
ICTP 2018:

Work with datasets

1. The table below gives a binned version of the most current supernova
data (from Betoule et al. 2014).

z DM z DM z DM
0.010 32.9538 0.051 36.6511 0.257 40.5649
0.012 33.8790 0.060 37.1580 0.302 40.9052
0.014 33.8421 0.070 37.4301 0.355 41.4214
0.016 34.1185 0.082 37.9566 0.418 41.7909
0.019 34.5934 0.097 38.2532 0.491 42.2314
0.023 34.9390 0.114 38.6128 0.578 42.6170
0.026 35.2520 0.134 39.0678 0.679 43.0527
0.031 35.7485 0.158 39.3414 0.799 43.5041
0.037 36.0697 0.186 39.7921 0.940 43.9725
0.043 36.4345 0.218 40.1565 1.105 44.5140

1.300 44.8218

a) The quantity DM is proportional to the log of the apparent bright-
ness. Make a plot of DM versus z; it should look like Figure E1 in
Betoule et al. (2014).

b) The trend of DM with z should be matched by

M + 2.5 log10 d2Lum(z|Ωm,ΩΛ)

where M , which represents the unknown luminosity of the standard
candle, is a free parameter that is assumed to be independent of red-
shift. In the same plot as the data, plot curves which show (Ωm,ΩΛ) =
(1, 0), (0.3, 0) and (0.3, 0.7), and report your value of M .

c) In principle, dLum also depends onH0. The expression above suggests
that, if M were known a priori (i.e., if it were not a free parameter),
then this data would constrain the value of H0. However, even with
perfect distance measurements there is a perfect degeneracy between
the curvature Ωk and the Hubble constant. Show this. (See Weinberg
1973.)
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Figure 1: Cosmic complementarity: Combining datasets with orthogonal
degeneracies is extremely useful.

2. The ellipses in the figure above show the constraints on the background
geometry from SNae. The small colored dots show similar constraints
from the CMB, for different values of H0.

(a) Each dataset has a rather large degeneracy in the ΩM−ΩΛ plane.
Explain why.

(b) For the CMB, small values of H0 associated with large values of
ΩM. Why?

(c) Do the SNae constraints depend on the value of H0? Why or why
not?
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3. Page 24 of growthCosmology.pdf shows an SZ (thermal) and X-ray
image of a cluster. For Bremmstrahlung radiation, the X-ray lumi-
nosity is LX ∝ n2

eT
1/2
e r3vir ∝ (fg Mvir/r

3
vir)

2T 1/2 r3vir ∝ f 2
g Mvir T

1/2 ∝

f 2
g M

4/3
vir ∝ f 2

g T
2. We won’t derive this here, but comparison of the SZ

and Xray observations allow a consistency check of the virial scalings,
and/or a measure of the gas fraction in clusters, and/or another deter-
mination of the Hubble constant. See if you can convince yourself that
H0 ∝ ℓx (Te/T )

2/(∆T/T )2SZ where ℓx is the observed X-ray flux.

4. I have provided the world’s most recent measurement of ξ(r) in the file
dr12 xi0.dat (ignore the first and fourth columns). The file
camb 00394113 matterpower z0.dat

is the CAMB power spectrum P (k) for the current best ΛCDM cos-
mological parameters (from the CMB). Use it to compute ξ(r), and
compare with the measurement; when doing the comparison, allow the
amplitude of P (k) to be free. Report the value of the amplitude needed
to make things match.

5. In class, we discussed why cluster abundances constrain cosmological
parameters. This problem will give you a feel for what is involved. Fig-
ure 16 in the article ChandraII.pdf shows the current state of the art
using X-ray clusters. (The build-up to Figure 16 – which you need not
read carefully to do this problem – shows that there is a lot of ground-
work required to even get to this point!) The z = 0 data from which
the red points in this plot were constructed is apj296878t2 ascii.txt;
the plot used MY , but MG and MT are two other viable estimates of
the mass.

(a) First, remake their measurement of the comoving density of halos
using their equation (23):

N(≥ M) =
∑

Mi≥M

1/V (Mi).

