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ABSTRACT

Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust
determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now
sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a
useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints
obtained from Chandra observations of 37 clusters with 〈z〉 = 0.55 derived from 400 deg2 ROSAT serendipitous
survey and 49 brightest z ≈ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function
between these redshifts requires ΩΛ > 0 with a ∼ 5σ significance, and constrains the dark energy equation-
of-state parameter to w0 = −1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also
significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the
latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we
obtain w0 = −0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a
factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint
analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos

∑
mν < 0.33 eV

at 95% CL. We also present updated measurements of ΩMh and σ8 from the low-redshift cluster mass function.

Key words: cosmological parameters – cosmology: observations – galaxies: clusters: general – dark matter –
surveys

1. DARK ENERGY AND CLUSTER MASS FUNCTION

Recent accelerated expansion of the universe detected in the
Hubble diagram for distant type Ia supernovae (SNe) is one of
the most significant discoveries of the past 10 years (Perlmutter
et al. 1999; Riess et al. 1998). The acceleration can be attributed
to the presence of a significant energy density component with
negative pressure, hence the phenomenon is commonly referred
to as dark energy. For a recent review of the dark energy dis-
covery and related theoretical and observational issues, see
Frieman et al. (2008) and references therein. Perhaps the sim-
plest phenomenological model for dark energy is nonzero
Einstein’s cosmological constant. The SNe data indicated (and
other cosmological data sets now generally agree) that a cosmo-
logical constant term currently dominates energy density in the
universe.

The next big question is whether dark energy really is
the cosmological constant. The properties of dark energy are
commonly characterized by its equation-of-state parameter, w,
defined as p = wρ, where ρ is the dark energy density and p is
its pressure. A cosmological constant in the context of general
relativity corresponds to a nonevolving w = −1. It is proposed
that departures from the cosmological constant model should
be sought in the form of observed w being either �= −1, or
evolving with redshift. Combination of SNe, cosmic microwave
background (CMB), and baryonic acoustic oscillations (BAOs)
data currently constrain |1 + w| < 0.15 at 95% CL (Komatsu
et al. 2009). Observational signatures of such deviations of

w from −1 are very small, and hence the measurements
are prone to systematic errors. For example, variations of w
between −1 and −0.9 change fluxes of z = 0.75 SNe in a
flat universe with ΩM = 0.25 by only 0.03 mag. Therefore, it
is crucially important that the dark energy constraints at this
level of accuracy are obtained from combination of several
independent techniques. This not only reduces systematics but
also improves statistical accuracy by breaking degeneracies in
the cosmological parameter constraints.

One of the methods that has been little used so far is evolution
in the number density of massive galaxy clusters. Evolution of
the cluster mass function traces (with exponential magnifica-
tion) growth of linear density perturbations. Growth of structure
and distance–redshift relation are similarly sensitive to proper-
ties of dark energy, and also are mutually highly complementary
methods (e.g., Linder & Jenkins 2003). Mapping between the
linear power spectrum and cluster mass function relies on the
model for nonlinear gravitational collapse. This model is now
calibrated extensively by N-body simulations (see Section 3).
The cluster mass function models also use additional assump-
tions (e.g., that the mass density is dominated by cold dark
matter (CDM) in the recent past, and that the fluctuations have
Gaussian distribution). However, corrections due to reasonable
departures from these assumptions are negligible compared with
statistical uncertainties in the current samples (we discuss these
issues further in Section 3). It is important also that the theory of
nonlinear collapse is insensitive to the background cosmology.
For example, the same model accurately describes the relation
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between the linear power spectrum and cluster mass function
in the ΩM = 1, ΩΛ = 0, low-density ΩM = 0.3, ΩΛ = 0, and
“concordant” ΩM = 0.3, ΩΛ = 0.7 cosmologies (Jenkins et al.
2001).

Fitting cosmological models to the real cluster mass function
measurements uses not only the growth of the structure but also
the distance–redshift information because observed properties
for objects of the same mass generally depend on the distance.
Therefore, constraints on w derived from the cluster mass
function internally make a combination of growth of structure
and distance based cosmological tests, and thus potentially can
be very accurate and competitive with any other technique (e.g.,
Albrecht et al. 2006).

Previous attempts to use the evolution of the cluster mass
function as a cosmological probe were limited by small sample
sizes and either poor proxies for the cluster mass (e.g., the
total X-ray flux) or inaccurate measurements (e.g., temperatures
with large uncertainties). Despite these limitations, reasonable
constraints could still be derived on ΩM (e.g., Borgani et al.
2001; Henry 2004). However, constraints on the dark energy
equation-of-state from such studies are weak. For example,
Henry (2004) derived the best-fit w = −0.42, only marginally
inconsistent with w = −1, using the temperature function of
the Einstein Medium Sensitivity Survey clusters; Mantz et al.
(2008) determine w = −1.4 ± 0.55 with a larger sample of
distant clusters (MACS survey; see Ebeling et al. 2001) but
using the X-ray luminosity as a mass proxy.

The situation with the cluster mass function data has been
dramatically improved in the past 2 years. A large sample of
sufficiently massive clusters extending to z ∼ 0.9 has been
derived from ROSAT PSPC pointed data covering 400 deg2

(Burenin et al. 2007, Paper I hereafter). Distant clusters from the
400d sample were then observed with Chandra, providing high-
quality X-ray data and much more accurate total mass indicators.
Chandra coverage has also become available for a complete
sample of low-z clusters originally derived from the ROSAT All-
Sky Survey. Results from deep Chandra pointings to a number
of low-z clusters have significantly improved our knowledge
of the outer cluster regions and provided a much more reliable
calibration of the Mtot versus proxy relations than what was
possible before. On the theoretical side, improved numerical
simulations resulted in better understanding of measurement
biases in the X-ray data analysis (Nagai et al. 2007; Rasia et al.
2006; Jeltema et al. 2008). Even more importantly, results from
these simulations have been used to suggest new, more reliable
X-ray proxies for the total mass (Kravtsov et al. 2006). We
discuss all this issues in the previous paper (Vikhlinin et al.
2009, Paper II hereafter). The cluster mass functions derived in
this paper are reproduced in Figure 1. Overall, these results are
an important step forward in providing observational foundation
for cosmological work with the cluster mass functions.

In this work, we present cosmological constraints from
the data discussed in Paper II. The cosmological information
contained in the cluster mass function data and relevant to dark
energy constraints can be approximately separated into three
quasi-independent components.

1. Changes in the comoving number density at a fixed mass
threshold constrain a combination of the perturbations
growth factor and relative distances between low- and
high-z samples; this by itself is a dark energy constraint
(Section 8).

2. The overall normalization of the observed mass function
constrains the amplitude of linear density perturbations at

Figure 1. Estimated mass functions for our cluster samples computed for the
ΩM = 0.25, ΩΛ = 0.75, h = 0.72 cosmology. The solid lines show the mass
function models (weighted with the survey volume as a function of M and z),
computed for the same cosmology with only the overall normalization, σ8, fitted.
The deficit of clusters in the distant sample near M500 = 3 × 1014 h−1 M�
is a marginal statistical fluctuation—we observe four clusters where 9.5 are
expected, a 2σ deviation (see Figure 17 in Paper II).

z ≈ 0, usually expressed in terms of the σ8 parameter.
Statistical and systematic errors in the σ8 measurement are
now sufficiently small, and the ratio of σ8 and the amplitude
of the cosmic microwave background (CMB) fluctuations
power spectrum gives the total growth of perturbations
between z ≈ 1000 and z = 0—a second powerful dark
energy constraint (Section 8.1).

