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ABSTRACT

We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-
quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We
provide a full reference for the data analysis procedures, present updated calibration of relations between the
total cluster mass and its X-ray indicators (TX, Mgas, and YX) based on a subsample of low-z relaxed clusters,
and present a first measurement of the evolving LX–Mtot relation (with Mtot estimated from YX) obtained
from a well defined statistically complete cluster sample and with appropriate corrections for the Malmquist
bias applied. Finally, we present the derived cluster mass functions, estimate the systematic uncertainties
in this measurement, and discuss the calculation of the likelihood function. We confidently measure the
evolution in the cluster comoving number density at a fixed mass threshold, e.g., by a factor of 5.0 ± 1.2 at
M500 = 2.5 × 1014 h−1 M� between z = 0 and 0.5. This evolution reflects the growth of density perturbations,
and can be used for the cosmological constraints complementing those from the distance–redshift relation.
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1. INTRODUCTION

This work continues a series of papers in which we present
the data for a new X-ray selected sample of galaxy clusters—the
400d survey—based on the data from the ROSAT PSPC pointed
observations. In the first paper (Burenin et al. 2007, Paper I
hereafter), we presented the cluster catalog and described the
survey’s statistical calibration (selection function, effective area
and so on). A complete high-redshift subsample of the 400d
clusters, 36 objects at z = 0.35 − 0.9 with 〈z〉 = 0.5, has
been observed with Chandra. The goal of this program was to
provide X-ray data of sufficient quality for reliable estimates of
the high-redshift (z ∼ 0.5) cluster mass function.

Chandra exposures were designed to yield at least 1500–
2000 photons from each cluster. This is sufficient to measure
several high-quality total mass proxies—average temperature
excluding the center, integrated gas mass, and the YX parameter
(the product of tempeature and gas mass derived from X-ray
data). The resulting mass estimates are much more reliable than
what was achievable in many previous studies where the only
available mass indicator was the X-ray flux (Kravtsov et al.
2006). Using several mass proxies also allows us to control the
systematics by checking the consistency of results obtained by
different methods.

Observations of the high-redshift 400d clusters are comple-
mented by Chandra archival data for a complete, flux-limited
sample of nearby clusters detected in the ROSAT All-Sky survey
(49 objects at present, expected to grow by a factor of 1.5 in the
near future as the completeness of the Chandra archive expands
to lower fluxes). Chandra data for nearby clusters, combined
when necessary with the ROSAT PSPC pointings, allow us to
measure the same set of total mass proxies in local and distant
clusters.

The present work is a significant step forward in provid-
ing observational foundations for cosmological work with the
cluster mass function. First, it uses a larger sample of high-z
clusters than the previous studies. For example, the best pub-
lished measurement of the evolution in the cluster temperature
function (Henry 2004) was based on 25 low-z objects and 19
clusters with 〈z〉 = 0.43. Chandra provides much higher-quality
data for each high-z object than were available before. Second,
we use a more advanced approach to the X-ray data analysis,
partly because this is called for by the Chandra data and partly
because of the experience learned from recent deep observa-
tions of low-z clusters (e.g., Vikhlinin et al. 2006). Last but
not least, the data for high- and low-z samples were obtained
with the same instrument and analyzed uniformly, minimiz-
ing the potential for systematic errors—the crucial ingredient
for precise measurement of the evolution of the cluster mass
function.

In this paper, we present an analysis of the Chandra observa-
tions of our cluster sample, describe our approach to the cluster
total mass estimates, derive the evolving M–LX relation, and
describe the computation of the survey volume as a function
of mass. We conclude by presenting the cluster mass functions
estimated in the “concordant” ΛCDM cosmology. The cosmo-
logical modeling of the cluster mass function data is presented
in an accompanying paper (Vikhlinin et al. 2009, Paper III here-
after). The prime goal of this work is to provide a full reference
of the data reduction procedures and discuss the sources of sys-
tematic uncertainties in the cluster mass function estimates at
low and high redshifts.

All distance-dependent quantities are computed assuming a
ΛCDM cosmological model with ΩM = 0.30, and ΩΛ = 0.70.
We also assume h = 0.72, unless the explicit h-scaling is given.
The luminosities and fluxes are in the 0.5–2 keV energy band.

1033

http://dx.doi.org/10.1088/0004-637X/692/2/1033


1034 VIKHLININ ET AL. Vol. 692

Figure 1. Limiting ROSAT flux for selection in the 400d Chandra sample, as a
function of redshift. At z > 0.473, the limiting flux is 1.4 × 10−13, that in the
400d catalog. At 0.35 < z < 0.473, the flux limit corresponds to the minimum
luminosity specified in Equation (1).

2. CLUSTER SAMPLES

2.1. High-Redshift Sample

Our high-redshift cluster sample is a well defined subsample
of the z > 0.35 clusters from the 400d survey. The selection
was designed to provide a quasi mass-limited sample at z � 0.5
by requiring that the ROSAT-derived luminosity was above a
threshold of

LX,min = 4.8 × 1043(1 + z)1.8 erg s−1 (1)

in the default ΛCDM cosmology. This luminosity threshold
approximately corresponds to a mass limit of 1014 M� from the
low-z LX–M relation. The redshift factor here corresponds to
an early measurement of the evolution in the Mgas–L relation
(Vikhlinin et al. 2002). The resulting selection is entirely
objective and in fact is formulated as a redshift-dependent flux
limit (shown in Figure 1). At z > 0.473, no additional selection
is applied since the minimum flux of the main 400d sample
satisfies the luminosity threshold in Equation (1).

Thirty-nine objects from the 400d catalog satisfy these
selection criteria, and all were observed with Chandra. For three
clusters, 0216−1747, 0521−2530, 1117+1744, the accurate
total X-ray flux measured by Chandra was < 10−13 erg s−1

cm−2, significantly below the target minimum flux in the 400d
catalog, 1.4 × 10−13 erg s−1 cm−2. The existence of such
deviations is expected (see, e.g., Figure 23 in Paper I) because
ROSAT flux estimates have large statistical errors. However, the
computation of the 400d selection function in this flux regime
is less accurate because it depends strongly on the wings of the
distribution of the flux measurement scatter (see Section 7.1
in Paper I for details). We, therefore, opted not to use these
three clusters in the further analysis. The additional selection
criterion, ftrue > 10−13 erg s−1 cm−2, will be taken into account
in the sample volume computations. The final sample of 36 high-
redshift clusters we will use hereafter is presented in Table 1.

2.2. Low-Redshift Sample

The low-redshift cluster sample was selected, similarly to
the procedure described in Voevodkin & Vikhlinin (2004),
from several samples based on the ROSAT All-Sky Survey

(RASS) data (Ebeling et al. 2000: BCS; de Grandi et al. 1999;
Böhringer et al. 2004: REFLEX; Reiprich & Böhringer 2002:
HIGFLUGCS). Overlaps between the catalogs were removed.
The objects at Galactic latitude |b| < 20◦, as well as those
around LMC, SMC, and the Virgo cluster were excluded (the
exclusion regions were adopted from Reiprich & Böhringer
2002). The total area covered by these catalogs is 8.14 sr.
The X-ray fluxes were remeasured (starting from a list of
objects with cataloged fluxes f > 5.3 × 10−12 erg s−1 cm−2

in the 0.5–2 keV band), using the data from pointed ROSAT
PSPC observations, when available. Our final sample consists
of 49 clusters (Table 2) with the remeasured flux f > 1.3 ×
10−11 erg s−1 cm−2 in the 0.5–2 keV band, well above the
sensitivity limit of all initial RASS cluster catalogs, and z >
0.025 (the lower redshift cut was used to ensure that a large
fraction of the cluster virial radius fits inside the Chandra field
of view). All objects in this sample have archival Chandra
observations, providing accurate X-ray spectral data.

2.3. General Characteristics of the Cluster Samples

The combined cluster sample is a unique, uniformly observed
dataset. The volume coverage and effective mass limits in
the low and high-redshift subsamples are similar (Mmin 	
(1–2) × 1014 h−1 M�). The median mass at all redshifts is
near M500 = 2.5 × 1014 h−1 M�, which corresponds to T =
4.5 keV clusters at z = 0. Observations suggest that clusters of
such and larger mass exhibit scalings between their observables
and mass close to the expectations of self-similar model (Nagai
et al. 2007a), which makes our sample particularly useful for
cosmological applications.

Our cluster sample is selected essentially using only the
X-ray flux. Cluster detection efficiency is, in principle, also
depends on the object surface brightness. However, the surface
brightness effects are minimal for our objects. For the low-
z sample, this is achieved by selecting objects with fluxes a
factor of > 5 higher than the detection threshold in the parent
RASS samples. For the 400d clusters, we used a highly sensitive
detection method tailored for finding extended sources. The
resulting sensitivity of the detection efficiency to the cluster
angular size has been extensively studied (Paper I) and found
to be small. Furthermore, optical identifications also played no
role in selecting the sample—essentially all X-ray candidates at
both low and high redshifts were identified as galaxy clusters.
Therefore, we do not miss objects because of misclassification
caused by the presence of central or background active galactic
nuclei (AGNs).

The redshift histograms for the low and high-redshift samples
are shown in Figure 2. The depth of the low-redshift sample is
z ∼ 0.15; there are only three clusters beyond this z. Therefore,
the low-redshift sample is effectively “local” and it gives us a
snapshot of the cluster population at z ≈ 0. The high-redshift
sample starts at z = 0.35 and extends to z = 0.9. The median
redshift of the distant sample is 〈z〉 = 0.5.

Data of sufficient quality are available for utilizing three
different X-ray total mass proxies for all our clusters. These
observations provide us with a reliable measure of the evolution
of the cluster mass function between z ≈ 0.5 and 0, or over
≈ 37% of the present age of the universe.

3. CHANDRA AND ROSAT DATA REDUCTION

Chandra observations provide the basis for our X-ray analysis
of both high- and low-redshift clusters. We also make use of the
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Table 1
High-redshift Cluster Sample

Name z LX , TX MY MG MT fx, fROSAT , Merger?
(erg s−1) (keV) (1014 M�) (1014 M�) (1014 M�) (10−13 cgs) (10−13 cgs)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0302−0423 0.3501 5.24 × 1044 4.78 ± 0.75 3.72 ± 0.38 3.58 ± 0.28 3.26 ± 0.77 15.34 15.9 ± 1.9 · · ·
1212+2733 0.3533 3.61 × 1044 6.62 ± 0.89 6.17 ± 0.57 5.62 ± 0.37 6.16 ± 1.24 10.53 12.5 ± 1.7 �
0350−3801 0.3631 6.80 × 1043 2.45 ± 0.50 1.43 ± 0.19 1.40 ± 0.18 1.34 ± 0.41 1.68 2.9 ± 0.8 �
0318−0302 0.3700 1.82 × 1044 4.04 ± 0.63 2.82 ± 0.28 2.44 ± 0.21 2.86 ± 0.67 4.63 4.6 ± 0.5 �
0159+0030 0.3860 1.42 × 1044 4.25 ± 0.96 2.51 ± 0.37 1.92 ± 0.22 2.67 ± 0.90 3.30 3.3 ± 0.4 · · ·
0958+4702 0.3900 1.04 × 1044 3.57 ± 0.73 1.84 ± 0.25 1.34 ± 0.15 2.03 ± 0.63 2.22 2.8 ± 0.6 · · ·
0809+2811 0.3990 2.50 × 1044 4.17 ± 0.73 3.69 ± 0.42 3.98 ± 0.35 2.96 ± 0.78 5.40 5.5 ± 0.8 �
1416+4446 0.4000 1.94 × 1044 3.26 ± 0.46 2.52 ± 0.24 3.10 ± 0.24 1.76 ± 0.37 4.01 4.0 ± 0.5 · · ·
1312+3900 0.4037 1.37 × 1044 3.72 ± 1.06 2.75 ± 0.57 2.62 ± 0.42 2.47 ± 1.06 2.71 2.6 ± 0.4 �
1003+3253 0.4161 1.53 × 1044 5.44 ± 1.40 2.80 ± 0.49 1.57 ± 0.20 3.83 ± 1.47 3.04 3.5 ± 0.4 · · ·
0141−3034 0.4423 1.32 × 1044 2.13 ± 0.38 1.22 ± 0.17 1.30 ± 0.24 1.03 ± 0.27 2.06 3.1 ± 0.9 �
1701+6414 0.4530 2.39 × 1044 4.36 ± 0.46 3.28 ± 0.24 3.20 ± 0.20 2.66 ± 0.42 3.91 3.9 ± 0.4 · · ·
1641+4001 0.4640 9.46 × 1043 3.31 ± 0.62 1.70 ± 0.20 1.34 ± 0.13 1.73 ± 0.49 1.43 2.9 ± 0.8 · · ·
0522−3624 0.4720 1.04 × 1044 3.46 ± 0.48 2.18 ± 0.21 1.82 ± 0.15 2.12 ± 0.45 1.47 1.8 ± 0.3 �
1222+2709 0.4720 9.88 × 1043 3.74 ± 0.61 2.09 ± 0.24 1.59 ± 0.16 2.08 ± 0.51 1.39 1.9 ± 0.4 · · ·
0355−3741 0.4730 1.76 × 1044 4.61 ± 0.82 3.02 ± 0.35 2.44 ± 0.22 2.87 ± 0.76 2.48 2.9 ± 0.7 · · ·
0853+5759 0.4750 8.43 × 1043 3.42 ± 0.67 2.05 ± 0.27 1.63 ± 0.17 2.09 ± 0.61 1.22 2.0 ± 0.5 �
0333−2456 0.4751 9.79 × 1043 3.16 ± 0.58 1.90 ± 0.22 1.64 ± 0.17 1.85 ± 0.51 1.33 2.4 ± 0.5 �
0926+1242 0.4890 1.50 × 1044 4.74 ± 0.71 3.00 ± 0.30 2.02 ± 0.16 3.42 ± 0.77 2.04 1.7 ± 0.3 �
0030+2618 0.5000 1.57 × 1044 5.63 ± 1.13 3.43 ± 0.41 2.04 ± 0.19 4.41 ± 1.33 2.09 2.4 ± 0.3 �
1002+6858 0.5000 1.71 × 1044 4.04 ± 0.83 2.80 ± 0.40 2.34 ± 0.27 2.65 ± 0.81 2.19 2.0 ± 0.4 �
1524+0957 0.5160 2.07 × 1044 4.23 ± 0.51 3.24 ± 0.27 3.08 ± 0.21 2.82 ± 0.51 2.45 3.0 ± 0.4 �
1357+6232 0.5250 1.63 × 1044 4.60 ± 0.69 2.96 ± 0.29 2.40 ± 0.18 2.78 ± 0.62 1.90 2.0 ± 0.3 · · ·
1354−0221 0.5460 1.40 × 1044 3.77 ± 0.53 2.31 ± 0.23 1.69 ± 0.16 2.32 ± 0.48 1.45 1.5 ± 0.2 �
1120+2326 0.5620 1.79 × 1044 3.58 ± 0.44 2.50 ± 0.21 2.32 ± 0.16 2.13 ± 0.39 1.68 2.1 ± 0.4 �
0956+4107 0.5870 1.85 × 1044 4.40 ± 0.50 2.93 ± 0.22 2.44 ± 0.14 2.87 ± 0.49 1.64 1.6 ± 0.3 �
0328−2140 0.5901 2.30 × 1044 5.14 ± 1.47 3.42 ± 0.66 2.92 ± 0.38 3.17 ± 1.36 2.09 2.1 ± 0.6 · · ·
1120+4318 0.6000 3.75 × 1044 4.99 ± 0.30 3.92 ± 0.17 4.20 ± 0.24 3.00 ± 0.27 3.24 3.0 ± 0.3 · · ·
1334+5031 0.6200 2.22 × 1044 4.31 ± 0.28 2.62 ± 0.17 1.88 ± 0.22 2.73 ± 0.27 1.76 1.8 ± 0.3 �
0542−4100 0.6420 2.91 × 1044 5.45 ± 0.77 4.07 ± 0.39 3.70 ± 0.25 3.86 ± 0.82 2.21 2.2 ± 0.3 �
1202+5751 0.6775 2.22 × 1044 4.08 ± 0.72 2.90 ± 0.37 2.85 ± 0.29 2.42 ± 0.64 1.34 1.5 ± 0.4 �
0405−4100 0.6861 2.23 × 1044 3.98 ± 0.48 2.51 ± 0.20 2.17 ± 0.16 2.32 ± 0.42 1.33 1.5 ± 0.4 �
1221+4918 0.7000 3.35 × 1044 6.63 ± 0.75 4.88 ± 0.38 4.16 ± 0.23 5.04 ± 0.86 2.06 2.1 ± 0.5 �
0230+1836 0.7990 2.55 × 1044 5.50 ± 1.02 3.46 ± 0.46 2.70 ± 0.27 3.57 ± 0.99 1.09 2.2 ± 0.6 �
0152−1358 0.8325 5.46 × 1044 5.40 ± 0.97 3.91 ± 0.52 3.94 ± 0.40 3.40 ± 0.91 2.24 1.8 ± 0.3 �
1226+3332 0.8880 8.42 × 1044 11.08 ± 1.39 7.59 ± 0.61 5.75 ± 0.28 9.91 ± 1.86 3.27 2.9 ± 0.3 �

Notes. Column 2: cluster redshift; Column 3: total X-ray luminosity (0.5–2 keV band, object frame) measured from accurate Chandra flux; Column
4: average temperature from the spectrum integrated in the [0.15 − 1] r500 annulus; Column 5: total mass estimated from YX parameter (Section 4.3);
Column 6: Mtot estimated from integrated gas mass (Section 4.2); Column 7: mass estimated from the Mtot–TX relation (Section 4.1); Column 8: total
X-ray flux measured by Chandra (0.5–2 keV, observer’s frame); Column 9: total X-ray flux (0.5–2 keV, observer’s frame) reported in the 400d catalog
from ROSAT PSPC data; Column 10: approximate classification into mergers and relaxed clusters (Section 4.1.3).

