecture for strictly convex surfaces
in dim n = 2.

Brendle, Choi and D., 2017: Firey’s Conjecture for the GCFα,
α > 1

n+2 , flow in any dimension n ≥ 2.

Based on previous work by Andrews, Guan and Ni on
convergence to self-similar solutions.

Other works: Andrews, Guan-Ni, Kim-Lee.
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Outline

We will discuss the following topics on GCF:

GCF on complete non-compact convex hypersurfaces

Optimal regularity of solutions

Surfaces with Flat sides

Firey’s Conjecture
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Gauss Curvature flow - the PDE

If xn+1 = u(x , t) defines Mn locally, then the GCF becomes
equivalent to the Monge-Ampére type of eq.

ut =
detD2u

(1 + |Du|2)
n+1

2

.

To understand the nature of the PDE let us look at the case
n = 2:

ut =
uxxuyy − u2

xy

(1 + |Du|2)
3
2

.

The linearized equation at u is

ht =
uyyhxx + uxxhyy − 2uxyhxy

(1 + |Du|2)
3
2

+ lower order

One see that this equation becomes degenerate what points
where u is not strictly convex .
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The Regularity of solutions to GCF -Known Results

Hamilton: Convex surfaces with at most one vanishing
principal curvature, will instantly become strictly convex and
hence smooth.

Chopp, Evans and Ishii: If Mn is C 3,1 at a point P0 and two
or more principal curvatures vanish at P0, then P0 will not
move for some time τ > 0.

Andrews: A surface M2 in R3 evolving by the GCF is always
C 1,1 on 0 < t < T and smooth on t0 ≤ t < T , for some
t0 > 0. This is the optimal regularity in dimension n = 2.

Remark: The regularity of solutions Mn in dimensions n ≥ 3
poses a much harder question.

Hamilton: If a surface M2 in R3 has flat sides, then the flat
sides will persist for some time.
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Basic equations under GCF

∂tgij = −2Kαhij , ∂tg
ij = 2Kαhij

∂tν = −∇Kα

∂thij = L hij + αKα Aklmn∇ihmn∇jhkl + αKαHhij
−(1 + nα)Kαhikh

k
j

∂tK
α = LKα + αK 2αH

∂tb
pq = L bpq − αKαbipbjqBklmn∇ihkl∇jhmn − αKαHbpq

+(1 + nα)Kαgpq

∂tv = L v − 2v−1‖∇v‖2
L − αKαH
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Basic equations under GCF

The function ψβ(p, t) = (M − βt − ū(p, t))+ satisfies

∂tψβ = Lψβ + (nα− 1) v−1Kα − β

The function ψ̄(p, t) = (R2 − |F (p, t)− x̄0|2)+ satisfies

∂tψ̄ ≤ L ψ̄ + 2
(
nα + 1)(λ−1

min + R)Kα
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The GCF-flow on complete non-compact graphs

Jointly with K. Choi, L. Kim and K. Lee we studied the
evolution of complete non-compact graphs Mt in Rn+1

by the α-Gauss Curvature flow

(∗k)
∂P

∂t
= Kα ν

with speed Kα = (λ1, · · · , λn)α, α > 0.

Here ν is the inner normal.

We assume that M0 is a complete non-compact strictly
convex graph over a domain Ω ⊂ Rn.

The domain Ω may be bounded or unbounded (e.g. Ω = Rn).

H. Wu (1974): a complete non-compact smooth and strictly
convex hypersurface M0 in Rn+1 is the graph of a function u0

defined on a domain Ω ⊂ Rn.
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Examples of the initial hypersurface M0

M0

(a) Ω = Rn

M0

(b) Ω = BR(0)

M0

(c) Ω = Rn−1 × R+

Figure: Examples of the initial hypersurface M0
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The Main Results

Theorem 1. Let M0 = {(x , u0(x)) : x ∈ Ω} be a locally
uniformly convex graph given by u0 : Ω→ R defined on a
convex domain Ω ⊂ Rn. Then, for any α > 0, there exists a
smooth strictly convex solution u : Ω× (0,+∞)→ R of the
α-Gauss curvature flow

(∗∗α) ut =
(detD2u)α

(1 + |Du|2)
(n+2)α−1

2

such that lim
t→0

u(x , t) = u0(x).