3. The slope of the mass function measures ΩM × h; this by
itself is not a dark energy probe but can be used to break
degeneracies present in other methods.

Our dark energy constraints were derived for the following
cases. Assuming a constant w and a flat universe, we measure
w0 = −1.14 ± 0.21 using only cluster data (i.e., evolution
of the mass function between our two redshift samples) and
the Hubble Space Telescope (HST) prior on h (Section 8.2).
Combining cluster and Wilkinson Microwave Anisotropy Probe
(WMAP) data, we obtain w0 = −1.08 ± 0.15 but (w0 is con-
strained much more tightly for a fixed ΩM (Section 8.3). Finally,
adding cluster data to the joint SNe + WMAP + BAO constraint,
we obtain w0 = −0.991 ± 0.045 (Section 8.3), significantly
reducing statistical and especially systematic (Section 8.4) un-
certainties compared with the case without clusters. A large frac-
tion of the extra constraining power comes from contrasting σ8
with normalization of the CMB power spectrum; this procedure
is sensitive to nonzero masses of light neutrinos. Allowing for
mν > 0, we obtain a new conservative upper limit

∑
mν < 0.33

eV (95% CL) while still improving the w0 measurement rela-
tive to the SN+WMAP+BAO-only case (w0 = −1.02 ± 0.055,
Section 8.5). Adding clusters also improves the equation-of-
state constrains for evolving w in a flat universe (Section 9.1)
and constant w in a nonflat universe (Section 9.2)

The paper is organized as follows. We start with a short sum-
mary of cluster data and systematic uncertainties (Section 2),
discuss issues relevant for computing theoretical mass func-
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tion models (Section 3), and describe our fitting procedure
(Section 4). We then discuss constraints that can be obtained
from low-redshift mass function only (ΩMh in Section 5 and σ8
in Section 6). We then consider as an example constraints from
the cluster evolution in nonflat ΛCDM model (i.e., w fixed at
−1); ΩΛ > 0 is required with ∼ 5σ confidence (Section 7).
Constraints on the dark energy equation of state are considered
in Sections 8–9. Systematic errors are discussed in Section 8.4.

2. SUMMARY OF THE CLUSTER DATA AND
SYSTEMATIC UNCERTAINTIES

This work is based on two cluster samples, originally com-
piled from ROSAT X-ray surveys (see Paper II for a complete
description of the sample selection and data analysis). The
low-redshift sample includes the 49 highest flux clusters de-
tected in the All-Sky Survey at Galactic latitudes |b| > 20◦
and z > 0.025. The effective redshift depth of this sample is
z < 0.15. The high-redshift sample includes 37 z > 0.35 objects
detected in the 400d survey, with an additional flux cut applied;
the redshift depth of this sample is z ≈ 0.9. All the low- and
high-z clusters were later observed with Chandra, providing
good statistical precision spatially resolved spectral data thus
yielding several high-quality Mtot estimators for each object.
The combined cluster sample is a unique, uniformly observed
data set. The volume coverage and effective mass limits at low
and high redshifts are similar (see the estimated mass functions
in Figure 1).

Because of the sufficiently high quality of the Chandra
data, we employ advanced data analysis techniques going well
beyond simple flux estimates and β-model fits commonly used
in earlier studies. Cosmological cluster simulations have been
used to test for the absence of significant observational biases
in reconstructing the basic cluster parameters (Nagai et al.
2007). Using these simulations, we also tested which of the
X-ray observables are best proxies for the total cluster mass
(Kravtsov et al. 2006; Nagai et al. 2007) and concluded that
the best three are the average temperature, TX, measured in the
annulus [0.15–1] r500 (thus excluding the central region often
affected by radiative cooling and sometimes, by active galactic
nucleus (AGN) activity in the central galaxy); the intracluster
gas mass integrated within r500; and the combination of the
two, YX = TX ×Mgas. These parameters are low-scatter proxies
of the total mass (in particular, YX , and Mgas is only slightly
worse). Simulations and available data show that the scaling of
these proxies with Mtot, including the redshift dependence, is
very close to predictions of the simple self-similar model. In
a sense, even though we use advanced numerical simulations,
which include multiple aspects of the cluster physics to test
Mtot versus proxy relations, the role of simulations is limited
to providing small corrections to predictions of very basic and
hence reliable theory. Application of these corrections as well
as practical considerations for deriving TX, Mgas, and YX from
the real data are discussed in Paper II.

Paper II also presents an observational calibration of the Mtot
versus proxy relations using an extremely well observed sample
of low-z clusters. This discussion is crucial for understanding the
systematic uncertainties in our cluster mass function measure-
ments, and we urge interested readers to consult Paper II. Table 4
in Paper II gives a summary of the main sources of systematic
uncertainties in the derived cluster mass functions. They can be
separated into three quasi-independent components. First is the
uncertainty in calibration of the absolute cluster mass scale by
Chandra hydrostatic mass estimates in a sample of dynamically

relaxed, well observed low-z clusters (Vikhlinin et al. 2006);
the level of this uncertainty (9%) is estimated from compari-
son of Chandra masses with two recent weak-lensing studies
(Hoekstra 2007; Zhang et al. 2008). Second is uncertainties re-
lated to possible departures from standard evolution in Mtot–TX,
Mtot–Mgas, and Mtot–YX relations. This uncertainty (∼ 5%–6%
between z = 0 and z = 0.5) was estimated from general reli-
ability of numerical models of the cluster formation and from
the magnitude of corrections that had to be applied to the data
(see Section 4 in Paper II for details). The last major source
of uncertainty is the evolution in the LX–Mtot relation, affecting
computations of the 400d survey volume coverage; this uncer-
tainty is mostly measurement in nature because we derive the
LX–Mtot relation internally from the same cluster set. Its effect is
negligible for the high-M end of the mass function and becomes
comparable to Poisson errors for low-M clusters. A representa-
tive compilation of the effects of LX–Mtot uncertainties on the
V (M) function is presented in Figure 15 of Paper II.

The general reliability of our analysis is greatly enhanced
by using independent, high-quality X-ray indicators of the total
cluster mass—TX, Mgas, YX . Since the masses estimated from
these proxies depend differently on the distance to the object,
the high-z mass functions estimated with different proxies
should agree only if the assumed background cosmology is
correct. In principle, this can be used as an additional source
of information for the distance–redshift relation and folded into
the cosmological fit. However, this method is nearly equivalent
to the fgas(z) test, which is more reliably carried out using direct
hydrostatic mass estimates in relaxed clusters (Allen et al. 2008),
and therefore we ignore this information. Instead, we use the
agreement between different proxies observed for the best-fit
cosmology as a comforting indication that there are no serious
errors in our results.