ROSAT PSPC data for the low-z objects (pointed observations
when available and All-Sky Survey data for eight objects).
In low-z clusters, the statistical accuracy of the X-ray surface
brightness determination at large radii is limited mostly by the
Chandra field of view. The analysis in such cases benefits from
using the ROSAT data that cover a much larger region although
with a lower sensitivity. Below, we discuss the issues related to
the initial data preparation, spectral analysis, and producing the
“calibrated” X-ray images. How these data are used to derive
the basic intracluster medium (ICM) parameters and the cluster
Mtot is discussed in Sections 3.3, 3.4, and 4.

3.1. Initial Data Reduction and Calibration Uncertainties

3.1.1. Chandra

For Chandra, our data reduction procedure is adopted with
no changes from Vikhlinin et al. (2005, V05 hereafter). This
includes careful filtering for high background periods and

applying all the latest calibration corrections to the detected
X-ray photons, and determination of the background intensity
in each observation.

The quiescent Chandra background is dominated by the
events induced by charged particles. This component can be
subtracted exquisitely accurately (with a � 2% scatter; see
Hickox & Markevitch 2006). A much smaller contribution is
provided by a fraction of the cosmic X-ray background not
resolved into discrete sources. This component is modeled ad-
equately by using the “blank-sky” background datasets which
include both the particle-induced and unresolved sky compo-
nents. Finally, there is a non-negligible diffuse soft component
attributable to the Galactic interstellar medium (ISM) emission
(Markevitch et al. 2003) and, in some cases, to the geocoronal
charge exchange (Wargelin et al. 2004). The soft background
component is the hardest to model because its intensity depends
on the pointing direction, and can even be variable in the case of
charge exchange emission. Fortunately, the soft component can



1036 VIKHLININ ET AL. Vol. 692

Table 2
Low-redshift Sample

Name fx, za LX , TX MY MG MT Merger?
(10−11 cgs) (erg s−1) (keV) (1014 M�) (1014 M�) (1014 M�)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 3571 7.42 0.0386 2.37 × 1044 6.81 ± 0.10 5.90 ± 0.06 5.30 ± 0.07 6.61 ± 0.15 . . .

A 2199 6.43 0.0304 1.27 × 1044 3.99 ± 0.10 2.77 ± 0.05 2.80 ± 0.04 2.92 ± 0.11 . . .

2A 0335 6.24 0.0346 1.60 × 1044 3.43 ± 0.10 2.33 ± 0.05 2.53 ± 0.05 2.32 ± 0.11 . . .

A 496 5.33 0.0328 1.23 × 1044 4.12 ± 0.07 2.96 ± 0.04 3.02 ± 0.04 3.07 ± 0.07 . . .

A 3667 4.64 0.0557 3.14 × 1044 6.33 ± 0.06 7.35 ± 0.07 8.62 ± 0.15 6.74 ± 0.09 �
A 754 4.35 0.0542 2.78 × 1044 8.73 ± 0.00 8.47 ± 0.13 6.68 ± 0.12 11.05 ± 0.00 �
A 85 4.30 0.0557 2.91 × 1044 6.45 ± 0.10 5.98 ± 0.07 5.91 ± 0.10 6.03 ± 0.14 . . .

A 2029 4.23 0.0779 5.72 × 1044 8.22 ± 0.16 8.64 ± 0.14 8.35 ± 0.20 8.66 ± 0.25 . . .

A 478 4.16 0.0881 7.24 × 1044 7.96 ± 0.27 8.15 ± 0.17 7.82 ± 0.12 8.20 ± 0.42 . . .

A 1795 4.14 0.0622 3.52 × 1044 6.14 ± 0.10 5.46 ± 0.06 5.34 ± 0.06 5.58 ± 0.14 . . .

A 3558 4.11 0.0469 1.96 × 1044 4.88 ± 0.10 4.78 ± 0.07 5.43 ± 0.09 4.54 ± 0.15 �
A 2142 3.94 0.0904 7.20 × 1044 10.04 ± 0.26 11.96 ± 0.20 11.91 ± 0.16 11.70 ± 0.45 . . .

A 2256 3.61 0.0581 2.66 × 1044 8.37 ± 0.24 7.84 ± 0.15 6.14 ± 0.09 10.33 ± 0.45 �
A 4038 3.48 0.0288 6.18 × 1043 2.61 ± 0.05 1.65 ± 0.02 2.03 ± 0.05 1.52 ± 0.04 . . .

A 2147 3.47 0.0355 9.40 × 1043 3.83 ± 0.12 3.10 ± 0.08 3.52 ± 0.14 3.15 ± 0.15 �
A 3266 3.39 0.0602 2.69 × 1044 8.63 ± 0.18 9.00 ± 0.13 7.66 ± 0.12 10.82 ± 0.34 �
A 401 3.19 0.0743 3.90 × 1044 7.72 ± 0.30 8.63 ± 0.24 9.27 ± 0.20 7.88 ± 0.46 . . .

A 2052 2.93 0.0345 7.47 × 1043 3.03 ± 0.07 1.84 ± 0.03 1.95 ± 0.04 1.91 ± 0.07 . . .

Hydra-A 2.91 0.0549 1.93 × 1044 3.64 ± 0.06 2.83 ± 0.03 3.34 ± 0.04 2.51 ± 0.06 . . .

A 119 2.47 0.0445 1.06 × 1044 5.72 ± 0.00 4.50 ± 0.03 3.61 ± 0.06 5.80 ± 0.00 �
A 2063 2.39 0.0342 5.98 × 1043 3.57 ± 0.19 2.21 ± 0.08 2.13 ± 0.07 2.46 ± 0.19 . . .

A 1644 2.33 0.0475 1.14 × 1044 4.61 ± 0.14 4.21 ± 0.09 4.66 ± 0.11 4.16 ± 0.19 �
A 3158 2.30 0.0583 1.72 × 1044 4.67 ± 0.07 4.13 ± 0.05 4.74 ± 0.09 3.67 ± 0.09 . . .

MKW 3s 2.08 0.0453 9.28 × 1043 3.03 ± 0.05 2.09 ± 0.03 2.52 ± 0.05 1.90 ± 0.05 . . .

A 1736 2.04 0.0449 8.94 × 1043 2.95 ± 0.09 2.10 ± 0.06 2.10 ± 0.13 2.10 ± 0.09 �
EXO 0422 2.01 0.0382 6.35 × 1043 2.84 ± 0.09 1.51 ± 0.04 1.46 ± 0.06 1.73 ± 0.09 . . .

A 4059 2.00 0.0491 1.05 × 1044 4.25 ± 0.08 2.81 ± 0.04 2.58 ± 0.04 3.19 ± 0.09 . . .

A 3395 1.95 0.0506 1.09 × 1044 5.10 ± 0.17 6.74 ± 0.18 6.74 ± 0.20 6.74 ± 0.34 �
A 2589 1.94 0.0411 7.09 × 1043 3.17 ± 0.27 1.94 ± 0.11 2.01 ± 0.10 2.04 ± 0.26 . . .

A 3112 1.89 0.0759 2.43 × 1044 5.19 ± 0.21 4.20 ± 0.11 4.12 ± 0.09 4.28 ± 0.26 . . .

A 3562 1.84 0.0489 9.58 × 1043 4.31 ± 0.12 3.28 ± 0.07 3.48 ± 0.09 3.26 ± 0.14 . . .

A 1651 1.80 0.0853 2.93 × 1044 6.41 ± 0.25 5.78 ± 0.15 5.55 ± 0.12 5.89 ± 0.35 . . .

A 399 1.78 0.0713 2.01 × 1044 6.49 ± 0.17 6.18 ± 0.11 5.66 ± 0.12 6.95 ± 0.27 �
A 2204 1.74 0.1511 9.35 × 1044 8.55 ± 0.58 9.40 ± 0.43 9.32 ± 0.28 8.87 ± 0.90 . . .

A 576 1.72 0.0401 5.99 × 1043 3.68 ± 0.11 2.34 ± 0.05 2.27 ± 0.06 2.57 ± 0.12 . . .

A 2657 1.62 0.0402 5.66 × 1043 3.62 ± 0.15 2.24 ± 0.06 2.14 ± 0.05 2.51 ± 0.16 . . .

A 2634 1.61 0.0305 3.20 × 1043 2.96 ± 0.09 1.74 ± 0.04 1.83 ± 0.04 1.85 ± 0.08 . . .

A 3391 1.58 0.0551 1.05 × 1044 5.39 ± 0.19 4.06 ± 0.10 3.58 ± 0.09 4.58 ± 0.24 . . .

A 2065 1.56 0.0723 1.82 × 1044 5.44 ± 0.09 4.98 ± 0.07 4.90 ± 0.09 5.31 ± 0.14 �
A 1650 1.53 0.0823 2.33 × 1044 5.29 ± 0.17 4.59 ± 0.11 4.78 ± 0.10 4.39 ± 0.21 . . .

A 3822 1.48 0.0760 1.91 × 1044 5.23 ± 0.30 4.63 ± 0.18 4.50 ± 3.91 4.98 ± 0.43 �
S 1101 1.46 0.0564 1.03 × 1044 2.44 ± 0.08 1.57 ± 0.03 1.99 ± 0.05 1.36 ± 0.07 . . .

A 2163 1.38 0.2030 1.37 × 1045 14.72 ± 0.31 21.98 ± 0.31 24.17 ± 0.34 22.83 ± 0.72 �
Zw Cl1215 1.38 0.0767 1.80 × 1044 6.54 ± 0.21 5.75 ± 0.12 5.32 ± 0.10 6.10 ± 0.29 . . .

RX J1504 1.35 0.2169 1.56 × 1045 9.89 ± 0.53 10.07 ± 0.35 9.01 ± 0.20 10.70 ± 0.86 . . .

A 2597 1.35 0.0830 2.09 × 1044 3.87 ± 0.11 2.84 ± 0.06 3.03 ± 0.06 2.72 ± 0.12 . . .

A 133 1.35 0.0569 9.60 × 1043 4.01 ± 0.11 2.57 ± 0.05 2.37 ± 0.04 2.91 ± 0.12 . . .

A 2244 1.34 0.0989 2.98 × 1044 5.37 ± 0.12 5.11 ± 0.08 5.80 ± 0.10 4.46 ± 0.15 . . .

A 3376 1.31 0.0455 5.89 × 1043 4.37 ± 0.13 3.01 ± 0.07 2.53 ± 0.06 3.84 ± 0.17 �

Notes. Columns 3–9 have the same meaning as in Table 1. Column 2 gives the total flux (0.5–2 keV) from the best source available
(Chandra if cluster the cluster is at sufficiently high redshift to fit the field of view, ROSAT PSPC pointing, and remeasurement from the
All-Sky survey data as a last resort).
a Redshifts were converted to the CMB reference frame.

still be subtracted sufficiently accurately because it is separated
spectrally from the cluster emission (since it is dominated by
emission lines near 0.6 keV; see Section 2.3.2 in V05).

Uncertainties in determining each of the background compo-
nents were propagated in the further analysis. Their impact on
the analysis of the Chandra cluster observations is extensively
discussed in V05. Here we only note that this source of uncer-

tainty is negligible for the measurements of the average cluster
temperatures dominated by the bright inner region; similarly,
the gas mass measurements are based on the surface brightness
profiles in the soft band where the background is lower relative
to the cluster flux.

Conversion of the observed X-ray fluxes to physical quantities
such as the temperature and density of the intracluster gas relies
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Figure 2. Redshift distribution of clusters in our low- and high-z samples.

on accurate calibration of the spectral response. An extensive
preflight calibration program was designed to provide absolute
calibration of the effective area of the mirror+ACIS system to
within 2% at all locations and across the entire energy band. The
in-flight performance was degraded somewhat, but by 2005–
2006 the calibration accuracy was restored to near-preflight
levels. Currently, the uncertainty in relative (position and time-
dependent) variations of the effective area is < 3% within
the energy band we use in the present work.9 The estimated
uncertainties in the absolute effective area are � 5% at all
energies. The systematic effect of such uncertainties on the
estimated cluster mass function is small, as summarized in
Section 8.1.1. We also note that the calibration uncertainties
in the measurement of the evolution of the mass function are
nearly canceled because we use the same telescope and uniform
analysis of both low- and high-z samples.

3.1.2. ROSAT

The ROSAT PSPC data were reduced as described in Vikhlinin
et al. (1999). The reduction pipeline was based on S. Snow-
den’s software (Snowden et al. 1994). This software elimi-
nates periods of high particle and scattered solar backgrounds
as well as those intervals when the detector may be unstable.
Exposure maps in several energy bands are then created us-
ing detector maps obtained during the RASS. The exposure
maps include vignetting and all detector artifacts. The unvi-
gnetted particle background is estimated and subtracted from
the data, even though the PSPC particle background is low
compared to the cosmic X-ray background. The scattered so-
lar X-ray background also should be subtracted separately,
because, depending on the viewing angle, it can introduce a
constant background gradient across the image. Most solar
X-rays were eliminated by simply excluding time intervals when
this emission was high, but the remaining contribution was also
modeled and subtracted. If the cluster was observed in several
pointings, each pointing was reduced individually and the re-
sulting images were merged.

9 The current status of the Chandra calibration is summarized on the Web
site http://cxc.harvard.edu/cal. See also V05 for discussion relevant to the
cluster data analysis.

The energy resolution of the ROSAT PSPC is insufficient to
separate the soft background components spectrally, which was
possible in the case of Chandra. However, the ROSAT field
of view is much larger and usually we can reliably measure
the uniform background level from the cluster observations
themselves. Our procedure for the background determination
was to fit the observed surface brightness profile at large
radii, r � 0.7 r500, to a power law plus constant model (as
discussed in Vikhlinin et al. 1999). The additional power law
component is required since at lower z, the contribution of the
cluster brightness is small but non-negligible even near the
edge of the ROSAT PSPC field of view. The tests show that
this procedure provides a relative uncertainty in the background
determination of ∼ 5% (Vikhlinin et al. 1999). This uncertainty
was propagated into the further analysis.

The limited bandpass of the ROSAT PSPC (limited to E <
2 keV) does not allow one to measure the cluster temperatures
with an accuracy useful for our purposes. However, the observed
count rate can be converted to a broadband flux very reliably,
as confirmed directly by excellent agreement with the Chandra-
derived flux from the same region (see Section 3.4).

3.2. Removal of Substructures and Identification of the Cluster
Center

After the initial data preparation, we have flat-fielded and
background-subtracted images in the 0.7–2 keV energy band.10

These images contain only the cluster emission and other
X-ray sources. Our next step is to remove all pointlike sources,
as well as substructures within the cluster. The point source
removal is the most straightforward step. Our detection routine
is based on the wavelet decomposition technique documented
in Vikhlinin et al. (1998). The point sources are identified
using the small scales of the wavelet decomposition and the
corresponding regions are masked out from all further analysis.
The exclusion radius takes into account the variation of the
point-spread function (PSF) size with the offaxis angle (this
is especially important in the case of ROSAT PSPC pointed
observations).

We also mask out any detectable, well-defined substructures
within the cluster (they are included only in the total X-ray lumi-
nosity). The detection of substructures was fully automatic and
based on the analysis of large scales of the wavelet decomposi-
tion process. We masked out only the regions associated with the
prominent secondary maxima in the X-ray surface brightness,
keeping the weaker components such as filamentary structures.
Examples are shown in Figures 3 and 4. Removal of obvious
substructure reduces the scatter in the relation between the total
mass and X-ray proxies, although the effect is small in most
cases because we exclude only a small fraction (< 20%) of the
total flux. We note that removal of substructures was included in
the mock Chandra analysis (Nagai et al. 2007b) which we use
to assess the uncertainties in the calibrations of the Mtot versus
proxy relations.

The only quantity we measure without removing the large
scale-substructures is the total X-ray luminosity. The luminosity
determines the detectability of the cluster in shallow surveys.
These surveys usually lack sensitivity and angular resolution to
remove the substructure and detect the clusters on the basis of
its total flux.