Theorem 2. Let M0 be a smooth complete non-compact and
strictly convex hypersurface embedded in Rn+1. Then, for
any α > 0, there exists a smooth complete non-compact and
strictly convex solution Mt of the α-Gauss curvature flow
defined for all time 0 < t < +∞ and having initial data M0.
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Proof of Theorem 1 - Main steps for α = 1

For simplicity assume that α = 1.

Assume that M0 is a convex graph in the direction of
ω := en+1. Then, Mt will remain a convex graph.

Define the heignt function ū := 〈F , en+1〉.

The proof of Theorem 1 replies on local a’priori geometric
bounds which are shown by the maximum principle.

1 Local gradient estimate on v:= 〈en+1, ν〉−1 =
√

1 + |Du|2.

2 Local lower bound for the principal curvatures, i.e.
on λmin.

3 Local upper speed bound, i.e. on K .

Linearized operator: L = Kbij∇i∇j , where bij = (hij)
−1.

Remark: It is easier to use geometric bounds, rather than pure
PDE bounds on the evolution of u.
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The Gradient Estimate

Height function: ū := 〈F , en+1〉. It satisfies (ū)t = n−1Lū.

Cut off function: ψβ(p, t) = (M − βt − ū(p, t))+. It satisfies

∂tψβ = Lψβ + (n − 1) v−1K − β.

Gradient: v = 〈en+1, ν〉−1 =
√

1 + |Du|2 satisfies the
equation

∂tv = L v − 2v−1‖∇v‖2
L − K H v

Gradient Estimate: Given β > 0 and M ≥ β:

v(p, t)ψβ(p, t) ≤ M max
{

sup
ū≤M

v(p, 0), β−1n
1

n+1 (n − 1)
}

Panagiota Daskalopoulos Part 3 Gauss Curvature flow



Local lower bound on λmin

Recall that ψβ(p, t) = (M − βt − ū(p, t))+.

The most crucial estimate is the following lower curvature
bound:(

ψ−2n
β λmin

)
(p, t) ≥ M−2n min

{
inf
ū≤M

λmin(p, 0),Bn,β

}
where Bn,β constant depending on parameters.

Proof: By a rather involved Pogorelov type computation to
bound from above ψ2n

β λ
−1
min.
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Local upper bound on K

Let ψ := (M − ū)+, where ū := 〈F , en+1〉 is the height
function.

Recall that v = 〈en+1, ν〉−1 =
√

1 + |Du|2.

We show the following local upper bound for the speed K .( t

1 + t

)
(ψ2 K

1
n )(p, t) ≤ (4nα + 1)2(2θ)1+ 1

2nα (θΛ + M2)

where θ and Λ are constants given by

θ = sup{v2(p, s) : ū(p, s) < M, s ∈ [0, t]},
Λ = sup{λ−1

min(p, s) : ū(p, s) < M, s ∈ [0, t]}.

Proof: Following the CGN trick we set ϕ(v) := v2

2θ−v2 and

apply the maximum principle on K 2 ϕ(v).

Remark: The upper bound on K at time t > 0 does not
depend on an upper bound on K at time t = 0.
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The Proof of Long time existence

We obtain a solution Mt := {(x , u(·, t)) : x ∈ Ωt ⊂ Rn} as

Mt := lim
j→+∞

Γj
t

where Γj
t is a strictly convex closed solution symmetric with

respect to the hyperplane xn+1 = j .

To pass to the limit we show that our a’priori estimates imply

a uniform local C 2,α bound for Γj
t .

Finally we construct barriers to show that Ωt = Ω for all
0 < t < +∞.

This is expected since K (x , u(x , t))→ 0, as x → ∂Ωt .
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The Regularity of solutions to GCF

If xn+1 = u(x , t) defines Mn locally, then u evolves by the
PDE

ut =
detD2u

(1 + |Du|2)
n+1

2

.

A strictly convex surface evolving by the GCF remains strictly
convex and hence smooth up to its collapsing time T .

The problem of the regularity of solutions in the weakly convex
case is a difficult question. It is related to the regularity of
solutions of the evolution Monge-Ampére equation

ut = detD2u.