3. SUMMARY OF THEORY

In the current paradigm of structure formation, galaxy clusters
form via gravitational collapse of matter around large peaks in
the primordial density field (Kaiser 1984; Bardeen et al. 1986).
Their abundance and spatial distribution in a comoving volume
will thus depend on the statistical properties of the initial density
field, such as Gaussianity9 and power spectrum (and hence the
cosmological parameters that determine it), and could depend on
the details of nonlinear amplification of the density perturbations
by gravity. Indeed, semianalytical models based on the linear
primordial density field and a simple ansatz describing nonlin-
ear gravitational collapse of density peaks (Press & Schechter
1974; Bond et al. 1991; Lee & Shandarin 1998; Sheth et al.
2001) have proven to be quite successful in describing results of
direct cosmological simulations of structure formation (e.g., Lee
& Shandarin 1999; Sheth et al. 2001; Jenkins et al. 2001). The
accuracy of the existing models, however, is limited and over the
last several years the abundance of collapsed objects was cali-
brated by fitting appropriate fitting function to the results of di-
rect cosmological simulations (Jenkins et al. 2001; Evrard et al.
2002; Warren et al. 2006). The fitting functions are expressed
in the so-called universal form10 as a function of the variance
of the density field on the mass scale M. The fact that such

9 We note however that the current constraints on non-Gaussianity from the
CMB anisotropy measurements imply that the expected effects on clusters are
small (Grossi et al. 2007).
10 In the sense that the same function and parameters could be used to predict
halo abundance for different redshifts and cosmologies.
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universal expressions exist implies that there is a direct link be-
tween the linearly evolving density field and cluster abundance.

In our analysis, we use the most recent accurate calibration of
the halo mass function by Tinker et al. (2008), which provides
fitting formulae for halo abundance as a function of mass,
defined in spherical apertures enclosing overdensities similar to
the mass we derive from observational proxies for the observed
clusters. The Tinker et al. fitting formulae are formally accurate
to better than 5% for the cosmologies close to the concordance
ΛCDM cosmology and for the mass and redshift range of interest
in our study; at this level, the theoretical uncertainties in the
mass function do not contribute significantly to the systematic
error budget. Although the formula has been calibrated using
dissipationless N-body simulations (i.e., without effects of
baryons), the expected effect of the internal redistribution of
mass during baryon dissipation on the halo mass function are
expected to be less than 5% (Rudd et al. 2008) for a realistic
fraction of baryons that condenses to form galaxies.

Similarly to Jenkins et al. (2001) and Warren et al. (2006), the
Tinker et al. formulae for the halo mass function are presented
as a function of variance of the density field on a mass scale M.
The variance, in turn, depends on the linear power spectrum
of the cosmological model, P (k), which we calculate as a
product of the initial power-law spectrum, kn, and the transfer
function for the given mixture of CDM and baryons, computed
using the analytic approximations of Eisenstein & Hu (1999).
This analytical approximation is accurate to better than 2%
for a wide range of cosmologies, including cosmologies with
nonnegligible neutrino contributions to the total matter density.

Our default analysis assumes that neutrinos have a negligibly
small mass. The only component of our analysis that could
be affected by this assumption is when we contrast the low-
redshift value of σ8 derived from clusters with the CMB power-
spectrum normalization. This comparison uses evolution of
purely CDM+baryons power spectra. The presence of light
neutrinos affects the power spectrum at cluster scales; in terms
of σ8, the effect is roughly proportional to the total neutrino
density, and is ≈ 20% for

∑
mν = 0.5 eV (we calculate

the effect of neutrinos using the transfer function model of
Eisenstein & Hu 1999). Stringent upper limits on the neutrino
mass were reported from comparison of the WMAP and Lyα
forest data,

∑
mν < 0.17 eV at 95% CL (Seljak et al. 2006).

If neutrino masses are indeed this low, they would have no
effect on our analysis. However, possible issues with modeling
of the Lyα data have been noted in the literature (see, e.g.,
discussion in Section 4.2.8 of Dunkley et al. 2009) and so we
experiment also with neutrino masses outside the Lyα forest
bounds (Section 8.5).

4. FITTING PROCEDURE

We obtain parameter constraints using the likelihood function
computed on a full grid of cosmological parameters affecting
cluster observables (and also those for external data sets). The
relevant parameters for the cluster data are those that affect
the distance–redshift relation, as well as the growth and power
spectrum of linear density perturbations: ΩM, ΩΛ, w (dark
energy equation-of-state parameter), σ8 (linear amplitude of
density perturbations at the 8 h−1 Mpc scale at z = 0), h, tilt of
the primordial fluctuations power spectrum, and potentially, the
nonzero rest masses of light neutrinos. This is computationally
demanding and we describe our approach below.

The computation of the likelihood function for a single
combination of parameters is relatively straightforward. Our

procedure (described in Paper II) uses the full information
contained in the data set, without any binning in mass or redshift,
takes into account the scatter in the Mtot versus proxy relations
and measurement errors, and so on. We should note, however,
that since the measurement of the Mgas and YX proxies depends
on the assumed distance to the cluster, the mass functions must
be rederived for each new combination of the cosmological
parameters that affect the distance–redshift relation—ΩM, w,
ΩΛ, etc. Variations of h lead to trivial rescalings of the mass
function and do not require recomputing the mass estimates.
Computation of the survey volume uses a model for the evolving
LX–Mtot relation see Section 5 in Paper II, which is measured
internally from the data and thus also depends on the assumed
d(z) function. Therefore, we refit the LX–Mtot relation for
each new cosmology and recompute V (M). Sensitivity of
the derived mass function to the background cosmology is
illustrated in Figure 2. The entire procedure, although equivalent
to full reanalysis of the Chandra and ROSAT data, can be
organized very efficiently if one stores the derived ρg(r) and
T (r) computed in some reference cosmology. It takes ≈ 20 s
on a single CPU to re-estimate all masses, refit the LX–Mtot
relation, and recompute volumes for each new combination of
the cosmological parameters.

The next step is to compute, for each combination of ΩM,
ΩΛ etc., the likelihood function on a grid of those parameters
which do not affect the distance–redshift relation. In our case,
these are σ8, h, and when required, the power spectrum tilt or the
neutrino mass. The cluster data are extremely sensitive to σ8 and
so we need a fine grid for this parameter. Fortunately, the mass
function codes compute the mass functions for different values
of σ8 with other parameters fixed at almost no extra expense.
The sensitivity of the cluster data to h and tilt is much weaker;
therefore the likelihood can be computed on a coarse grid for
these parameters and then interpolated.

With the acceleration strategies outlined above, it took us
∼ 9600 CPU hours (or 20 days using multiple workstations) to
compute the cluster likelihood functions on full parameter grids
for several generic models (nonflat ΛCDM, constant dark energy
equation of state in a flat universe, constant w with a nonzero
neutrino mass, linearly evolving w in a flat universe, constant
w in a nonflat universe). Alternatively, simulating the Markov
chains (Lewis & Bridle 2002) with sufficient statistics for all
these cases would require approximately the same computing
time.