10 The 0.7–2 keV band is chosen to maximize the ratio of the cluster and
typical background brightness.

http://cxc.harvard.edu/cal
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Figure 3. Typical examples of X-ray images for the low-redshift clusters (A85, A2163, and A2597 top to bottom). The left panels show the Chandra images (each
panel is 50′ × 50′). ROSAT PSPC images (64′ × 64′) are shown on the right. Yellow circles show detected sources unrelated to the clusters; the general increase of
their radius at large off-cluster distances reflects the degradation of the telescope PSF. The red circles indicate the cluster substructures that were removed from the
profile analysis (Section 3.2). The red crosses mark the location of the adopted cluster centroid (Section 3.2).

Figure 4. Typical examples of Chandra images for the high-redshift clusters (0230+1836, z = 0.80 and cl1120+2326, z = 0.56). Each panel is 8.′4×8.′4. The meaning
of the region marks is the same as in Figure 3.
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The further steps in the X-ray data reduction are based on
the analysis of the azimuthally averaged profiles. For this, we
need to define the cluster center in each case. In the case of
relaxed clusters with cooling flows, the center is defined to
be simply at the location of the X-ray peak. The situation is
less straightforward for the noncooling flow clusters or those
with substructure. Instead of using the maximum in the X-ray
brightness map, we center the profiles at the “center of gravity”
for the main cluster body. This is done by computing the mean
emission-weighted coordinates using the X-ray brightness in the
annulus r = [250–500] kpc, and iterating this procedure 2–3
times. The selection of the centroids is illustrated in Figure 3.

3.3. Chandra Spectral Analysis

There is an important difference in the approach for deter-
mination of the average temperature from the Chandra data for
high- and low-z clusters. The procedure is straightforward for
the high-z objects that fall entirely inside the Chandra field of
view. In this case, we can measure the average temperature sim-
ply by fitting a single-T model to the X-ray spectrum in the
0.6–10 keV band integrated in the radial range of interest, e.g.,
r = (0.15–1) r500. This is a common, straightforward analysis;
the interested reader can find all the details of our approach in
Vikhlinin et al. (2005).

The situation is more complicated for low-z clusters where
typically not all position angles fall inside the ACIS field of
view at large radii (Figure 3). If we simply fit the integrated
spectrum within the ACIS field of view, the contribution of the
central region to the total flux will be higher than it should
be in the case of complete coverage. This introduces a bias if
the ICM temperature distribution is not uniform. Usually, T is
overestimated because the observed T (r) decreases at large radii
(Markevitch et al. 1998; de Grandi & Molendi 2002; Vikhlinin
et al. 2005; Pratt et al. 2007). Our solution is to measure the
temperatures independently in several annuli (we use annuli of
equal logarithmic width, rout/rin = 1.5, within which the overall
gradient of T (r) can be neglected) and then average the obtained
temperature profile weighting each bin not with observed counts
but with the total flux expected in the given annulus if it were
completely covered with the field of view. The surface brightness
profile needed to compute this weighting function can always
be derived from ROSAT data that always cover the radial range
of interest. In principle, this is not an exact method since this
weighting function is proportional essentially to the emission
measure integral, while the weighting corresponding to the
spectroscopic mean is different (Mazzotta et al. 2004; Vikhlinin
2006). In practice, however, this makes a negligible difference
for our clusters, as was verified using the clusters from the
Vikhlinin et al. (2005) sample that have the adequate radial
coverage for exact computation of 〈T 〉.

The X-ray spectral model we fit to the observed Chandra
spectra includes foreground absorption in the Galactic ISM. In
most cases, the absorbing column density, NH , was fixed at the
value provided by radio surveys (Dickey & Lockman 1990)
but we always checked that it is consistent with the observed
spectrum. In a few cases (2A 0335, A2634, A478, A2390) the
X-ray spectrum indicated a significantly higher absorption than
suggested by the radio data, most likely due to the presence
of molecular gas and dust along the line of sight. In these
cases, NH was derived directly from the X-ray spectrum. A
cautionary note is that small variations of NH , of order ±2 ×

1020 cm−2, cannot be detected in the Chandra spectra11 because
they are indistinguishable from variations of the temperature.
For the typical values NH = 4 × 1020 cm−2 and T = 5 keV,
the variation of NH by ±2 × 1020 cm−2 changes the best-fit
temperature by ±7%, and also changes the derived gas mass by
±3.5%, anticorrelated with T. Such variations are smaller than
the scatter of these quantities for a fixed mass (Kravtsov et al.
2006) but still should be kept in mind. In this regard, we note
that YX = Mgas ×TX is less sensitive to variations of NH because
they have the opposite effect on TX and Mgas.

The last issue that should be discussed in relation with the
X-ray spectral analysis is the treatment of the ICM metallicity.
In low-z clusters, the statistical quality is sufficient to measure
the metal abundance simultaneously with the temperature. This
is impossible for most of our high-z clusters. In these cases,
we fixed the metallicity at Z = 0.3 Z�, the typical value at
both low and high redshifts (Mushotzky & Loewenstein 1997;
Tozzi et al. 2003). We verified that variations of z in the range
0.1−0.5 (conservative bracket) have a small effect on the derived
parameters—for a T = 5 keV cluster at z = 0.5 the temperature
changes by ±5% and Mgas changes by ±2%, correlated with T.

The instrumental uncertainties in TX measurement are sys-
tematic and uniform (do not introduce object-to-object scatter
or any significant redshift-dependent trends). They are consid-
ered separately in Section 8.1.1.

3.4. Gas Mass Measurements

Two of the mass proxies we utilize for the Mtot estimates
(Section 4) use the gas mass within r < r500. Derivation
of the gas mass from the X-ray imaging data is relatively
straightforward, but a few points are still worth noting here.
Our procedure for the Mgas measurements follows that used for
a more detailed analysis of a smaller sample of low-redshift
clusters described in Vikhlinin et al. (2006, V06 hereafter), and
the main steps are outlined here for completeness.

The X-ray flux in the 0.7–2 keV energy band is very
insensitive to the plasma temperature, as long as T � 2 keV
(Fabricant et al. 1980). The observed brightness gives essentially
the integral of ρ2

g along the line of sight. This is why the ICM
mass is robustly derived from the X-ray data even if the detector
has almost no energy resolution and a limited bandpass. Even
though the effects of the temperature and metallicity are very
weak, we applied the appropriate corrections to the observed
surface brightness profiles as detailed in V06; this correction
also removes the effects of spatial variations of the telescope
effective area. The corrected profiles are expressed in units of
the projected emission measure integral,

∫
ne np dl. They are

deprojected to reconstruct the three-dimensional profile of ρg(r).
This is done by fitting the projected data to an analytical model,

np ne = n2
0

(r/rc)−α(
1 + r2/r2

c

)3β−α/2

1

(1 + rγ /rs
γ )ε/γ

+
n2

02(
1 + r2/r2

c2

)3β2
, (2)

which represents all main features observed in real clusters—
the β-model (Cavaliere & Fusco-Femiano 1978) profile (Jones
& Forman 1984) that may steepen at large radii, and also show

11 Nor in the combined Chandra & ROSAT spectrum in the 0.2–10 keV band
if the nominal NH is greater than approximately 5 × 1020 cm−2. We note,
however, that the ROSAT data were checked for consistency with the nominal
NH for all clusters in our low-redshift sample.
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Figure 5. Examples of the surface brightness profile modeling for clusters shown in Figures 3 and 4. The observed X-ray count rates are converted to the projected
emission measure integral (see Section 3.4 and V06). The black and red data points show the Chandra and ROSAT measurements, respectively. The best fit models
(the projected emission measure integral for the three-dimensional distribution given by Equation (2)) are shown by solid lines. The dashed lines indicate the estimated
r500 radii (the YX-based value; see Section 4) for reference. Note that in all cases, the surface brightness is traced accurately to r500. In relaxed clusters such as A85,
the model describes the data very accurately. In strong mergers such as A2163, we see systematic deviations from the fit. The effect of such deviations on the cluster
mass proxies was studied in Nagai et al. (2007b; see also Section 3.5).

a power-law cusp and possibly a separate component in the
center. These modifications of the β-model greatly enhance the
functional freedom and improve the reliability of the X-ray
modeling at large radii (see discussion in V06).

The parameters of the three-dimensional model in
Equation (2) are obtained by numerically projecting it along the
line of sight and fitting to the observed profile. The best fit di-
rectly gives us the analytic expression for the three-dimensional
profile of ρg(r) which can be integrated to determine Mgas in
the given range of radii. Several examples of this analysis are
shown in Figure 5. Note the excellent agreement between the
Chandra and ROSAT measurements in the same regions indicat-
ing an accurate cross-calibration between the two instruments.
The uncertainties of ρg(r) and Mgas are derived via Monte Carlo
simulations (see V06).

3.5. Verification by Mock Observations of Cosmological
Simulations

We note that our approach to the measurements of the ICM
mass and average temperature has been fully tested by the

analysis of the mock Chandra observations of the clusters from
high-resolution cosmological simulations (Nagai et al. 2007b).
The cosmological cluster simulations used in this work should
correctly reproduce the main aspects of the ICM structure in
real clusters, including the large-scale deviations of the main
cluster body from spherical symmetry and intermediate-scale
nonuniformities of the ICM density and temperature. In fact,
the simulations reproduce the detailed X-ray properties of the
ICM in the cluster outskirts (r � 0.2r500) quite well (Nagai et al.
2007a) and are therefore sufficiently realistic for our purposes.
In constructing the mock observations of these simulations, we
carefully reproduced the essential observational effects such as
the Chandra sensitivity to plasma of different temperatures,
the background level and photon statistics found in typical
observations for both low- and high-redshift clusters. The mock
data were reduced by the same software that we use for the
analysis of real cluster observations.

The mock data analysis thus tests the combined effect of in-
accuracies in all steps of our analysis, including removal of sub-
structures, temperature measurements, and modeling of the X-
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ray brightness profile. The mock analysis shows that we recover
Mgas and average temperatures very accurately. For example, the
bias in Mgas within r = r500 due to small-scale nonuniformities
of the ICM is only +3%, independent of redshift. The unrelaxed
clusters are not significantly different from the relaxed ones, ex-
cept for a small number of outliers where the Mgas measurement
can be biased by 10%–15%. This is significantly smaller than
the biases reported in the earlier work by Mathiesen et al. (1999).
The improvement can be explained by advances in the data anal-
ysis (in particular, the relaxation of the assumption that the ICM
density follows the β-model) and inclusion in our mock analysis
of the effect of substructure removal which was always used by
observers.

To summarize, we can state that the results from the anal-
ysis of mock observations validate our analysis methods. The
expected residual biases have almost no effect on the derivation
of the cluster mass function.

4. TOTAL MASS ESTIMATES

The cluster mass is not a well-defined quantity and can be
defined in a variety of ways (see, e.g., White 2001). We choose
to define mass within the radius corresponding to a fixed mean
overdensity, Δ, with respect to the critical density at the cluster
redshift, ρc ≡ 3H 2(z)/8πG:

MΔ = M(< rΔ) :
MΔ

4/3 π r3
Δ

= Δ × ρc. (3)

The choice of the overdensity threshold is driven by practical
considerations. The ultimate goal of these measurements is to
compare the observed mass function with the theoretical pre-
dictions. The mass function models, which are calibrated by
numerical simulations (e.g., Jenkins et al. 2001), are more ro-
bust for low values of Δ, where the role of numerical resolution
in the simulations and nongravitational effects within clusters is
minimal. On the contrary, the masses derived from X-ray data
are more robust for high values of Δ, where the statistical quality
is higher, hydrostatic equilibrium assumption is more accurate,
etc. We need, therefore, to choose a compromise between con-
flicting theoretical and observational requirements. We choose
Δ = 500, the radius within which the clusters are relatively re-
laxed (Evrard et al. 1996) and good measurements of gas mass
and temperature can be obtained with our Chandra observations
(Vikhlinin et al. 2006; Nagai et al. 2007b). This is, effectively,
the largest radius at which the ICM temperature can be reli-
ably measured with Chandra and XMM-Newton (e.g., Vikhlinin
et al. 2005; Pratt et al. 2007). Using significantly lower Δ dra-
matically increases observational uncertainties; at significantly
higher values of Δ, the theoretical uncertainties start to increase
while there is no crucial gain on the observational side.

The total cluster masses, M500, are estimated from observed
ICM parameters. We employ the three X-ray proxies for Mtot
discussed in Kravtsov et al. (2006, KVN hereafter): the core-
excised average temperature, TX, the hot gas mass, Mgas, and
the estimated total thermal energy, YX = TX × Mgas. We rely
on the existence of low-scatter scaling relations between these
parameters and Mtot, as predicted by self-similar theory and
confirmed by high-resolution cosmological simulations.

The mass versus proxy relations are calibrated using the
hydrostatic Mtot estimates in a sample of well observed, low-
redshift, relaxed clusters, ten clusters from V06 plus seven addi-
tional objects (A2717, A3112, A1835, A1650, A2107, A4059,
RXJ 1504–0248) whose deep Chandra observations appeared

in the archive since 2006.12 In principle, the hydrostatic method
can underestimate the total mass due to nonthermal pressure
components. For example, the analysis of mock observations
presented in Nagai et al. (2007b) suggests that M500 can be un-
derestimated by ∼ 15%, and this effect can be attributed to the
bulk motions of the gas at large radii. We do not correct the
normalization of the mass versus proxy relation for any such
effects because there are theoretical uncertainties in their mag-
nitudes (e.g., the ICM viscosity can affect the average velocity
of small-scale bulk motions). We simply account for the possible
Mtot biases in the total systematic error budget (see Section 8).
Ultimately, a reliable calibration of the mass versus proxy re-
lation can be obtained through a stacked weak lensing analysis
(e.g., Sheldon et al. 2001) of a representative sample of clus-
ters with high-quality X-ray data. Such data are only starting
to become available now (Hoekstra 2007; Mahdavi et al. 2008;
Zhang et al. 2008) and we in fact use them to place limits on
systematic errors in our calibration of the Mtot measurements
(Section 4.3.1).

We do apply, however, small first-order corrections to the
observed mass versus proxy relations when they are required
to transfer the calibration from relaxed clusters to the entire
population or to account for expected departures from self-
similarity in the evolution of these relations. In doing this, we
try to use only the most robust predictions from the simulations
and to rely on the directly observed properties as much as
possible. The corrections to each proxy are detailed below. The
largest corrections are applied for the Mtot–TX relation, while the
Mtot–YX relation does not require any corrections (and hence is
potentially the most reliable).

4.1. Mtot–TX Relation

The average X-ray temperature is one of the most widely
used cluster mass indicators. The M–T relation expected in
self-similar theory is given by

M500 ∝ T 3/2 E(z)−1, where E(z) ≡ H (z)/H0. (4)

This relation arises in a self-similar model simply because
the ICM temperature is expected to scale with the depth
of gravitational potential T ∝ M/R and mass and radius
in our adopted definition are related (R ∝ M1/3). Relation
(4) also generally describes the ICM temperatures found in
the cosmological numerical simulations (Evrard et al. 1996;
Mathiesen & Evrard 2001; Borgani et al. 2004, KVN).

The average cluster temperature can be defined in different
ways but the most practical, from the observational point of view,
is the average spectral temperature—the value derived from a
single temperature fit to the total cluster spectrum integrated
within a given radial range. We refer to this temperature
as TX.

4.1.1. Definition and Determination of TX

Spatially resolved X-ray spectroscopy became available with
the launch of the ASCA satellite, and since then many studies
has indicated that the cluster scaling relations become tighter
if the average temperature is measured excluding the cluster
central region which is often affected by radiative cooling. This

12 These data were reduced completely identically to Vikhlinin et al. (2005)
and V06. All primary conclusions of these papers hold for these additional
objects. The only effect is to improve the accuracy of the Mtot versus proxy
relations.
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is well illustrated by the reduction in scatter in the LX–T relation
shown in Figures 1 and 2 of Markevitch (1998). The temperature
profiles show a large object-to-object scatter in the centers of
even relaxed clusters (V06). Clearly, the central cluster region
should be excluded from the measurement of TX. Markevitch
(1998) has used rin = 70 kpc (this inner cutoff radius was also
used in V06 and several other works). Perhaps a better motivated
choice is to set rin at a fixed fraction of r500 (Arnaud et al. 2005).
We will use, as in KVN, rin = 0.15 r500, because approximately
outside this radius the observed profiles of relaxed clusters are
self-similar (V06). Chandra’s angular resolution is sufficient
to resolve 0.15 r500 even in the highest-redshift objects. An
algorithmic complication is that the cutoff radius is expressed
through Mtot which is itself estimated from, e.g., TX. This is not
a big problem since TX is not very sensitive to the exact value of
rin, and hence the following iteration scheme converges quickly:
(1) measure TX including the central region; (2) estimate mass
from M–T relation; (3) remeasure TX using rin = 0.15 r̂500
and estimate new mass; (4) repeat step (3) until convergence is
reached.

We also need to address the issue of the outer radius for
integration of the X-ray spectrum. The cluster properties seem
to become progressively self-similar at large radii (Nagai et al.
2007a). Therefore, ideally, the spectrum should be integrated
as far out as possible. The exact value of rout is unimportant
because the total X-ray flux converges quickly at r → ∞.
A good practical choice is to set rout = r500, because outside
approximately this radius, the X-ray brightness is low compared
with the background (e.g., Figure 5).