The factor of V (M) in this expression is trying to account for
the fact that it is difficult to see small mass halos which are far
away, so we see low mass halos over a smaller volume than we
see high-mass halos. If all halos were equally easy (or should I
say difficult!) to observe, then V (M) would be the same for all

3



clusters. (Before moving on, you should convince yourself that in
this case the constant value should be equal to the survey vol-
ume.) Unfortunately, their table does not give V (M)! The actual
procedure for calculating V (M) is rather involved, but the net re-
sult is the black curve in their Figure 14. This is reasonably well
approximated by

(V h3/106Mpc3) = (Mh/1014M⊙)
2.5 if V ≤ 9× 108h−3Mpc3

and by V = 9 × 108h−3Mpc3 at larger V . (Feel free to build a
better approximation for our ‘precision’ measurement!) Use this
approximation with their list of halo masses to make your version
of their Figure 16.

(b) The rest of their paper is about fitting a model to the measure-
ments. We’ll do a cruder test in a way which I hope highlights
how one should exploit universality whenever one has reason to
believe it is present.

Section 3 of universalNm.pdf gives you a fitting formula which
the rest of the paper shows describes halo abundances in simula-
tions rather well. It is in the ‘universal’ variable ν = δ2c/σ

2(M) we
discussed in class. Whereas ChandraII.pdf fit a model to N(≥
M), universality says we could first transform to ν and then fit.
To do this transformation, use equation (5) of universalNm.pdf
for δc and the P (k) you used for Problem Set 3 to get σ2(M).
While it is tempting to simply set

N(≥ ν) =
∑

νi≥ν

1/Vi

the correct thing to do is to set

f(≥ ν) =
∑

νi≥ν

(Mi/ρ̄)/Vi

where ρ̄ = Ωmρ̄c is the comoving background density. Why?

(c) Make a plot of log10 f(≥ ν) versus log10 ν. We can (and so should!)
do better by accounting for the fact that the sample spans a range
of z, and the halos may actually evolve over this range. Argue that
setting

νi =
D2

0

D2(zi)

δ2c (zi)

σ2(Mi)
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accounts for this evolution. (E.g., the same M is mapped to a
larger ν if it is at higher z.)

(d) Now compare to theory. This simply means you integrate equa-
tion (7) of universalNm.pdf to get f(≥ ν), which you can com-
pare with the measurements. But the result depends on the pa-
rameters (A, a, p). Since the observations are of M500 and not Mvir

orM200, you should use the 500ρc values in Table 3 of universalNm.pdf.
Compare this curve with the measurements.

(e) In principle, the mapping from measured masses to ν depends on
the amplitude of the power spectrum, in a way which is loosely
referred to as σ8. Show what happens to the measurements if you
change σ8 from its default value by ±10%.

Notice that the value of σ8 is degenerate with the growth factor ratio.
This is the basis of the cosmological test using clusters. If you had
a sample of clusters at higher z, but you transformed to ν assuming
z = 0, then the resulting log10 f(≥ ν)-log10 ν plot will just be shifted,
by 2 log10(D0/Dz), with respect to the z = 0 symbols. In this way,
universality would have allowed you to read-off the change in growth
factor ‘by eye’. In practice, small departures from universality add a
slight complication. Talk to me if you are interested in this problem.

Although this is a good way to constrain σ8 and the growth factor, it
assumes that the background cosmology is known – after all, the step of
convering from observed angles and redshifts to comoving volumes was
done for us. (Indeed, strictly speaking, we should have first ensured
that the CAMB cosmological model was the same as the one used in
ChandraII.pdf.) Clearly, varying the cosmological model will change
the measured M and V (M) as well as the mapping to ν. Since the
theory curve will change much less – it would not change at all if it
were truly universal – this is how cluster counts constrain both the
geometry of the universe and the shape and amplitude of P (k).