After the cluster likelihood function was computed, we also
computed χ2 for external cosmological data sets—WMAP (5
year results), BAOs, and SNe Ia bolometric distances. Since
we basically use analytic Gaussian priors for these data sets
(see Section 8.1 below), these computations are fast and can
be made on a fine parameter grid. We also use a Gaussian
prior for the Hubble constant, h = 0.72 ± 0.08, based on the
results from the HST Key Project (Freedman et al. 2001). This
prior is important only when the constraints from the shape
of the mass function (Section 5) come into play and when
external cosmological data sets are not used in the constraints.
When fitting the cluster data, we also keep the absolute baryon
density fixed at the best-fit WMAP value, Ωbh

2 = 0.0227
(Dunkley et al. 2009). This parameter slightly affects the
calculation of the linear power spectrum (Eisenstein & Hu
1998). When we add the WMAP information to the total
constraints, we marginalize the WMAP likelihood component
over this parameter. If not stated otherwise, our cosmological
fits also assume a primordial density fluctuation power spectrum
with n = 0.95 (Spergel et al. 2007). Our results are completely
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Figure 2. Illustration of sensitivity of the cluster mass function to the cosmological model. In the left panel, we show the measured mass function and predicted
models (with only the overall normalization at z = 0 adjusted) computed for a cosmology which is close to our best-fit model. The low-z mass function is reproduced
from Figure 1, which for the high-z cluster we show only the most distant subsample (z > 0.55) to better illustrate the effects. In the right panel, both the data and the
models are computed for a cosmology with ΩΛ = 0. Both the model and the data at high redshifts are changed relative to the ΩΛ = 0.75 case. The measured mass
function is changed because it is derived for a different distance–redshift relation. The model is changed because the predicted growth of structure and overdensity
thresholds corresponding to Δcrit = 500 are different. When the overall model normalization is adjusted to the low-z mass function, the predicted number density of
z > 0.55 clusters is in strong disagreement with the data, and therefore this combination of ΩM and ΩΛ can be rejected.

insensitive to variations of n within the WMAP measurement
uncertainties and even to setting n = 1.

Once the combined likelihood as a function of cosmological
parameters is available, we use the quantity −2 ln L, whose
statistical properties are equivalent to the χ2 distribution (Cash
1979), to find the best-fit parameters and confidence intervals.

In addition to statistical uncertainties, we also consider
different sources of systematics. We do not include systematic
errors in the likelihood function but instead refit parameters with
the relations affected by systematics varied within the estimated
1σ uncertainties. This approach allows as not only to estimate
how the confidence intervals are expanded from combination of
all systematic errors, but also to track the most important source
of uncertainty for each case. A full analysis of systematic errors
is presented in Section 8.4 for the case of constraints on constant
w in a flat universe; in other cases the systematic uncertainties
contribute approximately the same fraction of the total error
budget. We also verified that in the constant w case, our method
of estimating the systematic errors produces the results which
are very close to the more accurate procedure using the Markov
chain analysis.

5. CONSTRAINTS FROM THE SHAPE OF THE LOCAL
MASS FUNCTION: ΩMh

The shape of the cluster mass function reflects the shape of
the linear power spectrum in the relevant range of scales, ap-
proximately 10 h−1 Mpc in our case. This shape, for a reason-
able range of parameters in the CDM cosmology is controlled
(Bardeen et al. 1986) mostly by the quantity ΩMh. It is useful
to consider constraints on this combination separately because
they are nearly independent of the rest of the cosmological pa-
rameters we are trying to measure with the cluster data.

Fixing the primordial power-spectrum index to the WMAP
value, n = 0.95, the fit to the local mass function11 gives ΩMh =
11 Including the high-redshift data, we obtain a consistent value,
ΩMh = 0.198 ± 0.022. Combined with the HST prior on h, this leads to a
measurement of ΩM = 0.275 ± 0.043. However, using the high-z data makes

0.184 ± 0.024 (purely statistical 68% CL uncertainties). The
best-fit value is degenerate with the assumed primordial power-
spectrum index, and the variation approximately follows the
relation ΔΩMh = −0.31Δn. The variations of n within the range
constrained by the WMAP data, ±0.015, lead to negligibly small
changes in our derived ΩMh.

An additional source of statistical uncertainty is that related to
the derivation of the L–M relation, since we derive this relation
from the same set of clusters. Uncertainties in the L–M relation
are translated into those of the survey volume and hence the
cluster mass function. Most of our cosmological constraints are
primarily sensitive to the cluster number density near the median
mass of the sample. This median mass, the V (M) uncertainties
are small compared with statistics (see Section 6 in Paper II).
The ΩMh determination, however, is based on the relative
number density of clusters near the high and low mass ends
of the sample. Since the volume is a fast-decreasing function at
low M’s, the V (M) variations are important. The most important
parameter of the L–M relation in our case is the power-law slope,
α (see Equation (20) in Paper II). Variations of α within the
error bars (±0.14) of the best-fit value lead to changes in the
derived ΩMh of ±0.027. Adding this in quadrature to the formal
statistical errors quoted above, we obtain a total uncertainty of
±0.035 (see Table 1). We have verified that other sources of
systematics in the ΩMh determination are much less important
than those related to the L–M relation.

In principle, a nonzero mass of light neutrino has some
effect on the perturbation power spectrum at low redshifts. We
checked, however, that their effect on the shape of the cluster
mass function is negligible for any

∑
mν within the range

allowed by the CMB data (Komatsu et al. 2009). Therefore,
neutrinos do not affect our results on ΩMh.

the ΩMh constraints dependent on the background cosmology and therefore
we prefer to base this measurement only on the local mass function. Also, we
use the YX-based mass estimates for this and σ8 analyses. The other
observables, TX or Mgas, give essentially identical results, because all of them
were normalized using the same set of low-z clusters see Paper II. The
difference between mass proxies is only important for the measurements based
on the evolution of the high-z mass function (Section 7).
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Our determination of ΩMh = 0.184 ± 0.035 compares
well with the previous measurements using cluster data and
galaxy power spectra. Of the previous cluster results especially
noteworthy is the work of Schuecker et al. (2003) whose
constraints are based not only on the shape of the mass function
but also on the clustering of low-z clusters. Their value is
ΩMh = 0.239±0.056 (errors dominated by uncertainties in the
conversion of cluster X-ray luminosities into mass; this source
of uncertainty is avoided in our work by using high-quality
X-ray mass proxies). ΩMh is measured accurately also by galaxy
redshift surveys. The results from the 2dF and Sloan Digital
Sky Survey (SDSS) surveys are ΩMh = 0.178 ± 0.016 and
0.223 ± 0.023, respectively (Cole et al. 2005; Tegmark et al.
2004, we rescaled to n = 0.95 their best-fit values reported
for n = 1). The individual error bars in galaxy survey results
are smaller than those from the cluster data; however, a recent
work by Percival et al. (2007c) suggests that the previous galaxy
redshift results may be affected by scale-dependent biases on
large scales. Indeed, there is a tension between the SDSS and
2dF values at 
 90% CL and the difference is comparable to
the error bars of our measurement.

The cluster results can be improved in the future by extending
the range of the mass function measurements. Not only can this
improve statistical errors in the mass function measurements but
can also improve the accuracy of the L–M relation, a significant
source of uncertainty in our case. We note that it is more
advantageous to increase statistics in the high-M range than
to extend the mass function into the galaxy group regime. In
addition to greater reliability of the X-ray mass estimates in
the high-M systems, the surveys become dominated by cosmic
variance approximately below the lower mass cut in our sample
(the cosmic variance is estimated in Section 7.1 of Paper II using
the prescription of Hu & Kravtsov 2003).