Given the arguments presented above, we determine TX in
the radial range 0.15 r500 − 1 r500. This is a straightforward
measurement for our high-z clusters because this region fits
completely inside the Chandra field of view and exposures were
designed to provide a sufficient statistical accuracy. However,
for a large fraction of the low-z clusters, integration to r500
is impossible because of the limited field of view.13 A simple
investigation shows that we can use a smaller value of rout in
such cases. First we note that the temperature can be integrated to
0.5 r500 for all clusters (we refer to this value as TX,2). For clusters
that have sufficient radial coverage, we measured temperatures
both in (0.15–0.5) r500 and (0.15–1) r500 radial ranges. The ratio
of the two values is shown in Figure 6. It is consistent with a
linear relation,

TX/TX,2 = 0.9075 + 0.00625 TX,2, (5)

where the temperatures are in units of keV. The observed
scatter around the linear fit is negligible, � 3%. The ratio is
also consistent with a constant value, 	 0.95, except for a
few outliers at low temperatures. Since a tight correlation is
observed, we can measure TX,2 and then estimate TX with a
sufficient accuracy using Equation (5) for those clusters that are
not covered by Chandra at large radii.

Finally, we note that even if the trend in TX/TX,2 is real,
this does not necessarily imply deviations from self-similarity.
Because T is not constant as a function of radius, we have a
mixture of spectral components within any aperture. A single-
temperature fit to such a spectrum gives a weighted average
which is different from the mass-weighted T and weighting itself
depends on the typical temperature in the spectrum (Mazzotta
et al. 2004; Vikhlinin 2006). Therefore, we expect trends in the

13 Note that the gas mass can still be measured in these clusters out to r500
using the ROSAT PSPC data.

Figure 6. Ratio of the X-ray spectral temperatures measured in the radial ranges
(0.15 − 0.5) r500 (“TX,2”) and (0.15 − 1) r500 (“TX”), for clusters in the local
sample that have a sufficient Chandra coverage. The solid line shows the linear
approximation given by Equation (5), with a 3% level of scatter indicated by
dotted lines. The ratio of the temperatures is also consistent with a constant
value, 	 0.95 except for a few outliers at low T.

TX/TX,2 ratio even if the scaled three-dimensional temperature
profiles for low- and high-T clusters are identical.

4.1.2. Calibration of Mtot–TX Relation at Low Redshifts using
Relaxed Clusters

For 17 low-redshift relaxed clusters, there exist very high-
quality Chandra observations, providing temperature profiles
extending sufficiently far to permit hydrostatic mass estimates at
r = r500 (see the introduction to Section 4). These observations
are a basis of our calibration of the Mtot–TX relation at low
redshifts. The mass and temperature measurements for these 17
clusters (Figure 7; note that we symmetrize the error bars for
simplicity) are fit to the power law,

M = M0E(z)−1 (T/5 keV)α, (6)

normalized at T = 5 keV because this is approximately the
median temperature for this sample and therefore the estimates
for M5 and α should be uncorrelated. The fit is performed
using the bisector modification of the Akritas & Bershady
(1996, and references therein) linear regression algorithm that
allows for intrinsic scatter and nonuniform measurement errors
in both variables. The uncertainties were evaluated by bootstrap
resampling (e.g., Press et al. 1992), while simultaneously adding
random measurement errors to M and T. The results are shown
in Figure 7 and the best-fit parameters of the power law fit are
reported in Table 3. The best-fit slope, 1.53 ± 0.08 is consistent
with the expectation of the self-similar theory (Equation 4).
Fixing the power law slope at 1.5 does not significantly
reduce the uncertainty in the normalization (Table 3). The
XMM-Newton determination of the M–T relation (Arnaud et al.
2005) is close to our measurement.

Our procedure for hydrostatic Mtot estimates was fully tested
using mock data from the simulations in Nagai et al. (2007b).
This work shows that the inaccuracies introduced by the
X-ray data analysis—e.g., those related to departures of
the cluster body from spherical symmetry—are small. The
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Table 3
Calibration of Mass-observable Relations

Relation Form M0, fg,0 α

M500 − TX M500 = M0(T/5 keV)α E(z)−1 (3.02 ± 0.11) × 1014 h−1 M� 1.53 ± 0.08
M500 − TX M500 = M0(T/5 keV)α E(z)−1 (2.95 ± 0.10) × 1014 h−1 M� 1.5, fixed
M500 − Mgas fg = fg,0 + αlog M15 (0.0764 ± 0.004) h−1.5 0.037 ± 0.006
M500 − YX M500 = M0(YX/3 × 1014 M� keV)α E(z)−2/5 (5.77 ± 0.20) × 1014 h1/2 M� 0.57 ± 0.03
M500 − YX M500 = M0(YX/3 × 1014 M� keV)α E(z)−2/5 (5.78 ± 0.30) × 1014 h1/2 M� 0.6, fixed

Notes. To apply the relations, measure the mass proxy for your h of choice, and scale the normalization factor in Column 2 according
to the h-dependence given in Column 3. Mtot − YX relation should be applied according to Equation (14). The fg trend is used in the
Mtot − Mgas, Equations (8) and (7); the z-dependence of this relation is discussed in Section 4.2.2.

Figure 7. Calibration of the M–T relation using X-ray hydrostatic mass
measurements for a sample of ten relaxed Chandra clusters with the temperature
profile measurements extending to r = r500. The mass measurements are taken
from V06 with seven additional clusters (see Section 4), the temperatures match
our definition of TX (see Section 4.1.1). The dashed line shows the best-fit power
law relation (parameters given in Table 3).

dominant source of error are departures from equilibrium and
non-thermal pressure components, the effect fundamentally
missed by the X-ray hydrostatic mass estimates. For example,
the residual random gas motions in “relaxed” clusters in the
Nagai et al. (2007b) sample seem to result in a 10%–20% un-
derestimation of Mtot near r = r500. Unfortunately, direct mea-
surements of the ICM turbulence (and other nonthermal pressure
terms) presently are unavailable. We thus face a dilemma: should
we use the theoretical modeling to estimate corrections to the
X-ray mass estimates, or should we rely only on observa-
tions? Our choice is to follow the philosophy outlined in the
introduction to Section 4 and to use the corrections suggested
by simulations as an estimate of the systematic errors. A better
estimate (9%) for the systematic uncertainties in the Chandra
cluster mass scale can be obtained from comparison of X-ray
and weak lensing mass measurements (see Section 4.3.1).

4.1.3. Transfer of Mtot–TX Calibration to Entire Population

The simulations suggest a systematic offset in the normaliza-
tion of the Mtot–TX relation for relaxed and unrelaxed clusters, in
the sense that the merging clusters tend to have lower tempera-
tures for the same mass (Mathiesen & Evrard 2001; Ventimiglia
et al. 2008, KVN). Since our calibration of the Mtot–TX is for
a subsample of relaxed clusters, we need a procedure to trans-
fer this calibration for the entire population that contains both

Figure 8. Fraction of clusters which could be classified as “relaxed” based on
their observed X-ray morphology (presence of secondary peaks, large centroid
shift etc., see Section 4.1.3), as a function of z.

relaxed and merging clusters. This can be achieved using a sim-
ple, first-order correction outlined below.

First, we note that the systematic offset in the Mtot–TX relation
cannot be measured directly using the X-ray data. Ultimately, it
can be measured with a weak lensing analysis of a large sample.
The results presented in KVN (their Table 2) suggest that the
offset is (17 ± 5)% in mass for a fixed TX. There is no obvious
trend of this offset with redshift, or the difference in the slope of
the relations for relaxed and merging clusters. Most importantly
for our application, this offset can lead to departures from self-
similar evolution in the Mtot–TX relation for the entire cluster
population, because the fraction of merging clusters is expected
to increase at high redshifts (e.g., Gottlöber et al. 2001; Cohn &
White 2005), as we indeed observe in our sample (Figure 8).

Second, KVN and Nagai et al. (2007b) classified the sim-
ulated clusters as relaxed and unrelaxed using only the mor-
phology of their mock X-ray images. We, therefore, can ap-
ply the equivalent classification to the observed clusters in our
high- and low-z samples. “Unrelaxed” clusters are those with
secondary maxima, filamentary X-ray structures, or significant
isophotal centroid shifts. Nagai et al. (2007b) show examples
of this classification applied to simulated data; more examples
in the real data can be found in Figures 3 and 4. The TX-based
mass estimates for clusters identified as mergers should be cor-
rected upwards by a factor of 1.17. Formal uncertainties on this
correction factor are ±0.05 (Table 2 in KVN); the average un-
certainties for the entire population are further reduced because
masses have to be corrected only for a fraction of clusters (see
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Table 4
Summary of Main Systematic Uncertainties in the Cluster Mass Function

Source of Error Affects Uncertainty ref

400d selection function V(M) for high-z sample ±3% Section 5, Paper I
Scatter in LX − Mtot V(M) ±10% Section 5
Evolution in LX − Mtot V(M) for high-z sample ±22% for median mass Section 5
Chandra calibration M0 −9% to 0 Section 8.1.1
ICM metallicity versus z MY (z), MG(z), MT (z) +3%, +1%, +6%, respectively Section 8.1.2
Accuracy of X-ray hydrostatic mass estimates M0 0 − 9% Section 4.3.1
Departures from self-similar evolution MT (z) ±7% Section 4.1.4
Departures from self-similar evolution MY (z) ±5% Section 4.3
fg(z) MG(z) ±5% Section 4.2.2

Notes. The volume uncertainties are quoted for the median mass in the sample. The Mtot uncertainties are separated into calibration of
the low-z mass versus proxy relations (M0) and uncertainties in the evolutions of these relation, M(z). MT (z), MG(z), and MY (z) stand
for total masses estimated using TX , Mgas, and YX , respectively. The evolutionary uncertainties are quoted at z = 0.5.

below). Applying such a correction for individual objects auto-
matically takes into account any redshift-dependent changes in
the fraction of mergers, and thus removes this source of depar-
tures from self-similar evolution. Ventimiglia et al. (2008) show
that the deviations from the mean Mtot–TX relation in the sim-
ulated clusters are correlated with the quantitative substructure
measures; using such an approach instead of our simple classi-
fication is potentially more accurate and would be warranted in
samples of larger size.

We note that the underlying source of difference in the
Mtot–TX normalization between mergers and relaxed clusters
is incomplete relaxation of the intracluster gas. A fraction
of energy is contained in bulk motions of the gas and it is
gradually converted into heat as the cluster relaxes after a
merger. This process (unlike, e.g., radiative cooling in the
center) should be reliably reproduced by current simulations,
and so our reliance on the simulations to derive this correc-
tion is justified. Our dichotomical classification is, of course,
very approximate and a more accurate approach should take
into account the cluster relaxation history. However, the current
X-ray data does not allow us to quantify the cluster dynamical
state with the required precision. Even rather simple substruc-
ture measures (e.g., Jeltema et al. 2008) require more photons
than we have for distant objects. Moreover, the process of re-
laxation should be sensitive to effective viscosity in the ICM
and it is unclear that the current simulations which incorporate
only low, numerical viscosity can accurately predict the Mtot–TX

relation for semirelaxed clusters. They, however, should still be
reliable for the extreme cases. In nearly relaxed clusters, the
turbulent motions are very weak in the inner regions (which
dominate the TX measurements) even in the zero-viscosity sim-
ulations. In postmerger clusters, most of the turbulent energy is
in the large-scale flows which dissipate on long time scales even
if viscosity is high (Coulomb). Furthermore, the magnitude of
this correction is relatively small. We estimate that the fraction
of nonrelaxed clusters in the sample changes from 35% at z = 0
to ∼ 80% at z = 0.6 (Figure 8). The corresponding correc-
tion for the Mtot–TX normalization for the entire populations is
+6% and +13% at z = 0 and z = 0.6, respectively; thus the
redshift-dependent correction is only 7% in mass.

4.1.4. Summary of Mass Estimates through Mtot–TX Relation

This section provides a summary of how we use the X-ray
temperature for the cluster Mtot estimates.

First, an initial value of TX is obtained from the Chandra
spectrum integrated within a wide aperture (not excluding the
center). This TX is used to estimate M500 using the power

law fit in Equation (6) and thus r500. The temperature is then
remeasured in the annulus (0.15–1) r500 and this procedure is
iterated several times until convergence is reached. If the radius
r500 is well outside the Chandra field of view, we use a smaller
aperture, (0.15 − 0.5) r500, and apply corrections detailed in
Section 4.1.1.

Our Mtot–TX relation is calibrated by very high quality
Chandra observations of 17 low-redshift relaxed clusters with a
wide range of masses. The statistical accuracy of this calibration
is ≈ 3%, so the dominant source of uncertainty is systematics,
mostly related to the possible presence of nonthermal pressure
components in the ICM.

Next, we need to compensate for the expected systematic
difference in the Mtot–TX relation for relaxed and unrelaxed
clusters. If the X-ray morphology shows that the cluster is unre-
laxed, the mass estimated from the Mtot–TX relation is multiplied
by a factor of 1.17 (Section 4.1.3). In doing so, we assume that
Mtot–TX relations for relaxed and unrelaxed clusters separately
evolve precisely as expected in the self-similar theory (M for
fixed T scales as E(z)−1). We cannot verify this assumption
independently of the background cosmology we would like to
measure. Instead, we rely on the simulations to estimate the mag-
nitude of possible departures from the self-similar scaling. Such
departures must be treated as systematic errors which affect the
cosmological constraints. From the results presented in Nagai
et al. (2007b), we estimate this uncertainty to be equivalent to
≈ 7% difference in the normalization of Mtot–TX relations at
z = 0 and z = 0.6.

To properly compute the likelihood function for the estimated
cluster mass functions, we need to know the intrinsic scatter in
the TX-based mass estimates. The simulations suggest that this
scatter is 	 20%, and we adopt this value. We later verified that
reasonable variations of the scatter (in the range 15%–25%) have
negligible effect on fitting the estimated mass function. This
range brackets the scatter observed in the simulations separately
for relaxed and unrelaxed subpopulations, as well as for low and
high-redshift clusters (Table 2 in KVN). Therefore, our analysis
is insensitive to realistic trends of the scatter with redshift.

4.2. Mtot–Mgas Relation

Our second method of estimating the cluster total mass uses
the X-ray derived hot gas mass as a proxy. The application
of this proxy is extremely simple in an ideal case in which
all cluster baryons are in the ICM, the ICM strictly follows
the distribution of dark matter, and clusters contain exactly the
cosmic mix of baryonic and nonbaryonic matter (Voevodkin &
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Vikhlinin 2004). The total mass in this case is given simply by

Mtot = f −1
g Mgas, (7)

where Mgas is provided by the X-ray data, and fg, to the first ap-
proximation, equals Ωb/ΩM , the ratio which is accurately given
by the CMB measurements. To estimate the mass corresponding
to a given critical overdensity, we need to solve

Mgas(r) f −1
g

4/3 π r3 ρc(z)
= Δ (8)

for r to find the corresponding overdensity radius, rΔ.
Equation (7) with Mgas evaluated at rΔ is then used to find
Mtot.

4.2.1. Corrections for Nonuniversality of Gas Fraction

In reality, the Mgas-based estimate is more complicated be-
cause the observed gas fraction in clusters is significantly lower
than the cosmic average (e.g., Ettori 2003; Allen et al. 2004;
LaRoque et al. 2006; Afshordi et al. 2007) and, moreover, there
are trends of observed fg with the cluster mass (e.g., Mohr et al.;
1999, V06; Zhang et al. 2006). This trend can be related to
the baryon cooling and galaxy formation (Kravtsov et al. 2005),
energy feedback from the central AGNs (Bode et al. 2007), evap-
oration of suprathermal protons (Loeb 2007), etc.—processes
whose theoretical modeling is highly uncertain at present. The
best approach is therefore to derive the trend fg(M) observa-
tionally. Once this is done, it can be straightforwardly taken into
account in Equation (8); we just need to use fg(4/3 π r3 ρc)
instead of a constant.14

The main problem is that direct X-ray hydrostatic Mtot
measurements near r500 are feasible only in a small number
of clusters, insufficient to establish the functional form of the
fg(M) trend. We can, however, follow the approach used in
Mohr et al. (1999)—the total mass (and hence, r500) can be
estimated from the average temperature (see Section 4.1 above),
and then the gas mass determined from the X-ray image within
that radius. Such estimates of fg have substantial uncertainties
because of the scatter in the Mtot–TX relation, but this method
can be applied virtually to any cluster. The results for our low-z
sample are shown by gray points in Figure 9. The histogram
shows the averages of these crude estimates in several mass
intervals. Clearly, the data suggest an approximately linear trend
of fg with log M . The fg values obtained from hydrostatic mass
measurements closely follow the same trend (solid black points
in Figure 9). These, more accurate, values are used to determine
the normalization and slope of the fg(M) trend,

fg(h/0.72)1.5 = 0.125 + 0.037 log M15, (9)

where M15 is the cluster total mass, M500, in units of
1015 h−1 M�. Extrapolation of this trend to lower masses de-
scribed the observed fg for galaxy groups (Sun et al. 2008). The
uncertainties of the coefficients are such that fg is determined to
4% − 5% across the useful mass range, 1014−1015 h−1 M�, re-
sulting in the same systematic uncertainty in the Mtot estimates

14 We assume that the cluster mass is the only parameter controlling
systematic trends in fg. This assumption is consistent with current observations
(see the caption to Figure 9). If there are additional parameters, their role
would be to introduce systematic scatter in the Mgas/Mtot ratio for fixed Mtot.
The observed scatter is consistent with the value we adapt based on the
simulations. If the scatter can be related to easily measured X-ray observables,
it would be possible to improve the quality of the Mgas proxy still further.