Working with ν instead of mass M is a good way to see the Ωm-σ8

degeneracy shown in Figure 3 of ChandraIII.pdf. If ν f(ν) truly were
universal, then in plots of log10 f(≥ ν)-log10 ν, such as those you just
made, changing Ωm shifts the data vertically – because of theM/(Ωmρ̄c)
weight applied to each object – but does not change the theory curve
(because it is universal). On the other hand, changing σ8 shifts all
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objects horizontally (since log ν ∝ σ−2
8 ) . Hence, if log10 f(≥ ν)-log10 ν

were a power-law, then there would be an exact degeneracy between
Ωm and σ8: shifting the data upwards by reducing Ωm can be exactly
compensated by shifting the data leftwards by increasing σ8). Since
log10 f(≥ ν)-log10 ν is a little curved, the degeneracy is not total; this
is what gives the banana shape in Figure 3 of ChandraIII.pdf.

6. The paper Fisher1995.pdf contains a rather different derivation of the
‘Kaiser factor’ than the Zeldovich-based one we went through in class.
The virtue of Fisher’s calculation is that it shows how to proceed in
the case of biased tracers. Fisher himself only considered the simplest
case, in which the tracer field is linearly proportional to the matter
field: δb = bδm. In this case, the Gaussian density and velocity fields are
obviously still Gaussian. But it is not obvious that the streaming model
will carry through, with a Gaussian for the distribution of pairwise
velocities, if the biased density field is a nonlinear function of the matter
field. To explore this, suppose that

1 + δb ∝ exp(bδm);

this is sometimes referred to as the Lognormal model.

(a) Set the constant of proportionality by requiring 〈1 + δb〉 = 1.

(b) The correlation function for these biased tracers is given by 1 +
ξb(r) ≡ 〈(1 + δb1)(1 + δb2)|r〉, where the average is over p(δ1, δ2|r).
Express ξb(r) in terms of Ξ(r) ≡ 〈δ1δ2|r〉, the correlation function
of the underlying Gaussian field.

(c) Now repeat Fisher’s calculation, but replace his pair-weight factor
with (1 + δb1)(1 + δb2). Your final expression should be in a form
which shows if/how the pairwise velocity distribution is modified
from that for the dark matter.

(d) Extra credit: How generic is this result? I.e., Can you generalize
Fisher’s calculation to the case in which 1 + δb is an arbitrary
monotonic function of δm?

With this in mind, remember that, in the spherical evolution model,
the nonlinear 1 + δnl is a monotonic function of the linear δm. This
shows that one might think of the nonlinear field as a biased version
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of the linear one! Hence, any nonlinear bias transformation of the
nonlinear field boils down to a different nonlinear transformation of the
underlying Gaussian field. So the analysis above – weighted integrals
over a multivariate Gaussian pdf – is surprisingly general.

7. The Cosmic Energy Equation: I had promised to show you what energy
conservation looks like in an expanding universe. So, here we go ...

(a) Define comoving coordinates

x ≡ r/a(t) and vpec ≡ aẋ = ṙ−H r.

The Lagrangian for a single particle of mass m at position r is

L =
ma2 ẋ · ẋ

2
−mφ =

mv2pec
2

−mφ

where

φ = −G
∑

j

mj

| r− rj|
+

(

ä

a
−

Λ

3

)

r2

2
.

The first term on the right hand side is familiar from Newtonian
gravity. To see that the other terms are sensible, we would like
to be sure that, in the limit in which the matter distribution is
homogeneous, φ should not exert a force on a test particle. This
means that we should check that ∇2φ = 0 (right?!). Show that

∇2
r
φ = 4πG

∑

j

mjδD(r− rj) + 3
ä

a
− Λ.

The sum in first term on the right hand side is what we mean by
the background density ρ̄(a) = ρ̄0/a

3 (recall that the delta func-
tion has units of volume; ρ̄0 is the comoving background density).
So ∇2φ = 0 implies

ä

a
=

Λ

3
−

4πG

3
ρ̄(a)

which is Friedmann’s equation (Λ accelerates and matter decel-
erates the expansion). I.e., φ is sensible. Moreover, Friedmann’s
equation means that

φ = −G
∑

j

mj

| r− rj|
−

G

2r
ρ̄(a)

4πr3

3
.
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This shows that we can think of the second term as representing
GM(< r)/2r if the mass were smoothly distributed. Note that
GM(< r)/r = GM(< x)/ax. I.e., the comoving quantity evolves
as a−1; this will matter below.