Combined with the HST prior on the Hubble constant, our
constraint on ΩMh becomes a measurement for the matter
density parameter, ΩM = 0.255 ± 0.043 (stat) ±0.037 (sys),
where systematic errors are also dominated by the slope of
the L–M relation. This agrees within the errors with other
independent determinations, such as a combination of BAO and
CMB acoustic scales, ΩM = 0.256 ± 0.027 (Percival et al.
2007b), and a combination of gas fraction measurements in
massive clusters with the average baryon density from big bang
nucleosynthesis, ΩM = 0.28 ± 0.06 (Allen et al. 2008). It
also agrees with another independent measurement based on
our data, ΩM = 0.30 ± 0.05 from the evolution of the cluster
temperature function (see Section 7 below).

6. CONSTRAINTS FROM THE NORMALIZATION OF
THE CLUSTER MASS FUNCTION: σ8 − ΩM

The normalization of the cluster mass function is exponen-
tially sensitive to σ8, the amplitude of linear perturbations at
the length scale 8 h−1 Mpc, approximately corresponding to the
cluster mass scale (Frenk et al. 1990). Measuring this parame-
ter with the cluster data has been a popular topic of research,
especially using statistics of X-ray clusters (Frenk et al. 1990;
Henry & Arnaud 1991; Lilje 1992; White et al. 1993, and many
others thereafter). The strong sensitivity of the predicted cluster
number density to σ8 makes the determination of this parameter
relatively insensitive to the details of the sample selection. His-
torically, different studies using very different cluster catalogs
yielded similar results, if the data were analyzed uniformly. De-
termination of σ8 is more sensitive to calibration of the absolute
mass scale. For example, Pierpaoli et al. (2003) show that if Mtot

Figure 3. Constraints on the σ8 and ΩM parameters in a flat ΛCDM cosmology
from the total (both low- and high-redshift) cluster sample. The inner solid
region corresponds to −2Δ ln L = 1 from the best-fit model (indicates the 68%
CL intervals for one interesting parameter, see footnote 13) and the solid contour
shows the one-parameter 95% CL region (−2Δ ln L = 4). The dashed contour
shows how the inner solid confidence region is modified if the normalization
of the absolute cluster mass vs. observable relations is changed by +9% (our
estimate of the systematic errors).

for a fixed value of TX is varied by a factor of 1.5, σ8 derived from
the local cluster temperature function is changed by Δσ8 ≈ 0.13.
Smaller biases are introduced if the effects of scatter in deriving
the mass–luminosity relation are neglected resulting in incor-
rect computations of the survey volume (Stanek et al. 2006).
Our present work includes advances in both of these areas and
thus it is worth presenting an updated measurement of σ8.

Determination of σ8 from the cluster abundance data usually
shows a strong degeneracy with the ΩM parameter, typically,
σ8 ∝ ΩM

−0.6 (e.g., Huterer & White 2002). The nature of
this degeneracy is such that the mass function determines the
rms amplitude of fluctuations at the given Mtot scale. The
corresponding length scale is a function of ΩM (M ∼ ΩMl3)
and thus the derived σ8 depends also on ΩM and more weakly
on the local slope of the linear power spectrum (see discussion
in White et al. 1993). We need, therefore, to constrain σ8 and ΩM
jointly. We used a grid of parameters of the flat12 ΛCDM model
(ΩM, h, σ8), and computed the cluster likelihood using the mass
function for the local sample. We then add the Hubble constant
prior (Section 4), and marginalized the combined likelihood
over h.

The results are shown in Figure 313. For a fixed ΩM, the
value of σ8 is constrained to within ±0.012 (statistical). The

12 The assumption of flatness (and background cosmology in general) has a
minor effect on the determination of σ8 because the measurement is dominated
by the low-redshift sample. However, we note that when we use the σ8
information in the dark energy constraints (Section 8 and thereafter), we do not
use the results from this section directly. When we fit w, σ8 is effectively
remeasured from the cluster data for each background cosmology.
13 The contours in these and subsequent figures correspond to the 95% CL
region for one interesting parameter (Δχ2 = 4). The inner solid region
corresponds to Δχ2 = 1. This choice is made to facilitate quick estimates of
the single-parameter uncertainty intervals directly from the plots. The total
extent of the Δχ2 = 1 region in either direction is a good estimate for the
one-parameter 68% CL interval (Cash 1976). Similarly, the width of this
region is a 68% CL interval assuming that the second parameter is fixed.
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Figure 4. Comparison with other σ8 measurements. The solid region is our
68% CL region reproduced from Figure 3 (this and all other confidence regions
correspond to Δχ2 = 1, see footnote 13. Blue contours show the WMAP 3 and 5
year results from Spergel et al. (2007) and Dunkley et al. (2009; dotted and solid
contours, respectively). For other measurements, we show the general direction
of degeneracy as a solid line and a 68% uncertainty in σ8 at a representative value
of ΩM . Filled circles show the weak-lensing shear results from Hoekstra et al.
(2006) and Fu et al. (2008; dashed and solid lines, respectively). Open circle
shows results from a cluster sample with galaxy dynamics mass measurements
(Rines et al. 2007). Finally, open square shows the results from Reiprich &
Böhringer (2002, approximately the lower bound of recently published X-ray
cluster measurements).

degeneracy between σ8 and ΩM can be accurately described
as σ8 = 0.813(ΩM/0.25)−0.47. The ΩM range along this line
is constrained by the shape of the local mass function com-
bined with the HST prior on the Hubble constant (Section 5).
Including the high-redshift data, we obtain very similar re-
sults. For example, for ΩM = 0.25, the total sample gives
σ8 = 0.803 ± 0.0105, to be compared with σ8 = 0.813 ± 0.012
from low-z clusters only. This implies that the σ8 measure-
ment is dominated by the more accurate local cluster data, as
expected.

Systematic errors of the σ8 measurement are dominated by the
uncertainties in the absolute mass calibration. To test the effect
of these uncertainties, we changed the normalization of the mass
versus proxy relations by ±9% (our estimate of systematic errors
in the mass scale calibration, see Section 2). The effect, shown
by the dotted contour in Figure 3, is to shift the estimated values
of σ8 by ±0.02, just outside the statistical 68% CL uncertainties.
This range can be considered as a systematic uncertainty in our
σ8 determination for a fixed ΩM.

Our cluster constraints on σ8 are more accurate (for a
fixed ΩM) than any other method, even including systematic
errors (Figure 4). It is encouraging that our results are in very
good agreement with recent results from other methods. The
measurements based on lensing sheer surveys, cluster mass
function with Mtot estimated from galaxy dynamics, and WMAP
(5 year results assuming flat ΛCDM cosmology) are all within
their respective 68% CL uncertainties from our best fit. This
independently confirms that our calibration of the cluster mass
scale is not strongly biased. Furthermore, the present systematic
errors in the cluster analysis are smaller than the statistical
accuracy provided by WMAP-5 and other methods. This allows

us to effectively use the σ8 information in the dark energy
equation-of-state constraints (Section 8.3).