Figure 9. Trend of fg within r = r500 with cluster mass derived from
X-ray observations. The solid black circles show the results from direct
hydrostatic mass measurements (V06 with seven additional clusters, see
Section 4). Gray circles show approximate estimates using the Mtot–TX

correlation (see the text). The scatter is consistent with being purely due to
mass measurement uncertainties, either from hydrostatic estimates (Nagai et al.
2007b) or from Mtot–TX correlation (KVN). The error bars indicate only the
formal measurement uncertainties.

because of the fg(M) trend. The systematic uncertainties are,
however, dominated by those of the hydrostatic mass estimates
(discussed in Section 4.1.2 and 4.3.1) and so the overall cali-
bration of the absolute mass scale with the Mgas method is the
same as that in the Mtot–TX or M − YX relations.

The observed fg within for the highest-mass clusters is
∼ 25% lower than the cosmic baryon fraction, Ωb/ΩM =
0.165 ± 0.005 (Komatsu et al. 2009). Partly, the remaining
baryons can be in the form of stars. The observed star-to-gas
ratios for massive clusters are in the range of 0.05–0.1 (Gonzalez
et al. 2007) but the stellar masses are derived from population
synthesis models and thus can uncertain by factors of order 2.
The tension is reduced still further if the Hubble constant value
is lower than we assume. For example, for h = 0.685 (Komatsu
et al. 2009, the lower 1σ bound for the combined constraints
in), the X-ray derived fg values are 8% higher than we quote in
Equation (9).

4.2.2. Evolutionary Corrections

Unfortunately, we cannot observationally establish the fg(M)
trend for high-z clusters independent of the underlying cosmol-
ogy. Therefore, we have to rely on the theoretical models that
explain the observed trend at z = 0 and can predict its evolution
at least for the cosmologies close to the “concordance” ΛCDM.
Since, unfortunately, no completely satisfactory model currently
exists, this step is a major source of systematic uncertainties.

One such model can be based on the numerical simulations
presented in Kravtsov et al. (2005). The simulated clusters show
the trend in fg(M) which is very close to that observed at
z = 0, both in terms of slope and magnitude of the deviation
from the global baryon fraction, Ωb/Ωm (Figure 10a). The
“missing” baryon component in the Kravtsov et al. clusters
is converted into stellar material, so that (Mstars + Mgas)/Mtot
is within 10% of the value Ωb/Ωm specified in the simulation.
Observational support for this model is provided by the recent
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Figure 10. Dependence of fg within r500 on the cluster mass observed in
high-resolution cosmological simulations with cooling, star formation, and
feedback (Kravtsov et al. 2005; Nagai et al. 2007b). The simulated clusters
show qualitatively the same trend as that observed at z = 0 (Figure 9), but there
is a clear evolution of fg for the given M. The z-dependence is almost completely
removed if we scale the cluster masses by the characteristic nonlinear mass scale,
M∗ (lower panel).

work of Gonzalez et al. (2007) who show that the trend in stellar
mass fraction, fstars(M), is such that it roughly compensates for
decreasing fg in low-mass clusters, making fstars + fg nearly
constant at M500 � 1014 h−1M� clusters, although not quite
bringing it to the WMAP value of Ωb/ΩM (see discussion at the
end of Section 4.2.1).

The trend in the Kravtsov et al. simulations show a clear
dependence on the redshift (Figure 10(a)) in the sense that a
given value of fg corresponds to a systematically decreasing
M500, although at each z, fg(M) seems to follow lines with
the same slope. Empirically, we find that the dependence on
the redshift is almost completely removed (Figure 10(b)), if we
scale the cluster masses by M∗, the mass scale corresponding to
a linear fluctuations amplitude of 1.686: σ (M∗) = 1.686, where
σ (M) is the rms fluctuation of density field smoothed with a
top hat filter containing mass M. In other words, the simulations
indicate that fg(M/M∗) is almost independent of redshift, at

least at z � 1. A simple explanation of such a scaling can
be related to the mass distribution of the cluster progenitors at
high redshifts.15 We also note that qualitatively similar scaling
(fg for a fixed mass increases at high z) is expected if the gas
distribution in a cluster potential well does not evolve at all
(e.g., inner regions of a cluster remain in equilibrium and do
not evolve significantly) and gas fraction is constant, but mass
M500 changes simply due to evolution of the background critical
density, ρc(z), to which it is tied by the definition.

In the spirit of our general approach of using the theoretical
results in the cluster mass estimates as minimally as possible,
we use the observed dependence of fg on mass for low-redshift
clusters (Equation (9)), and take a suggestion from simulation
that the same trend should hold at all redshifts, if masses are
scaled by M∗ computed for the given cosmological model. This
gives us fg(M, z), necessary to estimate the total cluster mass
from the observed Mgas (Equation (8)). Although this adopted
z-dependence is motivated only qualitatively, the predicted
overall correction is small. For example, for the cosmological
model with ΩM ≈ 0.28, σ8 ≈ 0.78 (close to the best-fit to
our cluster data), M∗ = 3.6 × 1012 M� and 8.1 × 1011 M� at
z = 0.05 and 0.5, respectively. The median masses of clusters
in our sample are 4.8 × 1014 M� at z = 0.05 and 2.3 × 1014 M�
(see below). The ratio M500/M∗, therefore, varies from ∼ 130 to
∼ 280, corresponding to a predicted change in fg for the median
mass clusters of 11% (Equation (9)). A reasonable estimate for
the systematic error is around 50% of this overall correction, or
5%–6% in terms of mass between redshifts of 0 and 0.5.

4.2.3. Summary for Mtot–Mgas Relation

To summarize, our approach to the Mgas-based estimates of
the total cluster mass is based on using Equation (8) to find r500,
and hence M500, for each cluster. In this equation, Mgas(r) is
the observed gas mass profile derived from the X-ray image,
and fg is the estimated gas fraction as a function of mass and
redshift.16 The dependence fg(M) is determined empirically at
z ≈ 0 (Section 4.2.1, Equation (9)). It is assumed that this trend
evolves with redshift such that fg remains constant for clusters
with a fixed M/M∗ (this is justified in Section 4.2.2).

The systematic uncertainties of this Mtot estimate are domi-
nated by those of fg. The latter can be factorized into two compo-
nents, the uncertainties of the empirical measurements at z ≈ 0,
and the uncertainties of the assumed evolution with redshift.
The low-redshift uncertainties are essentially those of the X-ray
total mass estimates, discussed above in connection with the
Mtot–TX relation. More important for cosmological constraints
is the redshift-dependent uncertainty. Within our redshift range,
it can be estimated as 5%–6% (Section 4.2.2).

The object-to-object scatter in the Mgas-based total mass
estimates can be easily derived from the analysis of mock X-ray
data for simulated clusters. This was done in Kravtsov et al.

15 Most of the stellar mass in the red and old galaxies of observed clusters,
which contain the bulk of the cluster stellar mass, and in cosmological
simulations is in place by z ∼ 1–2, so the stellar fraction within each lower
redshift cluster is effectively “preset” at high redshifts. Efficiency of star
formation within each galaxy-sized dark matter halo depends on the halo mass.
Therefore, the stellar fraction within clusters is probably defined by the mass
function of its progenitors near the redshift of the peak star formation
(z = 2–3). Indeed, the calculations of the progenitor mass functions using
extended Press–Schechter theory (Lacey & Cole 1993) show that they are
much more similar for clusters with the same M500/M∗ than for those with the
same M500 at different z.
16 Formally, we can write the gas fraction to be a function of radius, as
fg = fg(M/M∗) = fg(500 ρc(z) 4/3 π r3/M∗(z)), and then Equation (8)
becomes an implicit equation, which can be solved for r500 numerically.
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(2006) and Nagai et al. (2007b), who find that the scatter in
the Mtot–Mgas relation is approximately 11% in Mtot for a given
Mgas. Most of this scatter results from the X-ray analysis, as
intrinsic scatter of the gas mass for a fixed total mass in simulated
clusters is < 5%.

4.3. Mtot–YX Relation

The final Mtot proxy we use is the most robust X-ray mass
estimator proposed by KVN. The quantity, YX , is defined as

YX = TX × Mgas,X, (10)

where TX is the temperature derived from fitting the cluster X-ray
spectrum integrated within the projected radii 0.15 r500 − 1 r500,
and Mgas,X is the hot gas mass within the sphere r500, derived
from the X-ray image.

The quantity that YX approximates is the total thermal energy
of the ICM within r500, and also the integrated low-frequency
Sunyaev–Zeldovich flux (Sunyaev & Zeldovich 1972). The total
thermal energy, Y, was found in the simulations to be a very good
indicator of the total cluster mass (da Silva et al. 2004; Motl et al.
2005; Hallman et al. 2006; Nagai 2006). In the simplest self-
similar model (Kaiser 1986, 1991), Y scales with the cluster
mass as

Mtot ∝ Y 3/5 E(z)−2/5 (11)

(e.g., KVN). This scaling is a consequence of the expected
evolution in the Mtot − T relation (Equation (4)) and the
assumption of the self-similar model that fg is independent of
cluster mass. Hydrodynamic simulations show that the expected
scaling Equation (11) is indeed valid, and moreover, the relation
shows a smaller scatter in M for fixed Y than, e.g., the M − TX

relation. The primary reason is that the total thermal energy of
the ICM is not strongly disturbed by cluster mergers (Poole et al.
2007), unlike TX or X-ray luminosity (Ricker & Sarazin 2001).

It is reassuring that the Mtot −Y scaling also appears to be not
very sensitive to the effects of gas cooling, star formation, and
energy feedback (Nagai 2006); these effects do not affect the
power slope or the evolution law, although change somewhat the
overall normalization. The stability of Y is primarily explained
by the fact that gas cooling tends to remove from the ICM the
lowest entropy gas (Voit & Bryan 2001), increasing the average
temperature of the remaining gas and thus affecting TX and Mgas
in opposite ways. Direct hydrodynamic simulations of Nagai
et al. (2007a) confirm this expectation.

As discussed in KVN, the X-ray proxy, YX , is potentially even
more stable with respect to cluster mergers than the “true” Y.
In the postmerger state, for example, the temperature and thus
Y is biased somewhat low because of incomplete dissipation
of bulk ICM motions. The same bulk motions, however, cause
the gas density fluctuations, which leads to an overestimation of
Mgas from the X-ray analysis (Mathiesen et al. 1999). Therefore,
the merger-induced deviations of the average temperature and
derived Mgas are anticorrelated and hence partially canceled
out in YX . Even the strongest mergers in the simulated cluster
sample used in KVN do not lead to large deviations of YX from
the mean scaling. There is also no detectable systematic offset
in the normalization of the Mtot–YX relations for relaxed and
unrelaxed clusters. The upper limit for the difference in Mtot
for fixed YX within the KVN simulated sample is 4% (see their
Table 2).

Since YX is so insensitive to the cluster dynamical state, it
is straightforward to calibrate the Mtot–YX relation using the
sample of Chandra clusters from V06, and then it is reasonable

Figure 11. Calibration of the Mtot–YX relation. Points with errorbars show
Chandra results from Vikhlinin et al. (2006) with seven additional clusters
(Section 4). The dashed line shows a power law fit (excluding the lowest mass
cluster) with the free slope. The dotted line shows the fit with the slope fixed
at the self-similar value, 3/5 (parameters for both cases are given in Table 3).
Open points show weak lensing measurements from Hoekstra (2007; these data
are not used in the fit); the strongest outlier is A1689 (open star), a known case
of large-scale structures superposed along the line of sight.

to assume that the same relation is also valid for unrelaxed
clusters. The observed Mtot–YX relation does follow very closely
the expected self-similar scaling of Equation (11) (Figure 11;
see also Arnaud et al. 2007). The best-fit power law is

ME(z)2/5 ∝ Y 0.53±0.04
X (12)

when all clusters are included. The marginal deviation of the
slope from a self-similar value of 3/5 is driven primarily by
the lowest-temperature cluster (MKW4), for which both the
total mass and YX measurements are most uncertain. Excluding
this cluster (its Mtot is in any case smaller than the lower mass
threshold in the cluster mass functions in our samples), the
power law fit becomes

ME(z)2/5 ∝ Y 0.57±0.05
X , (13)

fully consistent with the self-similar relation (shown by a dashed
line in Figure 11). We use the latter fit for the YX-based cluster
mass estimates. Note that Sun et al. (2008) find a slope of 0.57
when they fit jointly their galaxy group sample with the V06
clusters, supporting the notion that the MKW4 measurement can
be ignored. The normalization constant is provided in Table 3
(it is consistent with the XMM-Newton results of Arnaud et al.
2007). Note that the h-dependence of the normalization constant
in the Mtot–YX relation is ∝ h1/2, different from the usual h−1

in, e.g., the Mtot–TX relation. This is the consequence of the
h-dependence of the X-ray Mtot and Mgas estimates; see KVN
for details.

The overall uncertainties of the calibration of the Mtot–YX

are identical to those for the Mtot–TX relation (see Section 4.1),
with the exception that we do not expect an additional source
of uncertainty related to the transfer of calibration from relaxed
clusters to the entire population. As for the Mtot–TX relation, we
also have to rely on the simulations for an estimate of redshift-
dependent departures from the expected self-similar scaling.
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The results of KVN provide an upper limit of < 5% for the
evolution of the amplitude of the relation at a fixed YX between
z = 0 and 0.6. The expected level of scatter in the Mtot–YX

relation (7% in Mtot, see KVN) is below the uncertainties of
Chandra hydrostatic mass estimates for individual clusters.
Indeed, the intrinsic scatter is undetectable in the data. Since
the scatter is expected to be small, its exact value is unimportant
for modeling the mass function, and thus can be safely adopted
from the simulations.

4.3.1. Systematic Error of Chandra Mass Measurements

Using the Mtot–YX relation, we can address the question of
absolute calibration of the Chandra mass estimates through
comparison with recent weak lensing mass measurements in
representative samples of clusters. Weak lensing measurements
of M500 in individual objects still have ∼ 30% uncertainties,
and are expected to have a similar intrinsic uncertainty due to
projection of structures along the line of sight (Metzler et al.
2001). However, as the current weak lensing samples start to
include more than ten objects, the average normalization of
Mtot versus proxy relations can be measured to better than 10%.
The two useful recent studies are those of Hoekstra (2007) and
Zhang et al. (2008). In Figure 11, we compare the Chandra
Mtot–YX relation with that for low-z clusters in the Hoekstra
(2007) sample. The YX for all Hoekstra clusters in this plot
were derived from Chandra data using the procedure applied to
our cosmological samples. With the exception of a single outlier
(A1689, a known case of large-scale structures superposed along
the line of sight, e.g., Łokas et al. 2006), the weak lensing masses
for given YX are in good agreement with the Chandra values.
Fitting the ratio of normalizations of the Mtot–YX relations
obtained from bisector fits to the two dataset with the slope
fixed at 0.57, we find M (wl)/M (Chandra) = 1.01 ± 0.11. A
similar agreement is found for the weak lensing masses in
Zhang et al. (2008). The normalizations relevant for our case
are presented in their Table 3. After correcting their YX by +7%
to compensate for a systematic difference currently observed
between Chandra versus XMM-Newton temperatures,17 we
find M (wl)/M (Chandra) = 1.05 ± 0.07. The weighted average
for the two samples is M (wl)/M (Chandra) = 1.04 ± 0.06. The
integrated probability within the M (wl)/M (Chandra) = [0.91 −
1.09] interval is 0.7, thus ±9% is a good estimate for 1σ
systematic uncertainties in the Chandra cluster mass scale
calibration.

4.3.2. Application of the Mtot–YX Relation for Real Data

In application of the YX-based mass estimates to the real
data, we face a practical problem that YX should be determined
within r500, which is itself unknown. Moreover, YX(r) diverges
at r → ∞, although less quickly than Mgas(r). The total mass
should thus be estimated with the approach similar to the Mgas-
based method (Equation (8)); we find r500 and hence M500 by
solving the following implicit equation:

C (TX Mgas(r))α E(z)−2/5 = 500 × 4/3 π r3ρc(z), (14)

where C and α are the parameters of the power law approxima-
tion to the Mtot–YX relation, Mtot = C Yα

X E(z)−2/5.