Question: What is the optimal regularity of weakly convex
solutions to the Gauss Curvature flow ?
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Optimal regularity for weakly convex surfaces

Theorem (Andrews): Solutions to GCF of dim n = 2 in R3

are always C 1,1.

Theorem (D., Savin): Solutions to GCF of dim n = 3 in R4

are always of class C 1,α.

Example (D., Savin): In dim n ≥ 4 there exist self-similar
solutions of ut = detD2u with edges persisting.

Theorem (D., Savin): If the initial surface Mn
0 , n ≥ 3 is of

class C 1,β, then the solution Mn
t is of class C 1,α, 0 < α ≤ β.

Remark: Same results hold for motion by Kp, p > 0 and for
viscosity solutions to

λ (detD2u)p ≤ ut ≤ Λ (detD2u)p

for 0 < λ < Λ <∞ and p > 0.
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Surfaces with Flat Sides

Assume that the initial surface M0 has a flat side.

Because of the degenenary of the equation, the flat side will
persist at t > 0.

x≥0,y∈Rn−1

The equation becomes degenerate at the fat side.

The boundary of the flat side Γt behaves like a free-boundary
propagating with finite speed. It will shrink to a point before
the surface Mt does.

Question: What is the optimal regularity of solutions near Γt ,
t > 0 ? Does Γt become smooth for t > 0 ?
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Surfaces in Rn+1, n ≥ 3 with flat sides

Jointly with Kyeongsu Choi we study the optimal regularity of
solutions to the Gauss curvature flow with flat sides.

x≥0,y∈Rn−1

We establish the optimal C 1, n
n−1 -regularity of the solution.

The case n = 2 was previously studied by D. jointly with R.
Hamilton (sort time) and K. Lee (long time).

The n-dim case for n ≥ 3 is much harder.
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Weakly convex case - Flat sides

The pressure p := ( n
n−1u)

n−1
n satisfies:

∂tp =
p det(pij + 1

n−1p
−1pipj)(

1 + p
2

n−1 |Dp|2
) n+1

2

.

Non-degenecary condition: We assume that at time t = 0 the

pressure p := ( n
n−1u)

n−1
n satisfies:

(∗) |Dp| ≥ λ > 0 and pττ ≥ λ > 0.

We will establish that p is C∞ smooth up to the interface,

which implies the optimal C 1, 1
n−1 -regularity of the solution.
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Weakly convex case - Flat sides

Theorem. Denote by T the extinction time of the flat side.
Let Bρ ⊂ (MT1)flat , for some 0 < T1 < T . Then:

1 The non-degenecary condition

(∗) |Dp| ≥ λ(ρ) > 0 and pττ ≥ λ(ρ) > 0

holds for 0 < t < T1.
2 the interface Γt is smooth for 0 < t < T .

3 the solution is of optimal class C 1, 1
n−1 , on 0 < t < T .

Proof. Assume that Bρ ⊂ (MT1)flat , for some 0 < T1 < T .
We establish sharp geometric estimates which hold on the
strictly convex part of Mt , for 0 < t < T1. Our estimates
depend on ρ and deteriorate as ρ→ 0.
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Speed and curvature of the level sets

Let u be a strictly convex and smooth solution of the (GCF)

ut =
√

1 + |Du|2 K .

Each level set of u(·, t) shrinks with the speed ut/|Du| along
the normal direction to the level set. Hence, the speed of each
level set is given by

σ =

√
1 + |Du|2
|Du|

K

It follows that in our setting to bound the speed of the flat
side is equivalent to bound

K S−1, for S := −〈F , ν〉 > 0.

Panagiota Daskalopoulos Part 3 Gauss Curvature flow



Weakly convex case - Main Geometric estimates

Denote by M∗t the strictly convex part of our solution Mt and
S := −〈F , ν〉 > 0 the support function.

Speed estimate:

t
n

n+1K ≤ C (n,T , ρ, sup|F |)

.

Lower bound on level set speed:

sup
M∗

t

S K−1 ≤ C sup
M0

S K−1.