We now move to models where the crucial role is played by
the high-redshift cluster mass function data. The first case to
consider is combined constraints for ΩM and ΩΛ in the nonflat
ΛCDM cosmology. To better demonstrate what role the different
components of the information provided by the cluster mass
function play in the combined constraints, we consider two
cases: (1) when the full cluster mass function information is
used, and (2) when the shape information is artificially removed
thus leaving only the evolutionary information.

7. CONSTRAINTS FOR NONFLAT ΛCDM COSMOLOGY:
ΩM − ΩΛ

In the first case, for each combination of parameters, we
compute the full likelihood for the low- and high-z mass
functions and add the HST prior on the Hubble constant (this
is necessary for effective use of the mass function shape
information, see Sections 4 and 5). We then marginalize the
combined likelihood over nonessential parameters (σ8 and h in
this case) keeping the primordial power-spectrum index fixed
at the WMAP best-fit value, n = 0.95. Removal of the shape
information (our second case) is achieved by letting n vary and
marginalizing over it. This is approximately equivalent to using
a free shape parameter for the CDM power spectra, the approach
often used in earlier cluster studies (e.g., Borgani et al. 2001).
Constraints for both cases were obtained for mass functions
estimated using all our three proxies, TX, Mgas, and YX .

The results are presented in Figures 5 and 6. First, we
can easily identify the role of using the mass function shape
information (illustrated for the Mgas and YX proxies). Clearly, it
mostly breaks the degeneracies along the ΩM axis. The best-fit
values and statistical uncertainties for ΩM are very close to those
derived from the shape of the local mass function (and nearly
identical to those from the total sample, Section 5).

For a fixed ΩM, the observed evolution in the cluster mass
function provides a constraint on ΩΛ. Degeneracies in the
ΩM − ΩΛ plane provided by different mass proxies applied
to the same set of clusters differ because of the different
distance dependences of the Mtot estimates via TX, Mgas, and
YX (see below). Even without the shape information, evolution
in the YX and Mgas-based mass functions requires ΩΛ > 0
at the 85% and 99.7% CL, respectively. Including the shape
information, we obtain ΩM = 0.28 ± 0.04, ΩΛ = 0.78 ± 0.25
(and ΩΛ > 0 is required at the 99% CL) from the YX-based
analysis. The evolution of the Mgas-based mass function gives
ΩM = 0.27 ± 0.04, ΩΛ = 0.83 ± 0.15, and ΩΛ > 0 at
99.98% CL. The TX-based mass function does not strongly
constrain ΩΛ but provides an independent measurement of ΩM
with almost no degeneracy with ΩΛ: ΩM = 0.34 ± 0.08, in
good agreement with the mass function shape results (and also
previous measurements based on the evolution of the cluster
temperature function, see Henry 2004). In a flat ΛCDM model
(the one with ΩM + ΩΛ = 1), the constraint is slightly tighter,
ΩM = 0.30 ± 0.05.

Systematic uncertainties of the ΩΛ measurements are dom-
inated by possible departures of evolution in the Mtot versus
proxy relations. This issue is discussed in detail below in
connection with the dark energy equation-of-state constraint
(Section 8.4); here we note only that the systematic uncertain-
ties are approximately 50% of the purely statistical error bars
on the dark energy parameters (ΩΛ, w). Therefore, our cluster
data provide a clear independent confirmation for nonzero ΩΛ.
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Figure 5. Constraints for nonflat ΛCDM cosmology from evolution of the
cluster mass function. The results using only the evolution information (change
in the number density of clusters between z = 0 and z ≈ 0.55) are shown in blue
and green from the Mgas and TX-based total mass estimates. The degeneracies in
these cases are different because these proxies result in very different distance
dependence of the estimated masses (see text for details). The constraints from
the YX-based mass function are between those for Mgas and TX (Figure 6).
Adding the shape of the mass function information breaks degeneracies with
ΩM, significantly improving constraints from Mgas and YX with little effect on
the TX results.

Comments on the role of geometric information in the cluster
mass function test. Cosmological constraints based on fitting the
cluster mass function generally use not only information from
growth of the structure but also that from the distance–redshift
relation because derivation of the high-z mass functions from the
data assumes the d(z) and E(z) functions. Quite generally, the
estimated mass is a power-law function of these dependences,
M̃ ∝ d(z)β E(z)−ε. Different mass proxies have different β
and ε, and thus combine the geometric and growth of structure
information in different ways and lead to different degeneracies
in the derived cosmological parameters. We find that strongly
distance-dependent proxies (such as Mgas, see Paper II) are
intrinsically more powerful in constraining the dark energy
parameters (ΩΛ, w). By contrast, distance-independent proxies
such as TX result in poor sensitivity to dark energy but instead
better constrain ΩM. This is well illustrated by the results in
Figure 5. The Mgas-based estimates for Mtot result (if we ignore
the shape of the mass function information) in degeneracy
approximately along the line ΩM +ΩΛ = 1. In fact, the evolution
of the cluster mass functions derived from Mgas can be made
broadly consistent with the ΩM ≈ 1, ΩΛ ≈ 0 cosmology if
one allows for strong deviations from the CDM-type initial
power spectra (Nuza & Blanchard 2006). However, the mass
functions estimated from the temperatures of the same clusters
are grossly inconsistent with such a cosmology, irrespective
of the assumptions on the initial power spectrum (ΩM = 1
is 8.3σ away from the best fit to the temperature-based mass
function, Figure 5). It is encouraging that the 68% CL regions
for all three mass proxies overlap near the “concordance” point
at ΩM = 0.25–0.3 and ΩΛ = 0.7–0.75.

Figure 6. Same as Figure 5 but for YX-based mass estimates.

8. FLAT UNIVERSE WITH CONSTANT DARK ENERGY
EQUATION OF STATE: w0 − ΩX

Next, we study constraints on a constant dark energy equation
of state, w0 ≡ pX/ρX, in a spatially flat universe. The analysis
using cluster data only is equivalent to the ΩM − ΩΛ case
(Section 7). We compute the likelihood for the cluster mass
functions on a grid of parameters: present dark energy density
ΩX (= 1 − ΩM), w0, h, and σ8, then add the HST prior on the
Hubble constant (Section 4). Marginalization over nonessential
parameters, h and σ8, gives the likelihood as a function of
ΩM and w0. We also obtain the equation-of-state constraints
combining our cluster data with the three external cosmological
data sets (following the reasoning of Dunkley et al. 2009, for
the choice of these data sets).

8.1. External Cosmological Data Sets

SN Ia. We use the distance moduli estimated for the Type Ia SNe
from the HST sample of Riess et al. (2007), SNLS survey (Astier
et al. 2006), and ESSENCE survey (Wood-Vasey et al. 2007),
combined with the nearby SN sample (we used a combination
of all these samples compiled by Davis et al. 2007). Calculation
of the SN Ia component of the likelihood function for the given
cosmological model is standard and can be found in any of the
above references.

Baryonic Acoustic Oscillations. Detection of the baryonic
acoustic peak in the correlation function for large red galaxies
in the SDSS survey leads to a good measurement of the
combination

[
dA(z)2

(cz)2 H (z)

]1/3√
ΩMH 2

0

[ n

0.98

]0.35
= 0.469 ± 0.017 (1)

at z = 0.35 (Eisenstein et al. 2005, “SDSS LRG sample”). This
prior mostly constrains ΩM but has some sensitivity also to the
dark energy equation of state.