17 Here, we are interested only in bringing all the measurements to the
Chandra temperature scale because we use Chandra data. It may well be that
the XMM temperatures are in fact correct. The temperature calibration
uncertainties should be treated as an additional source of systematic errors (see
Section 8.1.1 for more details). Fortunately, the estimated uncertainties are
within the bounds suggested by comparison of the Chandra and weak lensing
mass measurements.

5. SURVEY VOLUMES

We now need to turn to the next critical component of the
cluster mass function derivation—determination of the effective
survey volume. Our cluster samples are derived from essentially
purely X-ray flux limited surveys. We can then straightforwardly
compute the sample volumes as a function of X-ray luminosity,

V (L) =
∫ z2

z1

A(fx, z)
dV

dz
dz, (15)

where f is the X-ray flux corresponding to the object with
luminosity LX at redshift z, dV/dz is the cosmological volume–
redshift relation, and A(fx, z) is the effective survey area for
such objects. A relation between cluster luminosity and flux,

f = L

4π dL(z)2
K(z), (16)

depends on the cosmological background through the bolomet-
ric distance dL(z) and the K-correction factor (see, e.g., Jones
et al. 1998, specifically for the case of the cluster X-ray spectra).
The K-correction depends on the assumed cluster temperature
but this dependence is very weak if both fluxes and luminosi-
ties are measured in the soft energy band (0.5–2 keV as we use
here). In practice, a sufficient level of accuracy is achieved by
estimating T from the nonevolving LX–T relation accurately
measured for low-z clusters (Markevitch 1998; Fukazawa et al.
1998).

Because the objects in our low-redshift sample are all well
above the RASS detection threshold, their survey area, A(f, z), is
adequately approximated by a constant value, 8.14 sr, equal to
the geometric area of the sky regions covered (see Section 2.2
and Reiprich & Böhringer 2002). The situation is more com-
plex for our high-z clusters drawn from the 400d survey. Sky
coverage there is a function of flux because our distant clusters
are generally not much brighter than the detection thresholds in
individual ROSAT pointings and because the detection thresh-
olds also vary widely depending on the exposure time of each
pointing. Formally, the sky coverage is also a function of red-
shift because detection efficiency is somewhat sensitive to the
cluster angular size. A detailed discussion of these effects in
application to the 400d survey as well as a careful calibration
of A(f, z) for the full 400d sample was presented in Paper I
(see their Section 7).

An additional complication arises because we use only a
brighter subsample of the 400d sample at 0.35 < z < 0.473
(see Section 2.1 and Figure 1). We need, therefore, to recompute
A(f, z) using Equations (2) and (3) from Paper I with fmin in
their Equation (2) set to the actual selection fluxes used in
our subsample. This is a straightforward calculation but the
results cannot be conveniently presented in a paper. We provide
machine-readable tables for A(f, z) at the 400d survey Web site.18

The stability of the 400d survey area calculations was exten-
sively discussed in Paper I. The general conclusion is that the
uncertainties in A(f, z) do not exceed 3%, and therefore they
make a negligible contribution to our overall error budget. A
dominant source of uncertainty in determining the volume as a
function of mass is the details of the LX–M relation.

5.1. LX–Mtot relations

To fit mass function models to the data, we need to know the
survey volume as a function of mass, not luminosity. The two

18 http://hea-www.harvard.edu/400d/CCCP

http://hea-www.harvard.edu/400d/CCCP
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are trivially related if there is a well defined relation between
the cluster mass and its luminosity:

dV (M)

dz
=

∫
L

dV (L)

dz
P (L|M, z) dL, (17)

where P (LX|M, z) is the probability for a cluster with mass M
to have a luminosity LX at redshift z. The volume in the given
redshift interval is obtained by integrating this equation,

V (M) =
∫ z2

z1

dz

∫
L

A(fx, z)
dV

dz
P (L|M, z) dL, (18)

where dV/dz is the cosmological volume–redshift relation and
A(fx, z) is the survey area coverage (see Equation (15)).

The simplest model that seems to adequately describe the
observed Mtot − LX relations can be represented as a power
law with approximately log-normal intrinsic scatter around the
mean which is independent of mass and redshift, and the redshift
evolution that changes the normalization but keeps constant the
slope of the power law,

P (ln L|M) ∝ exp

(
− (ln L − ln L0)2

2 σ 2

)
, (19)

where
L0 = A(z) Mα. (20)

The evolution factor is sometimes approximated as a power law
of (1 + z) (the simplest model) and sometimes as a power law
of E(z) (self-similar evolution inspired models, see e.g., Bryan
& Norman 1998):

A(z) = A0 (1 + z)γ or A(z) = A0 E(z)γ (21)

A recent study by Maughan (2007, consistent with our results
below) indicated that the evolution factor, E(z)γ , is in fact close
to that expected in the self-similar model for the “concordant”
cosmological model. However, the general consensus has been
(e.g., Borgani et al. 2001) that we should not rely on the simplest
theory for the evolution in the LX–Mtot relation and instead
should determine it empirically for each background cosmology.
We take this approach in the present study.

5.1.1. Fitting Procedure and Treatment of Malmquist Bias

In the model specified above, the LX–M relation is character-
ized by four parameters, A0, α, γ , and σ . These parameters can
be determined using mass estimates for clusters from our sam-
ple. The large size of our sample even allows us to test the basic
assumptions of the model, e.g., that the scatter is log-normal.
A major complication, however, is Malmquist bias. In a flux
limited sample, the average luminosity of selected clusters is
higher than that in the parent population. The effect becomes
strong if the scatter in LX for fixed M is large (Stanek et al.
2006; Nord et al. 2008), as observed. Nord et al. address the
question in which regimes the bias is unimportant. Stanek et al.
describe how to estimate the magnitude of the Malmquist bias
by simulating mock catalogs. Stanek et al. also discuss how
to derive the mean LX–M relation and scatter from the cluster
X-ray luminosity function if the cosmological model (includ-
ing σ8) is assumed known. A similar approach was used by
Ikebe et al. (2002) who consistently modeled the L–T relation
together with the cosmological fit to the cluster temperature
function. However, as we show in Appendix A, estimation of

the Malmquist bias can be separated from the cosmological fit
to the mass function, which leads to simpler algorithms than
those used by Stanek et al. and Ikebe et al. An approach similar
to ours was independently developed by Pacaud et al. (2007).

Our algorithm is fully described in Appendix A. Here, we
briefly outline the main results and modeling steps and then
proceed to presenting the results. A typical situation in low-z
surveys with a high flux limit is that the search volume is a
power law function of the object luminosity (e.g., V ∝ L3/2 in
Euclidean space and no low-z cutoff), and that the evolution can
be neglected within the survey’s effective redshift depth. In this
case (Appendix A.1), the Malmquist bias leads to a constant
offset in the normalization of the observed LX–M relation; the
observed rms scatter in ln L for fixed M equals the standard
deviation of the log-normal distribution (σ in Equation (19)).
The true relation is therefore very simple to recover for typical
low-z surveys. For the observed scatter, σ = 0.39 (see below),
the bias is Δ ln L ≈ 3/2 σ 2 = 0.23 (Equation (A4)), or LX
for fixed M is overestimated by ≈ 26% (much smaller than the
factor of ∼ 2 bias advocated by Stanek et al. 2006 but consistent
with the limit from Reiprich 2006). This bias is independent of
the actual flux limit of the low-z survey. If uncorrected for, it
leads to overestimation of the volume for fixed mass by ≈ 40%
(because V (M) ∝ L

3/2
0 at low z; see Equations (18) and (19)).

The treatment of the Malmquist bias is more complicated if
the evolution in the LX–M relation cannot be neglected. How-
ever, in this case it is still possible to derive a likelihood function
which can be computed numerically given the survey selection
functions and which implicitly depends on the parameters of
the evolving LX–M relation, A0, α, γ , and σ (Equations (A10)
and (A11)). One can also compute the average bias for each
cluster given A0, α, γ , and σ (Appendix A.2); using these
corrections we can easily check if the basic model assump-
tions (e.g., that the scatter is log-normal and independent of
both M and z) are sufficiently accurate. The tests of our fit-
ting procedure using the mock catalogs show that it recovers
the true parameters of the LX–M relation without significant
biases.

5.1.2. Results for LX − MY Relation

We independently derive the LX–M relation for each of our
mass proxies. In this section, we summarize the results obtained
with the YX proxy (hence the relation is called LX − MY ); the
results for the TX and Mgas proxies are very similar. The best fit
(obtained with our maximum likelihood method) to the evolving
relation in the form Equations (20)–(21) is

ln LX = (47.392 ± 0.085) + (1.61 ± 0.14) ln M500

+ (1.850 ± 0.42) ln E(z) − 0.39 ln(h/0.72)

± (0.396 ± 0.039) (22)

where the last term on the right hand side indicates the
observed scatter in LX for fixed M. The uncertainties for each
parameter are obtained from the mock catalog simulations
described in Appendix A.3. For the median mass in our sample,
the best-fit normalization agrees very well with that from
(Reiprich & Böhringer 2002, their Table 10, after converting
the luminosities to the 0.5–2 keV band), even though we do
expect some difference due to corrections for the Malmquist
bias applied in our analysis (Appendix A.1). In this regard,
we note that our more elaborate procedure for hydrostatic
mass estimates should lead to systematically different results
than a simple isothermal β-model analysis used in Reiprich &
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Figure 12. Results for the mass–luminosity relation with Mtot estimated from YX . Left: the correlation for low-redshift clusters (black points) with the best-fit power
law relation. The red points show the data for high-z clusters with the luminosities corrected for the evolution [E(z)γ ]. All luminosities are corrected for the expected
Malmqiust bias (see Appendix A.2). Right: evolution in the normalization of the LX–M relation. Individual measurements have been corrected for Malmquist bias
and divided by the best-fit low-z relation. Solid and dotted lines show the best fit in the form E(z)γ and (1 + z)γ , respectively. In both panels, the clusters with large
correction (Δ ln L > 0.5) are shown with open symbols. The lack of a systematic offset between clusters with the estimated strong and weak Malmquist bias proves
that the correction has been applied correctly. The z > 1 clusters in this panel are from the RDCS survey (Tozzi et al. 2003); they were not used in the fit and are
shown only to demonstrate that the extrapolation of our best-fit E(z)γ evolution to higher redshifts still produces reasonable results.

Böhringer (2002); the net effect of updated Mtot measurements
and corrections for the Malmquist bias appears to lead to
very small revisions of the normalization of the LX–Mtot
relation.

The left panel in Figure 12 shows that, indeed, the low-z data
are adequately described by a single power law relation. The
high-z clusters also follow the same relation with approximately
the same scatter, after correction for the evolution in the
overall normalization [E(z)1.85]. The observed evolution in the
normalization (the right panel of Figure 12) is consistent with
the E(z)γ scaling, but also with a (1 + z)γ law. The exact form
of the evolution law is not crucial for our purposes since we use
the LX–M relation only to estimate the survey coverage at each
redshift and not to estimate the cluster masses. The effect of the
choice of the parametrization on the derived V (M) is discussed
below.

The observed deviations from the mean relation at low red-
shifts (Figure 13) are consistent with the log-normal distribution
with a scatter of σln L = 0.396 (or ≈ ±48%) in LX for fixed M.
The contribution of the measurement uncertainties to this scatter
is negligible for low-z objects. The expected scatter in the Mtot
estimates using YX is also significantly lower. Therefore, it is
reasonable to expect that the observed scatter is a good repre-
sentation of that in the relation between LX and true mass.19 The
current data quality is insufficient to characterize the shape of
the scatter distribution precisely. For example, we cannot check
if the tails of the distribution are consistent with the log-normal
model. The knowledge of tails in the P (LX|M) distribution is
crucial if one uses LX as a proxy for cluster mass (Lima & Hu

19 Note that we are forced to use the total luminosities, including centers and
substructures, for reasons given in Section 3.2. If these components are
excluded from the flux measurements, the scatter can easily be made lower,
see, e.g., Maughan (2007).

Figure 13. Distribution of the deviations from the mean LX–M relation for
the low-z sample (where the contribution of measurement uncertainties is
negligible). The solid line shows the best-fit log-normal distribution with the
scatter σln L = 0.396.

2005). In our case, however, the LX–M relation is used only
for the survey volume calculations, where the effects of the
P (LX|M) are minor (see Section 5.1.3).

The observed 48% scatter in the LX–M relation implies that
Malmquist bias effects are very significant. For example, in a
purely flux-limited low-z sample, the average bias in the lumi-
nosity for fixed M is Δ ln L = 0.235 or 26% (see Equation (A4)
in Appendix A.1). This is qualitatively similar to the conclusions
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Figure 14. Volumes (comoving) as a function of cluster mass for our low
redshift sample (z = 0.025 − 0.25) and three high-redshift subsamples of the
400d survey.

of Stanek et al. (2006), although our predicted bias is lower be-
cause Stanek et al. have assumed a larger scatter in the LX–M
relation than that observed in our data.

5.1.3. Results for V (M)

With the model for the LX–M relation at hand, we can
now compute the search volumes as a function of cluster mass
(Equations (15)–(17)). The results for our local sample and the
three redshift bins in the 400d sample are shown in Figure 14.
The volume for the local sample follows a power law function
of M in a broad range of masses, as expected for a flux-limited
sample. A sharp decline of the volume at M � 1.5×1014 M� is
due to a combination of the flux threshold and a lower redshift
cutoff of the sample (z > 0.025). The sample becomes volume-
limited for high masses because we imposed an upper cutoff
(z < 0.25) in the volume calculation. For the three high-z
subsamples shown in Figure 14, the dynamic range in z is
smaller and the transition from the volume-limited to strongly
incomplete regimes is much sharper.

We should now discuss how sensitive the survey volume
computation is to the assumptions in the LX–M relation model.
The largest uncertainty in the volume computation is related
to the measurement errors of the luminosity scale for fixed
M. The effect is strongest for the high-z data because the
normalization of the LX–M relation is derived using a smaller
number of clusters, with larger measurement uncertainties, and
spanning a range of redshifts (see Figure 12). Overall, the
uncertainty in the high-z relation corresponds to ±10.5% in
the LX scale at z = 0.55 (Appendix A.3). This is equivalent
to varying γ by ±0.33 assuming that the low-z normalization
is fixed; note that the range Δγ = ±0.33 is smaller than
that quoted in Equation (22) because the latter also includes
uncertainties in the low-redshift normalization. The long-dashed
line in Figure 15 shows how the volume calculation for our high
redshift sample, 0.35 < z < 0.9, is affected by changing γ by
+0.33. Reassuringly, the relative change of sample volume is
large only for low-mass clusters where it becomes comparable
to the Poisson uncertainty of the derived mass function (see
Section 8.2.1).

Figure 15. Sensitivity of the volume calculations to various variations of the
LX–M relation model.

By comparison, the sensitivity of V (M) to a particular choice
of the LX–M evolution model is relatively minor. For example,
if we use the (1+z)γ scaling instead of E(z)γ (Equation 21), the
largest difference in the best-fit LX–M relations is near z = 0.5
(the right panel in Figure 12). The corresponding relative change
of V (M) at z = 0.45 − 0.55 (the dashed line in Figure 15) is
much smaller than the Poisson uncertainties of the mass function
in the same redshift bin (see below). Therefore, the uncertainties
related to the parametrization of the LX–M evolution can be
neglected for our purposes.

The effects of the scatter uncertainties on the V (M) compu-
tations are comparably small. Note that the situation is crucially
different if one uses LX to estimate the cluster masses. Con-
sider for example, a case of volume-limited survey. The V (M)
function is unchanged in this case by variations of σ , while the
estimate of the cluster mass function is still very strongly af-
fected (see Lima & Hu 2005). Variations of σ affect the V (M)
computations in two ways. First, there is a positive correlation of
V and σ because of the scatter term in Equation (17) (assuming
that V (L) increases with L). However, σ also implicitly enters
the determination of the LX–M normalization because we need
to correct for Malmquist bias; the larger the σ , the lower the
LX for fixed M inferred from the same data (e.g., Appendix A),
and hence the smaller V (M). We need to include both these ef-
fects to test properly the effect of the σ uncertainties on V (M).
This was achieved by fixing the value of σ at the boundaries
of its measurement uncertainties (±10% of the best-fit value,
see Equation (22)), refitting all other parameters of the LX–M
relation, and computing V (M) for these new fits. The results
are shown in Figure 15 by the solid and dotted lines for the
high- and low-z bins, respectively. The variation of volume is
negligible for the low-z sample, but is more substantial for the
high-z clusters. It is, however, much smaller than the effect of
uncertainties in the value of γ considered above. Note that in-
creasing the scatter reduces the volume, indicating that the effect
of extra Malmquist bias correction on the LX–M normalization
outweighs the boost in volume due to an increased scattering
kernel in Equation (17).
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Figure 16. Cluster mass functions for our low- and high-z samples. The masses
were estimated by the YX method. The errorbars show the Poisson uncertainties.
Solid lines show the model predictions for the adapted cosmological model
ΩM = 0.3, ΩΛ = 0.7, h = 0.72, with only σ8 fit to the cluster data (see the
text). The evolution of the mass function is non-negligible within either redshift
range. To take this into account, the model number densities for each mass were
weighted with dV (M)/dz (Equation (17)) within the redshift bin.