Having convinced ourselves we have a sensible Lagrangian, we
are ready to define the comoving momentum (i.e. the canonical
momentum which is conjugate to the comoving coordinate x):

p =
∂L

∂ẋ
= ma2 ẋ = amvpec,

where the partial derivative means the positions are held fixed.
Notice that this differs from the proper momentum measured by
a comoving observer because of the extra factor of a.

The associated Hamiltonian is

H = p · ẋ− L = ma2 ẋ2 −
mv2pec
2

+mφ =
p2

2ma2
+mφ.

Notice the factor of a−2 on the first term, but not the second,
which is arises from the fact that p = amvpec.

The Hamiltonian for a collection of particles is the sum of the
individual contributions. However, whereas the term involving
the momenta is just a straightforward sum, we must be careful to
subtract the contribution from the background from the φ piece
(just as we were careful when defining φ in the first place). Namely,
if

H ≡ K +W,

with K depending on momenta and W on coordinates, then

K =
∑

i

miv
2
i

2
=

∑

i

p2i
2mi a2

is the peculiar kinetic energy and

W = −
G

2

∫

dr1

∫

dr2
[ρ(r1)− ρ̄][ρ(r2)− ρ̄]

|r1 − r2|

is the potential energy. (If you write ρ(r) as a sum over delta
functions for the discrete particles, as in the expression for ∇2φ,
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then the factor of two for the φ-term is to account for our double
counting the same pair twice (recall φi is a sum over j, and it
is understood that we should avoid i = j). You should convince
yourself that none of these ρs are comoving, and this really is
the right way to ‘subtract-off’ the contribution from the smooth
background.

(b) Energy conservation means that dH/dt = ∂H/∂t. Show that

dH

dt
=

∂H

∂t
implies

d(K +W )

dt
= −

ȧ

a
(2K +W ).

(Hint: The partial derivatives are to be taken at fixed momenta
and at fixed positions. So the real problem is to show that ∂K/∂t =
−2K ȧ/a and ∂W/∂t = −W ȧ/a.)

(c) The expression above is the Layzer-Irvine cosmic energy equation
for the evolution of the kinetic and gravitational potential energy
of non-relativistic matter (such as CDM) which interacts only by
gravity.

Non-interacting particles have W = 0. What does this equation
say about this limit?

(d) Virialized structures have W = −2K, so the total energy K +W
is obviously conserved if everything is virialized. Is this a useful
limit at late times in a Λ dominated universe? (Hint: What does
‘structure has frozen out’ imply?)

The Cosmic Energy equation is more than a nice generalization of the
usual Newtonian energy conservation. In practice, it is used to ensure
that energy is conserved in a numerical simulation (round-off error,
force-smoothing, etc, are not causing trouble). It also provides a route
to thinking about how to treat problems in which Λ also clusters.

Finally, although we won’t use this here, notice that if we define 〈W 〉
and 〈K〉 as the potential and kinetic energies per unit mass, then 〈K〉
is the variance of the distribution we discussed in class which replaces
the Maxwell-Boltzmann, and

〈W 〉 = −
Gρ(a)

2

∫

dr 4π r2
ξ(r, a)

r
.
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This connects nicely to the two-point correlation function statistic we
spent much of the last month discussing. In linear theory, 〈W 〉 ∝ ΩH2

whereas 〈K〉 ∝ f 2(Ω)H2 ≈ Ω8/7H2, so the ratio of the two terms esti-
mates Ω independent of the Hubble constant H. This may become an
attractive estimate as more Kinetic SZ measurements become available.
We also have a handle on how nonlinear clustering will affect W ad K;
in the context of the halo model, both terms can be decomposed into 1-
and 2-halo contributions. E.g., 〈K〉 is explicitly the sum of virial and
linear theory motions. And, because halos are virialized, the 1-halo
contribution will have 〈W1h〉 = −2〈K1h〉, so the net result is actually
rather straightforward.
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