A more recent measurement of the BAO peaks in the
combined SDSS and 2dF survey data is presented in Percival
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et al. (2007a) who determine the BAO distance measure at two
redshifts (z = 0.2 and z = 0.35) instead of one in Eisenstein
et al. (2005). These new data are somewhat in tension (∼ 2σ )
with the SN+WMAP results (see, e.g., Figure 11 in Percival et al.
2007a), which may artificially tighten the constraints when the
BAO data are combined with SN Ia, WMAP, and clusters. We
checked, however, that from the combination of SN Ia, WMAP,
and SDSS-LRG BAO, we derive the parameter constraints that
are essentially equivalent to those in Komatsu et al. (2009), who
used the Percival et al. priors. Therefore, the choice of the BAO
data set is unimportant in the combined constraints.

WMAP-5. The likelihood for WMAP 5 year data is computed
using a simplified approach described in Section 5.4 of Komatsu
et al. (2009). This involves a computation, for a given set of
cosmological parameters, of three CMB parameters—angular
scale of the first acoustic peak, 	A; the so-called shift parameter,
R; and the recombination redshift, z∗. The likelihood for the
WMAP-5 data is then computed using the covariance matrix for
	A, R, and z∗ provided in Komatsu et al. This method is almost as
accurate as direct computation of the WMAP likelihood (Wang &
Mukherjee 2007) but is much faster, which allowed us to explore
the entire multidimensional grid of the cosmological parameters
instead of running Markov chain simulations. One additional
note is that to compute the CMB likelihood, we had to add the
absolute baryon density, Ωbh

2, to our usual set of cosmological
parameters and then marginalize over it. The reason is that while
the average baryon density has very little impact on the rest of
our analysis, the CMB data are very sensitive to Ωbh

2, thus
any variation of h must be accompanied by the corresponding
variation of Ωb without which the computation of the CMB
likelihood would be inadequate.

The method outlined above recovers essentially the entire in-
formation from the location and relative amplitudes of the peaks
in the CMB power spectrum (Wang & Mukherjee 2007). One
additional piece of information is the absolute normalization
of the CMB power spectra, reflecting the amplitude of density
perturbations at the recombination redshift, z∗ ≈ 1090. Con-
trasted with σ8 determined from our cluster data at z ≈ 0, it
constrains the total growth of density perturbations between the
CMB epoch and the present, and thus is a powerful additional
dark energy constraint.

WMAP-5 Plus Local σ8. The WMAP team provides the
amplitude of the curvature perturbations at the k = 0.02 Mpc−1

scale,
Δ2

R = (2.21 ± 0.09) × 10−9. (2)

Section 5.5 in Komatsu et al. (2009) gives the prescription of
how to predict this observable for a given set of cosmological
parameters and σ8. A useful accurate fitting formula can also be
found in Hu & Jain (2004):

Δ̃R ≈ σ8

1.79 × 104

(
Ωbh

2

0.024

)1/3 (
ΩMh2

0.14

)−0.563

× (7.808 h)(1−n)/2

(
h

0.72

)−0.693 0.76

G0
(3)

(we adjusted numerical coefficients to take into account that
the Hu & Jain approximation uses the CMB amplitude at
k = 0.05 Mpc−1 while the WMAP-5 results are reported for
k = 0.02 Mpc−1). In this equation, G0 is the perturbation
growth factor between the CMB redshift and the present,
normalized to the growth function in the matter-dominated

Figure 7. Constraints on the present dark energy density ΩX and constant
equation-of-state parameter w0 derived from cluster mass function evolution in
a spatially flat universe. The results for Mgas and YX-based total mass estimates
are shown in red and blue, respectively. The inner solid red region shows the
effect of adding the mass function shape information (Section 5) to the evolution
of the Mgas-based mass function.

universe: G(z) ≡ (1 + z) δ(z)/δ(zCMB). This fitting formula
helps to understand the nature of the σ8 versus CMB amplitude
constraint. The relation between σ8 and ΔR depends on the
absolute matter and baryon densities, ΩMh2 and Ωbh

2 (well
measured by the CMB data alone), and on the total growth
factor, G0, and the absolute value of the Hubble constant, h.
Both of these quantities provide powerful constraints on any
parameterization of the dark energy equation of state (Hu 2005),
and their combination does so as well.

Inclusion of this information in the total likelihood is straight-
forward. Given the usual set of cosmological parameters (ΩX,
w0, h) plus σ8, one computes

χ2
CMBnorm = (

Δ̃2
R × 109 − 2.21

)2
/0.092, (4)

where Δ̃R can be obtained either from Equation (3) or as
described in Komatsu et al. (2009). The χ2

CMBnorm component is
then added to the cluster χ2 and the sum marginalized over σ8.

8.2. w0 from Cluster Data Only

Constraints on the present dark energy density ΩX and con-
stant equation of state are presented in Figure 7. For comparison,
we show separately the results derived only from the evolution of
the Mgas and YX-based mass functions, and the effect of includ-
ing the mass function shape information (Section 7 describes
the procedure for removing shape information from the clus-
ter likelihood function). We do not consider here the TX-based
mass estimates because they provide little sensitivity to the dark
energy parameters. (Section 7). Just like in the ΩM − ΩΛ case,
evolution of the Mgas and YX-based mass functions constrains
different combinations of w0 and ΩX. The width of the confi-
dence regions across the degeneracy direction is similar but the
gas-based results are less inclined giving a little more sensitivity
to w0 for a fixed dark energy density—Δw0 = ±0.17 from the
Mgas-based functions and Δw0 = ±0.26 from YX .
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Figure 8. Comparison of the dark energy constraints from X-ray clusters and
from other individual methods (SNe, BAOs, and WMAP).

Adding the mass function information combined with the
HST prior on h breaks the degeneracy along the ΩX direction.
For example, the ellipse in Figure 7 shows the 68% CL region
from fitting both the evolution and shape of the Mgas-based mass
function. The one-parameter confidence intervals in this case
are ΩX = 0.75 ± 0.04 and w0 = −1.14 ± 0.21. These results
compare favorably with those from other individual methods—
SNe, BAO, WMAP (Figure 8), although the SNe and CMB
data provide tighter constraints on w0 for a fixed ΩX. The
real strength of the cluster data is, however, when they are
combined with the CMB and other cosmological data sets. The
combined constraints are very similar for the Mgas and YX-based
cluster mass functions, and therefore we discuss only the former
hereafter.

8.3. w0 from the Combination of Clusters with Other Data

First, we consider a combination of the cluster data with
the WMAP distance priors (see Section 5.4 in Komatsu et al.
2009). Cluster data bring information on growth of density
perturbations and normalized distances in the z 
 0.0–0.9
interval, and—weakly—on the ΩMh parameter. Adding this
information reduces the WMAP-only uncertainties on w0 and
ΩX approximately by a factor of 2 (dark blue region in Figure 9):
w0 = −1.08 ± 0.15, ΩX = 0.76 ± 0.04.