6. CLUSTER MASS FUNCTIONS IN THE CONCORDANT
ΛCDM COSMOLOGY

With the survey volume in hand, we can finally compute
the mass functions. Figure 16 shows the mass function in the
cumulative representation computed as

N (> M) =
∑

Mi>M

V (Mi)
−1. (23)

Our samples span similar mass at low and high redshifts, which
is very important for the robustness of the derived cosmological
constraints. A strong and highly significant decrease in the
comoving cluster number density at a fixed mass is observed
between z = 0 and z 	 0.5, by a factor of 5.0 ± 1.2 at
M500 = 2.5 × 1014 h−1 M�. This reflects the growth of
cosmic structure between these redshifts. Indeed, the observed
evolution of the cluster mass function is in good agreement
for the “concordance” cosmological model with the power
spectrum normalization σ8 = 0.746 (solid lines in Figure 16;
we use the mass function model from Tinker et al. 2008 and
our approach to the model fitting is discussed in Section 7).
The strongest observed deviation of the data from the model
is a marginal deficit of clusters in the distant sample near
M500 = 3 × 1014 h−1 M� – we observe four clusters where
9.5 are expected, a 2σ deviation. The cumulative function fully
recovers by M500 = 2×1014 h−1 M�, approximately the median
mass in the distant sample. The differential representation of
the mass function (Figure 17) also shows that this deficit is
consistent with the Poisson noise expected in the data.

Our high-z sample can be split into several redshift bins
to check if the observed evolution within the sample is still
consistent with the model. Figure 18 shows the results for
the three bins, z = 0.35–0.45, 0.45–0.55, and 0.55–0.9,
approximately 14 clusters in each. The data are still in good
agreement with the model predictions. The strongest deviation
is a marginal (	 1σ ) deficit of clusters at z = 0.35–0.45.

Figure 17. Differential representation of the mass functions shown in Figure 16.
The error bars in representation are uncorrelated (unlike Figure 16), so statistical
significance of the observed deviations from the best-fit model can be easily
assessed.

Figure 18. Same as Figure 16 but the high-z sample is split into three redshift
bins.

6.1. Sample Variance

In addition to the Poisson cluster counting uncertainties, there
is sample variance in the number of clusters in a survey of
limited volume due to large-scale clustering. Depending on the
mass scale, the sample variance can be comparable to, or larger
than, the Poisson errors (Hu & Kravtsov 2003). We follow the
formalism of Hu & Kravtsov to assess the importance of sample
errors in the error budget in our case.

We calculate the sample variance for the two geometries. For
the local sample we assume all-sky coverage with an exclusion
zone of ±20◦ from the Galactic plane; the variance for this
geometry is given by Equation (A7) of Hu & Kravtsov (2003).
The second is a pencil-beam volume with a small circular
footprint on the sky, which is appropriate for the individual
ROSAT fields included in the 400d survey; the variance for this
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geometry can be computed using the flat-sky approximation
(Equation (7) in Hu & Kravtsov 2003). The variance calculations
are done for our reference cosmology with the power spectrum
normalization σ8 = 0.8, resulting in a slightly higher variance
than what would be predicted for our best-fit cosmological
model with slightly lower σ8. The halo mass function model
is from Jenkins et al. (2001, their Equation (B3)) and the cluster
bias model is from Sheth & Tormen (1999). These mass function
models use cluster masses defined within the aperture enclosing
an overdensity of 180 with respect to the mean density, and so
we need to relate it to the mass definition adopted here (Δ = 500
with respect to critical density). We assumed a simple relation,
M500 ≈ 0.55M180, appropriate for typical concentrations of
clusters in our mass range.

The relative importance of the sample variance increases
for low-mass clusters (Hu & Kravtsov 2003). Fortunately, it
is still sufficiently small near our mass limit. For example, at the
limiting M500 = 1.5 × 1014 h−1 M�, the local survey volume
corresponds to the effective redshift depth zmax = 0.043; the
sample variance calculated for this mass limit and redshift
range z = 0.025 − 0.043 is σvar ≡ (〈n2〉/〈n〉2 − 1)1/2 ≈
0.16. This should be compared with the Poisson errors at
this mass limit, σshot = 0.24 (Figure 16). Combining these
variances in quadrature, we find that the total uncertainty
σtot = (σ 2

var +σ 2
shot)

1/2 is only 17% larger than the Poisson value.
The contribution of sample variance quickly becomes small
for higher masses. For example, at M500 = 3 × 1014 h−1 M�
(the median mass for the low-z sample), the total uncertainty
is only 7% larger than the Poisson error; the contribution
becomes negligible at higher masses. Going to lower masses,
we predict that σvar becomes comparable to σshot for M500 ≈
7 × 1013 h−1 M�, below our mass limit.

The high-z sample consists of 1600 widely separated
(and therefore independent) pencil-beam pointings. For a sin-
gle pointing of circular radius of 17.′5 and redshift range
z = 0.35 − 0.45 (the variances for the higher redshift bins
are similar but somewhat smaller), the sample variance is
σvar,1 ≈ 0.65 − 1.65 for the samples with M500 thresholds be-
tween 1014 and 1015 M�. Assuming that the individual point-
ings are uncorrelated (a good assumption for the widely sepa-
rated pointings of the 400d survey), the total sample variance
is σvar ≈ σvar,1 N−1/2 ≈ 0.02–0.05, where N = 1600 is the
number of 400d survey pointings, much smaller than the Pois-
son uncertainties. The sample variance can therefore be safely
neglected for our high-z sample.

In principle, sample variance can be included in the calcu-
lation of the likelihood functions for the low-z sample (Holder
2006; Hu & Cohn 2006). The procedure, however, would be
quite cumbersome in our case and is not worth the effort because
the variance increases the measurement errors by only 17% in
the worst case, and by 7% or less for the median sample mass.
This is considerably smaller than expected systematic effects
and we will therefore neglect the sample variance hereafter.

7. LIKELIHOOD FUNCTION

Let us now consider the expression for the likelihood function
appropriate for our sample and for our method of deriving the
mass functions. The basics of the likelihood function are very
standard and used in large number of other works. We follow
the derivation presented in Cash (1979) for the case of purely
Poisson statistics. We split the mass intervals into narrow bins,
ΔM , so that the probability to observe a cluster with an estimated
mass in this bin is small, p(Mest, z) ΔM � 1, and we have at

most one cluster per bin. The likelihood function in this case
can be written as (see Cash 1979)

ln L =
∑

i

ln
(
p
(
Mest

i , zi

)
ΔMi

)

−
∫ ∫

M,z

p(Mest, z) dMest dz, (24)

where summation is over the clusters in the sample and integra-
tion is over preselected zmin − zmax and Mmin − Mmax intervals.
Usually, the ΔM terms can be dropped because they are inde-
pendent of the model parameters and thus simply add a constant
to the likelihood function. In our case, however, the estimated
masses are also a function of the background cosmology. When
Mest

i is changed because of the variation in the cosmological pa-
rameters, we should correspondingly stretch the mass interval,
ΔM = ΔM (0)M/M (0), where M (0) and ΔM (0) are the estimated
mass and width of the interval for some fixed reference cos-
mological model.20 Taking the logarithm of this expression and
dropping constant terms (M (0) and ΔM (0)), we obtain the likeli-
hood function in the form

ln L =
∑

i

ln p
(
Mest

i , zi

)
+

∑
i

ln Mest
i

−
∫ ∫

M,z

p(Mest, z) dMest dz. (25)

The calculation of individual terms in this expression is dis-
cussed in Appendix B. The likelihood function implicitly de-
pends on the cosmological parameters through the model of
cluster mass function (reflecting the growth, normalization, and
shape of the density perturbation power spectrum), through the
cosmological volume–redshift relation which determines the
survey volume, and through the distance–redshift and E(z) re-
lations which affect our cluster mass estimates. The best fit
parameters are obtained by maximizing the likelihood function
in Equation (25). We also can use standard methods (e.g., Cash
1979) to estimate uncertainties of the model parameters. The
advantage of this approach is that we do not use any binning in
either mass or redshift.

In addition to the best fit parameters and confidence intervals,
it is also useful to be able to characterize the goodness of fit.
Even though the likelihood function cannot be used for this
purpose directly, we can utilize it to obtain an effective χ2 for
every cosmological model. First, we note that essentially all the
cosmological information provided by the cluster mass function
is the normalization and slope of the linear perturbations power
spectrum at ∼ 10 Mpc scales. Statistical quality of our sample
is sufficient to fit σ8 independently in 4 redshift bins (the local
sample and the high-z subsamples z = 0.35−0.45, 0.45−0.55,
and 0.55–0.9) and tilt to the entire sample. Individual best-
fit values of σ8 should be consistent within the errors if the
background cosmology is “correct;” similarly, tilt (relative to
the best-fit slope constrained by CMB data) should be consistent
with zero if we trust the CDM transfer function models (see
Eisenstein & Hu 1998, and references therein). To characterize
how close the tilt is to 0 and individual σ8’s to a constant
value, we can take advantage of the fact that the deviation of
the quantity C = −2 ln L from the minimum has statistical

20 This is equivalent to the rule of transformation of the probability density
function under change of variables, p(y) dy = p(x) dx.
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properties of the χ2 distribution (Cash 1979). The effective
“tilt” component of the total χ2 can be computed as

χ2
t (θ ) = min

σ8

C(0, σ8, θ ) − min
t,σ8

C(t, σ8, θ ), (26)

where θ is the vector of cosmological parameters other than
tilt and normalization of the power spectrum. Similarly, the
effective χ2 component for the evolution in the normalization
of the mass function is

χ2
evol(θ) =

∑
j
Cj (0, σ̃8, θ ) − min

σ8

Cj (0, σ8, θ ), (27)

where summation is over several sufficiently wide redshift bins
and σ̃8 is the best-fit value to the entire sample. Adding these
terms, we obtain the total effective χ2 for the cluster mass
function data,

χ2
clus(θ) = χ2

evol(θ) + χ2
t (θ ). (28)

This effective χ2 can be used to check how consistent are the
model and observed mass functions in terms of general shape
and evolution in the normalization.

A detailed discussion of fitting cosmological parameters to
our cluster data will be presented in Paper III. Here, we quote
only the results of fitting the power spectrum normalization for
our reference cosmology, σ8 = 0.746 ± 0.009 (purely statistical
uncertainties). The best fit models are shown by solid lines in
Figures 16–18.

8. SYSTEMATIC ERROR BUDGET

We conclude the analysis with a summary of the systematic
error budget in the mass function measurements (see Table 4).
We begin with a discussion of several sources of observational
uncertainties (those affecting measurements of the basic cluster
parameters), and then summarize the modeling uncertainties—
those related to the mass versus proxy relations and determina-
tion of the survey volumes.

8.1. Observational Uncertainties

8.1.1. Calibration Uncertainties

The accuracy of the basic X-ray observables—average T
and soft X-ray flux—is limited by absolute calibration of
the Chandra effective area. The calibration parameters most
relevant for our study is the absolute value of the soft-band
effective area and the relative hard- to soft-band calibration.
Thanks to the great effort put into calibration of the Chandra
telescopes, both on the ground and in flight, the associated
uncertainties are small, but they still need to be discussed for
the sake of completeness.

The absolute soft-band (∼ 0.5–2 keV) effective area affects
the measured cluster luminosities and gas masses, LX ∝ A−1,
Mgas ∝ A−1/2. The largest source of uncertainty in Asoft is
in-flight contamination of the ACIS optical blocking filters by
a hydrocarbon compound. Fortunately, in our energy band of
interest, this contamination can be accurately measured as a
function of time and position using the onboard calibration
source, and so the softband effective area can be brought to
its absolute preflight calibration, which is accurate to ≈ 3%
(Edgar & Vikhlinin 2004). The effect of such uncertainties on the
derived mass function (through the mass proxies and the LX–M
relation) is negligible. The validity of the softband calibration is

indirectly confirmed by the excellent agreement in the Chandra
and ROSAT flux measurements.

The relative hard-to-soft area calibration affects temperatures
and hence hydrostatic total mass measurements. We will char-
acterize this effect approximately by the relative change of mea-
sured temperatures δTcal = ΔT/T for the 5 keV clusters. The
hydrostatic Mtot measurements are affected as ΔM500/M500 =
3/2 δTcal (see, e.g., Appendix A in Vikhlinin et al. 2006). This
uncertainty is transferred to our mass function determinations
because all mass versus proxy relations are calibrated using
hydrostatic Mtot measurements.

Calibration uncertainties for the cluster temperatures cannot
be characterized exactly. Approximate estimates can be made
from comparison of the values derived by different telescopes
calibrated independently or by looking at the effect of the
most relevant “fudge” factors for Chandra. The systematic
difference between XMM-Newton and Chandra temperatures
is approximately 7% (V05). The largest remaining Chandra
calibration uncertainty is, as of this writing, related to the
effect of the 10–20 Å hydrocarbon overlayer on the X-ray
mirrors. Experimenting with variations of the overlayer model,
we find that the range of possible temperature variations is
−6% < δTcal < 0, and δTcal is nearly independent of the
cluster temperature and redshift. This would be equivalent to
up to −9%, z-independent shift in the mass scale.

8.1.2. Astronomical Uncertainties

In addition to calibration uncertainties, we checked a number
of “astronomical” effects which also could affect the measure-
ment of basic cluster properties. The effects that we checked and
determined to be negligibly small include uncertainties in the
Galactic interstellar absorption measurements (based on neutral
hydrogen 21 cm maps Dickey & Lockman 1990); absorption by
ionized (warm) ISM in the Galaxy (Reynolds 1993); difference
between plasma spectral codes; possible variations of the He
abundance around the cosmic average (our conclusion is based
on the analysis of Peng & Nagai 2008).

The only effect which is marginally significant is the possible
evolution of the ICM metallicity. Since the statistics in the
data for our high-z sample are insufficient for ICM metallicity
measurements, we assumed in each object that the metallicity
is equal to 0.3 Solar, approximately the mean value for the
low-z population. If in fact there is an evolution in the heavy
element metal abundance, our derived values for TX and Mgas
are affected slightly. For example, if the mean abundance for
high-z clusters is 0.15 Solar, the derived TX and Mgas will be
higher by ≈ +4%, and +1%, respectively. Such a trend (which is
probably outside the range allowed by the data, see Tozzi et al.
2003; Maughan et al. 2008), will be equivalent to changing
the mass scale for our high-z sample by +3%, +1%, and +6%
if masses are estimated through the Mtot–YX, Mtot–Mgas, and
Mtot–TX relations, respectively.

8.2. Modeling Uncertainties

Modeling uncertainties in the mass function measurements
can be separated into two components: (1) how accurately we
can predict the survey volume for clusters of a given mass,
and (2) how accurately we can derive cluster masses from the
data. The first component mainly depends on the accuracy of
the LX–Mtot relation, and the second, on the Mtot versus proxy
relation. All these uncertainties were discussed in detail above
and so we provide only a summary here.
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8.2.1. Uncertainties in V (M)

Uncertainties in the survey volume mainly depend on how
accurately we can recover the LX–Mtot relation from the data,
assuming that masses are accurately reconstructed from the
YX , Mgas, or TX proxies. The effects of these uncertainties on
V (M) are considered in Section 5. The largest error is related
to the measurement of the evolutionary factor (Equation (21))
and amounts to ±22% in volume for the median mass in
our high-z sample, ∼ 2.1 × 1014 h−1 M� (Figure 15). This
source of error is statistical in nature (related to measurement
uncertainties in the LX–Mtot parameters). It can therefore be
added in quadrature to the purely Poisson errors (±26% in the
cumulative mass function for the same mass threshold), resulting
in a moderate increase in the statistical errorbars. Although
it is possible to include these uncertainties approximately in
the cluster likelihood function or effective χ2, a more accurate
estimate of their effect on the final results can be obtained by
repeating the entire analysis procedure with the evolution factor
varied within its measurement errors. We take this approach and
we will quote the associated parameter uncertainties in Paper III.

Other sources of uncertainty from the LX–Mtot modeling,
such as the exact scatter in the relation, functional form of
the evolution term, etc., are comparably small. The accuracy
of statistical calibration of the 400d survey selection function
also makes a negligible contribution, ±3%, to the volume error
(Paper I).

8.2.2. Uncertainties in derived Mtot

Separate sources of uncertainties are related to potential
biases of the Mtot estimates from X-ray proxies. Note that these
biases will have little effect on the volume computations for the
given cluster (if we change the estimated Mtots, we need to refit
the LX–Mtot relation and the net effect will be that the volume
for the given cluster is almost unchanged). In a sense, the V (M)
systematics move the cumulative mass functions in Figure 16 up
and down, while the potential Mtot biases shift the mass function
along the M axis.