Short time upper bound on level set speed:

K S−1(p, t) ≤
[
K−1

0 − (n + 1) t
]−1

for K0 := supM∗
0
K S−1 and on t < K−1

0 /(n + 1).
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Weakly convex case - Crucial Geometric estimates

Crucial estimate:

t Kλ−1
min(p, t) + |F |2(p, t) ≤ γ (Q + R)2

where γ = max{5, n}, Q = sup(tK ), and R = sup |F |.
Proof: By a rather involved Pogorelov type computation on

Z̄ := t2 Kλ−1
min(p, t) + t |F |2(p, t)− tγ (Q + R)2.

Remark: We applied later a similar computation to prove
Firey’s conjecture.

Upper bound on level set speed: If B+
θρ(0) ≺ Mt , then

tKS−1 ≤ Cn (θ2 − 1)−γ(
R

ρ
)2γ+2

[
1 + QR−1 + ΛR−2

]
where γ = max

{
1, 1

4 (n + 1)
}

, Q = sup tK , R = sup |F |,
Λ = sup tKλ−1

min.
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Optimal Regularity up to the extinction of the flat side

The above a priori bounds imply that the non-degeneracy
condition is preserved under the GCF.

The non-degeneracy condition together with linear regularity
theory for degenerate equations imply the C∞ regularity of
the free-boundary up to the extinction of the flat side.

One concludes the optimal C 1, 1
n−1 regularity of the solution.
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Firey’s Conjecture

We will now point out how one of our crucial estimates from
the regularity of the free-boundary can be modified to give us
the proof of Firey’s conjecture !

Consider a family of compact strictly convex hypersurfaces in
Rn+1 which evolve by the α-Gauss Curvature flow

(∗α)
∂P

∂t
= Kα ν

1974 -Firey’s conjecture: The GCF (α = 1) shrinks a compact
surface to a round sphere.

Theorem (S. Brendle, K. Choi, D. - 2016) Let α ≥ 1/(n + 2).
Then, a solution Mt of (∗α) converges to a round sphere after
rescaling, or we have α = 1/(n + 2) and the hypersurfaces Mt

converges to an ellipsoid after rescaling.
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Frirey’s conjecture - Previous results

B. Chow (1985): the result holds for α = 1/n.

B. Andrews (1999): the result holds for α = 1, n = 2 and
α = 1/(n + 2).

Andrews-Guan-Ni, Andrews, Guan-Ni, Kim-Lee:
The solution Mt of the α-GCF converges after rescaling to a
self-similar solution.

K. Choi and D. (2016): the result holds for 1
n ≤ α < 1 + 1

n .
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Classification of self-similar solutions

Andrews-Guan-Ni, Andrews, Guan-Ni, Kim-Lee: The solution
Mt of the α-GCF converges after rescaling to a self-similar
solution.

Hence it is sufficient to classify compact self-similar solutions
M = F (Mn) which satisfy

(∗∗α) Kα = 〈F , ν〉.

Theorem (S. Brendle, K. Choi, D - 2016) Let α ≥ 1/(n + 2).
Then, a compact strictly convex solution M of (∗∗α) is the
round sphere, unless α = 1/(n + 2) in which case M is an
ellipsoid.

Remark: In the case that α = 1/(n + 2) this was shown by
Calabi - 1972.
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The Proof

Case 1: α ∈ [ 1
n+2 ,

1
2 ]. Let b = (hij)

−1 and set

Z = Kα tr(b)− nα− 1

2α
|F |2.

Motivation: Z is constant when α = 1
n+2 and M is an

ellipsoid.

We show that Z satisfies

αKαbij∇i∇jZ + (2α− 1)bij∇iK
α∇jZ ≥ 0.

The strong maximum principle implies that Z is constant.

By examining the case of equality, we show that either
∇ihkj = 0 or α = 1

n+2 .

This implies that either M is a round sphere, or α = 1
n+2 and

M is an ellipsoid.
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The Proof

Case 2: α ∈ (1/2,+∞). We consider the quantity

W = n Kαλ−1
min −

nα− 1

2α
|F |2.

By applying the maximum principle, we show that any
maximum point for W is umbilic.

Recall that Z = Kα tr(b)− nα−1
2α |F |

2, b := (hij)
−1.

Hence a maximum point of W is also a maximum point of Z .

Applying the strong maximum principle to Z , we are able to
show that Z and W are both constant.

This implies that M is a round sphere.

The proof is complete !!!
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