The mass biases can be naturally separated into two com-
ponents. The first is related to calibration of the Mtot versus
proxy relations for low-z clusters. Assuming that the evolution
in the relation is nominal, such biases will shift the low and
high-z mass function by the same amount, or, equivalently, will
affect the overall normalization, but not the evolution in the co-
moving number density. As we discussed above (Section 4.3.1),
comparison of X-ray and weak lensing masses provides a good
estimate, ±9% in mass, for such biases.

The second source is departures of the evolution in the Mtot
versus proxy relation from the assumed forms. Since evolution
is negligible within the low-z sample, such biases are important
only for the high-z mass function and thus will affect the
derived evolution in the cluster number density, but not the
overall normalization of the mass functions. We estimate that
by z = 0.5, the evolutionary Mtot biases can be up to ±7% in
the Mtot–TX relation, and ±5% for the Mtot–Mgas and Mtot–YX

relations (Sections 4.1.3, 4.2.2, and 4.3, respectively). In the case
of the Mtot–TX we also need to add a ±6% uncertainty related
to the potential evolution in the ICM metallicity (Section 8.1.2).

The estimated uncertainties in the Mtot calibration cannot be
easily included in the likelihood function. Instead, we check
(Paper III) how they affect the cosmological fit by repeating the
entire analysis procedure with the parameters Mtot versus proxy
relations within the bounds specified above. Note also that the

use of three different mass proxies, each with its own bias,
provides a good consistency check, because results obtained
with different proxies can be compared to each other to check
for biases.

9. SUMMARY

We presented a report on data analysis procedures leading
to a measurement of the galaxy cluster mass functions using
Chandra observations of statistically complete samples of low
and high-z clusters originally selected in the X-ray data from
ROSAT. This measurement relies on a careful selection of the
parent samples, rather detailed Chandra observations of selected
objects, and using several robust X-ray proxies for the total
cluster mass (YX , Mgas, TX).

The scaling relations between proxies we use and Mtot mostly
follow the predictions of the self-similar theory, a very basic
and hence reliable model. We used advanced high-resolution
numerical simulations to test the predictions of this theory with
regard to our proxies; these simulations indicate that only small
corrections are necessary, which we use cautiously. At low
redshifts, the Mtot versus proxy relations were calibrated by
detailed Chandra observations of a sample of relaxed clusters
spanning a wide range of mass; our Chandra results were cross-
checked against recent weak lensing measurements.

As a part of this project, we derive a relation between cluster
mass and total X-ray luminosity, using large statistically com-
plete samples and properly taking into account the Malmquist
bias. The relation is adequately described by a single power law,
substantial log-normal scatter, and evolution of the power law
normalization following E(z)1.85, assuming that the evolution
in the Mtot–YX relation is exactly self-similar as we use YX to
estimate cluster masses.

We present the cluster mass functions estimated assuming a
“concordant” ΛCDM cosmology. These data show a significant
evolution in the cluster comoving number density at a fixed mass
threshold, by a factor of ≈ 5 at M500 = 2.5 × 1014 h−1 M�
between z = 0 and 0.5.

Finally, we provide a summary of estimated systematic
uncertainties in our mass function measurement. Most source
of systematics lead to corrections which are smaller than the
Poisson errors in our data. The main exception is uncertainties
in calibration of the absolute mass scale at low redshifts but it
has little impact on the measurement of evolution in the cluster
number density.

The evolution in the cluster mass function reflects the growth
of density perturbations and can be used for the cosmological
constraints complementing those from the distance–redshift
relation. The cosmological modeling of these data will be
discussed in a future paper.
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APPENDIX A

CORRECTION OF THE LUMINOSITY–MASS RELATION
FOR THE MALMQUIST BIAS

Stanek et al. (2006) recently pointed out that observational
determinations of the mass–luminosity relation can be signifi-
cantly affected by Malmquist bias because of the flux-limited
nature of most of the available cluster samples. Stanek et al.
were interested in the relation where LX is the independent vari-
able; such a relation is useful for Mtot estimates using LX as
a proxy. Corrections for Malmquist bias in this case lead to
complicated computations involving the cluster mass function
model. We, instead, are interested in computing the survey vol-
ume for objects of given mass, for which we need to treat Mtot as
independent variable and compute luminosity for a given mass
(Equation (18)). The calculations of the Malmquist bias are
then much simpler and can be done independently of the mass
function modeling.

We assume that the scatter in L for fixed M has a log-normal
distribution,

p(ln L) = dN

d ln L
∝ exp

(
− (ln L − ln L0)2

2 σ 2

)
, (A1)

where L0 is the average luminosity for the given mass. Typically,
L0 is a power law of mass, L0 ∝ Mα , but we do not make this
assumption in the calculations below.

A.1. Corrections for Malmquist Bias in Nonevolving LX–M
Relation

Calculations of the Malmquist bias are particularly simple
if the evolution in the LX–M can be neglected, e.g., L0(M) is
the same at all redshifts within the sample. This situation is
applicable for the analysis of the low-z samples and in our case,
for establishing the low-z reference relations.

Let us assume that the survey volume as a function of the
object luminosity can be approximated as a power law

V (L) ∝ Lδ. (A2)

For example, in the case of Euclidean space and a pure flux-
limited survey, V (L) ∝ L3/2 exactly. If there is a lower redshift
cutoff in the survey, δ �= 3/2 at the low-L end, even in Euclidean
space. Likewise, if there is a higher-redshift cutoff, δ → 0 in
the high-L end (sample becomes volume-limited).

The LX–M relation is usually fit in the ln M − ln L coor-
dinates, so we need to compute the bias in ln L for given M:

〈ln L〉 − ln L0 =
∫ ∞
−∞(ln L − ln L0) p(ln L) V (ln L) d ln L∫ ∞

−∞ p(ln L) V (ln L) d ln L

=
∫ ∞
−∞ x exp(−x2/2σ 2) exp(xδ) dx∫ ∞
−∞ exp(−x2/2σ 2) exp(xδ) dx

, (A3)

where we used the substitution x = ln L − ln L0. The integrals
can be worked out analytically,

〈ln L〉 − ln L0 = δ
√

2π σ 3 exp(δ2 σ 2/2)√
2π σ exp(δ2 σ 2/2)

= δ σ 2. (A4)

The log-normal scatter in the relation, σ , is usually unknown
a priori and thus it should be estimated from the rms scatter

around the best-fit relation in the ln M − ln L plane. Fortunately,
the flux-limited survey does not introduce bias in the scatter,
i.e., σobs = σ , as we now demonstrate.

σ 2
obs = 〈(ln L − ln L0)2〉 − (ln L0 − 〈ln L〉)2

= 〈(ln L − ln L0)2〉 − δ2 σ 4 (A5)

〈(ln L − ln L0)2〉 =
∫ ∞
−∞ x2 exp(−x2/2σ 2) exp(xδ) dx∫ ∞

−∞ exp(−x2/2σ 2) exp(xδ) dx

= σ 2(1 + δ2σ 2) (A6)

(cf. Equations (A3) and (A4)), and so σ 2
obs = σ 2.

A.2. Correction for Individual Clusters

The bias computations from the previous section cannot be
applied if we aim to model also the evolution in the LX–M
relation, because in this case we need to compute the bias in
a fixed narrow interval of z where V (L) cannot in general be
represented with a power law (e.g., for an ideal flux-limited
survey, V (L) in a narrow interval of z is close to a step-
function). An alternative (approximate) approach is to compute
the expected biases in L for individual clusters, as considered
below. A better approach is to model all effects of selection
through the likelihood function, as discussed in the next section.

Let us assume that the survey has a single flux threshold, fmin
(i.e., the cluster is always detected if f > fmin and not detected
if f < fmin). The average luminosity bias of detected clusters
with a given mass is

〈ln L − ln L0〉 = 〈ln f − ln f0〉 =
∫ ∞
xmin

x exp(−x2/2σ 2) dx∫ ∞
xmin

exp(−x2/2σ 2) dx

= exp
( − x2

min

/
2σ 2

)
√

π/2 erfc(xmin/(σ
√

2))
σ, (A7)

where f0 is the flux corresponding to the nominal luminosity,
L0, given by the LX–M relation, and xmin = ln fmin − ln f0. For
f0 � fmin (very massive clusters), the bias is 0 as expected.
For very low mass clusters (L0 → 0, f0 → 0, xmin → ∞),
Equation (A7) gives 〈ln f − ln f0〉 	 ln fmin − ln f0 (i.e., all
detected clusters have fluxes just above the survey threshold).

Equation (A7) is easily generalized for the case when the
survey selection probability is a smooth function of flux (as is
the case for the 400d sample):

〈ln L − ln L0〉 = 〈ln f − ln f0〉

=
∫ ∞
−∞ x Psel(x + ln f0) exp(−x2/2σ 2) dx∫ ∞
−∞ Psel(x + ln f0) exp(−x2/2σ 2) dx

.

(A8)

A.3. Likelihood Function and Fitting Procedure

The best way to treat the Malmquist bias in modeling the
relation is through a proper definition of the likelihood function.
Let Psel(ln f ) be the survey selection efficiency as a function of
flux. The average luminosity–mass relation gives a “nominal”
luminosity for clusters of given M, which corresponds to a
“nominal” flux f0. The probability density function for the
cluster to have flux f is

dP

d ln f
= C exp

(
− (ln f − ln f0)2

2σ 2

)
Psel(ln f ), (A9)
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Figure 19. Distribution of the LX–M parameters recovered from mock catalogs (see the text for details). The points show the deviations of the best-fit parameters in
each realization from the input values, and the histograms show the probability density distribution for each parameter. The right panel shows the deviations of best-fit
luminosities at z = 0 and 0.55 for the median mass in the samples (the z = 0 results are equivalent to those for the overall normalization, A0) for fits with σ fixed at
the nominal value (see the text).

where C is the normalization coefficient defined so that the total
probability is 1,

C−1 =
∫ ∞

∞
exp

(
− (ln f − ln f0)2

2σ 2

)
Psel(ln f ) d ln f. (A10)

For a survey with a single sharp flux limit [i.e., those with
Psel(f ) = θ (f − fmin)], Equation (A10) becomes C =
( 1

2 erfc[ln(fmin/f0)/(σ
√

2)])−1.
The total likelihood function, L, is the product of dP/d ln f

for individual clusters. The quantity −2 lnL can be used in place
of the usual χ2 for finding the best fit and confidence regions
(Cash 1979). From Equation (A9), we have

−2 lnL =
∑

i

(ln fi − ln f0,i)2

σ 2
− 2 ln Ci − 2 ln Psel(ln fi).

(A11)
The first term on the right-hand side of Equation (A11) is the
usual unweighted χ2 and the extra two terms are corrections
for the Malmquist bias. Masses of individual clusters and
parameters of the LX–M relation enter the likelihood function
implicitly, through calculating the “nominal” luminosities (e.g.,
ln L0 = A ln M̂ + B + evol(z)) which are then converted
to f0’s.

Parameters of the LX–M relation can be obtained from
finding the global maximum of the likelihood function in
Equation (A11). In practice, we use a multi-step procedure
to fit the LX–M parameters. The scatter, overall normaliza-
tion, and power law slope are determined from the low-z data
where the measurement uncertainties can be neglected rela-
tive to intrinsic scatter. The best-fit scatter is corrected by
a factor of (N/(N − 1))1/2, the expected bias of the max-
imum likelihood estimate, where N is the number of clus-
ters in the low redshift sample. Then, with A0, α, and σ
fixed, the evolutionary term (γ ) is determined from the fit to
the high-z data. The procedure is iterated several times until
convergence.

To assess how well our fitting procedure recovers the pa-
rameters of the LX–M relation, we applied it to mock cluster
samples. The mock samples were designed to mimic closely
our actual low- and high-z samples. The cluster masses and red-
shifts were drawn from the mass function model computed in the
ΩM = 0.28, Λ = 0.72, σ8 = 0.79 cosmology. The luminosities
were then simulated assuming a mass-luminosity relation with
parameters (ln A0, α, γ, σ ) = (47.4, 1.6, 1.8, 0.4) (see our best-
fits parameters in Equation 22), the observed fluxes computed
for this background cosmology, and finally, the selections ap-
propriate for the ROSAT All-Sky and 400d surveys were applied.
The simulated lists and the real sample have approximately the
same number of clusters.

The distribution of the deviations of best-fit parameters from
their nominal input values is shown in Figure 19. We are able to
recover all parameters, normalization, scatter, evolution term γ ,
and the slope, α, (not shown in the figure), without significant
biases. The widths of the distributions, Δ ln A0 = 0.085,
Δα = 0.14, Δγ = 0.42, and Δσ = 0.039, correspond to the
expected measurement uncertainties for each parameter. Note
that the uncertainties for individual parameters are correlated.
For example, the low-z normalization is obviously anticorrelated
with the evolution parameter, γ . The scatter is anticorrelated
with both the low-z normalization and evolution because the
Malmquis bias corrections are ∝ σ 2. These correlations have
to be kept in mind when we estimate the uncertainties in the
survey volume computations associated with the measurement
errors of the LX–M relation. In particular, the most important
parameters for V (M) are the average LX’s for the median
mass of our low- and high-z samples. For nearby clusters, this
corresponds simply to the uncertainties in A0, but for high-
z clusters, this is a complex combination of uncertainties in
A0, α, and γ . The results for the average normalizations are
shown in the right panel of Figure 19. We are able to recover
the true average luminosities without a significant bias and
with uncertainties of ≈ 8.0% and 10.5% at low- and high-z,
respectively.
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APPENDIX B

LIKELIHOOD FUNCTION CALCULATIONS

B.1. Calculation of p(Mest, z)

Generally, the probability density distribution of the observed
masses is given by convolution of the model distribution of
the true masses and the scatter between Mest and M true. The
former is simply the product of the theoretical mass function
dn/dM true and survey volume at this redshift, dV (M true, z)/dz
(the calculation of dV (M)/dz is discussed in Section 5), and so
we have

p(Mest, z) =
(

dn

dM true

dV (M true, z)

dz

)
⊗ scatter(Mest,M true).

(B1)
A log-normal distribution is a good approximation for the scatter
in the mass estimates, and so the convolution in Equation (B1)
can be written as

p(Mest, z) = 1

Mest

1√
2π σ est

∫ ∞

−∞

dn

d ln M true

dV (M true, z)

dz

× exp

(
− (ln Mest − ln M true)2

2(σ est)2

)
d ln M true.

(B2)

The function p(Mest, z) enters the expression for likeli-
hood in summation over observed clusters (the first term in
Equation (25)) and in the integral over the observed range (the
second term in the same equation). Equation (B2) should be
evaluated numerically, but the calculation of all the terms is
straightforward. The term dn/d ln M true is the differential clus-
ter mass function at the given redshift. Cosmological parame-
ters enter the calculation of dV (M true, z) through the volume–
redshift relation and the evolving cluster LX–M relation which
is derived (Section 5.1) using LX and Mtot estimated in this
cosmology.

B.2. Integration of p(Mest, z)

We now need to evaluate the second term in Equation (25),

I =
∫ Mmax

Mmin

∫ zmax

zmin

p(Mest, z) dMest dz. (B3)

Using Equation (B2), we have

I = 1√
2π

∫ Mmax

Mmin

dMest
∫ zmax

zmin

dz

∫ ∞

−∞

1

Mest

1

σ est

dn

d ln M true

× dV (M true, z)

dz
exp

(
− (ln Mest − ln M true)2

2(σ est)2

)
d ln M true.

(B4)

Changing the order of integration, we have

I =
∫ zmax

zmin

dz

∫ ∞

−∞
d ln M true dn

d ln M true

× dV (M true, z)

dz

∫ ln Mmax

ln Mmin

1√
2π σ est

× exp

(
− (ln Mest − ln M true)2

2(σ est)2

)
d ln Mest.

(B5)

The last term in this equation is the integral of the normal
distribution (can be computed numerically using the library error
function):

∫ ln Mmax

ln Mmin

1√
2π σ est

exp

(
− (ln Mest − ln M true)2

2(σ est)2

)
d ln Mest

= N

(
ln Mmin − ln M true

σ est
,

ln Mmax − ln M true

σ est

)
, (B6)

where

N(x1, x2) ≡ 1√
2π

∫ x2

x1

exp(−x2) dx, (B7)

so finally,

I =
∫ zmax

zmin

dz

∫ ∞

−∞

dn

d ln M true

dV (M true, z)

dz
N

×
(

ln Mmin − ln M true

σ est
,

ln Mmax − ln M true

σ est

)
d ln M true.

(B8)

The quantities σ est are the total uncertainties of the mass
estimates, including intrinsic scatter and measurement errors,

σ est
i = (

σ 2
intr + σ 2

meas,i

)1/2
. (B9)

In practice, σ est
i are not the same because at least σmeas,i varies

from cluster to cluster. A reasonable strategy to include these
variations is to replace N(. . . , . . .) with an average over all
sample members,

I =
∫ zmax

zmin

dz

∫ ∞

−∞

dn

d ln M true

dV (M true, z)

dz

[
1

N

N∑
i=1

N

×
(

ln Mmin − ln M true

σ est
i

,
ln Mmax − ln M true

σ est
i

)]
d ln M true.

(B10)

We use this equation to evaluate the second term in the
expression for likelihood function (Equation (25)).
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