A much more significant improvement of the constraints
arises from the σ8 determination from low-redshift clusters (dark
red region in Figure 9). Comparison of the local determination of
σ8 with the CMB normalization mostly provides a measurement
of the total perturbation growth factor between zCMB and the
present. This depends more sensitively on w0 than the evolution
of the cluster mass function because of, first, larger redshift
leverage, and second, because the perturbation amplitude at
high z is measured more accurately by CMB than by 37 clusters
from the 400d survey.

Is it appropriate to use the σ8 versus CMB normalization
information in the dark energy constraints or does it require
unreasonable interpolation of the dark energy parameteriza-
tion to high redshifts? We note in this regard that for any

Figure 9. Dark energy constraints in a flat universe from the combination of the
CMB and cluster data (dark blue region). Adding the σ8 vs. CMB normalization
information significantly improves constraints on w0 for a fixed ΩX (inner red
region).

combination of the cosmological parameters in the vicinity of
the “concordance” model, w0 
 −1, ΩX = 0.25–0.3, the uni-
verse becomes matter dominated and enters the deceleration
stage by z ∼ 1.5 − 2; the growth of perturbations is basically
fixed after that at G(z) = 1. In other words, the CMB data can
be used to safely predict the amplitude of density perturbations
at z = 1.5–2 almost independently of the exact dark energy
properties. As long as it is appropriate to use a particular dark
energy parameterization in the z = 0–2 interval, it is therefore
appropriate to use the same model for the joint clusters+WMAP
fit.

By itself, adding the σ8 information does not significantly
improve the w0 and ΩX constraints (the total extent of the 1σ
confidence regions is similar to the WMAP+evolution case),
but the confidence region becomes much more degenerate with
ΩX (see the inner red region in Figure 9), which increases the
potential for improvement when we combine these results with
other cosmological data sets, BAO and SNe.

The combined constraints from all four cosmological data
sets are shown in Figure 10 (inner dark red region). The 68%
one-parameter confidence intervals are ΩX = 0.740 ± 0.012
and w0 = −0.991 ± 0.045. The importance of adding informa-
tion from our cluster samples is illustrated by a factor of ∼ 1.5
reduction of the measurement uncertainties with respect to the
WMAP+SN+BAO data alone: we obtain w0 = −0.995 ± 0.067
without clusters (dark blue region in Figure 10; these results are
essentially identical to those reported in Komatsu et al. 2009).
Perhaps more importantly, including the cluster data also re-
duces systematic uncertainties by a similar amount (Section 8.4).

The best-fit values of the Hubble constant and σ8 from
the combination of all data sets are h = 0.715 ± 0.012 and
σ8 = 0.786 ± 0.011. These values are within 68% confidence
intervals of their determination by direct measurements (HST
Key Project results for h and fitting the low-z cluster mass
function for σ8). The best-fit combination of the dark energy
parameters is also within the 1σ confidence regions for each
individual data set included in the constraints (Figure 10).
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Figure 10. Dark energy constraints in a flat universe from the combination of
all cosmological data sets. We find w0 = −0.991 ± 0.045 (±0.04 systematic)
and ΩX = 0.740 ± 0.012, see Table 2 and Section 8.3.

Therefore, the best-fit cosmological model is a good fit to
the data. In particular, Figure 17 from Vikhlinin et al. (2009)
shows that the mass function models computed in the ΛCDM
cosmology (w0 = −1) provide a very good description of the
data.

8.4. Systematic Uncertainties in the w0 Measurements

We estimate the effect of known sources of systematics on the
cosmological constraints by varying the corresponding individ-
ual sets of data or internal relations (e.g., evolution in LX–Mtot
entering the survey volume computations) within the estimated
1σ interval. We assume, optimistically, that the current WMAP
and BAO data are free from significant systematics (i.e., that
they are smaller than statistical uncertainties), and consider sys-
tematic errors only in the SN Ia and cluster data sets. In most
cases, a single source clearly dominates the systematic error
budget for a particular measurement, so we report on only those
dominant sources.

The largest known source of systematic error in the SN Ia
analysis is the correction for extinction in host galaxies and
uncertainties in intrinsic colors of SN Ia (e.g., Frieman et al.
2008). As a measure of systematic uncertainty in the combined
SN sample, we use ±0.13 in w0 for fixed ΩX, quoted by Wood-
Vasey et al. (2007). We implement these errors by computing
the SN likelihood in our experiments for (ΩX,w0 + 0.13) and
(ΩX,w0 − 0.13) instead of (ΩX,w0).

8.4.1. Main Sources of Cluster Systematics

The largest sources of systematic errors in the cluster analysis
are those in the normalization of the Mtot versus proxy relations.
They can be separated into two almost independent components:
(1) how accurately is the absolute cluster mass scale established
by X-ray hydrostatic Mtot estimates in the low-redshift clusters,
and (2) how accurately can we predict evolution in the Mtot
versus proxy relations, i.e., the relative mass scale between low-
and high-redshift clusters. The first component mainly affects
the σ8 measurements and the associated dark energy constraints,

while the second component affects the results derived from
using only evolution in the cluster mass function (those in
Figure 7). Our estimates of the Mtot systematics are discussed
extensively in Vikhlinin et al. (2009). For the absolute mass
scale (Mtot for fixed YX , TX, or Mgas) at z ≈ 0, we estimate
ΔMsys/M � 9% mainly from the comparison of the X-ray and
weak-lensing mass estimates in representative samples. This
source of error is implemented by changing the normalization
of the Mtot versus YX , Mgas, or TX relations at z = 0 by ±9%.
For uncertainties in the evolution of the Mtot versus proxy
relations, we estimate ΔM/M ≈ 5% at z = 0.5, mainly
from the comparison of the prediction of different models
describing observed small deviations of the cluster scaling
relations from self-similar predictions, and from the magnitude
of these deviations and corresponding corrections we apply to
the data. These uncertainties are implemented by multiplying
the standard scaling relations by factors of (1 + z)±0.12.

Comparable to the evolution in the Mtot versus proxy relation
are measurement uncertainties in the evolution factor for the LX–
Mtot relation. We do not use LX to estimate the cluster masses,
but the relation is required to compute the survey volume for
the high-z sample. The resulting volume uncertainty depends
on the mass scale, and can become comparable to the Poisson
error for the comoving cluster number density (see Section 5.1.3
in Vikhlinin et al. 2009). We tested how this influences the
cosmological fit by varying the parameters of the LX–Mtot
relation within their measurement errors around the best fit (the
evolution of LX for fixed Mtot in our model is parameterized
as E(z)γ and γ is measured to ±0.33; see Section 5.1.3 in
Vikhlinin et al. 2009).

Other sources of systematics in the cluster analysis (sum-
marized in Vikhlinin et al. 2009) are negligible compared with
those outlined above. We verified also that uncertainties in the
intrinsic scatter in the Mtot-proxy relations are not important.
The main reason is that in the dark energy constraints, we use
high-quality mass proxies (YX and Mgas), which should provide
mass estimates with small, 7%–10% scatter. Variations of this
scatter by up to ±50% with respect to the nominal values do
not significantly change the best-fit cosmological parameters.
This conclusion is seemingly different from Lima & Hu (2005)
because in that paper, they consider proxies with larger scatter
(the effect on the cosmological parameter constraints is pro-
portional to scatter squared), and also they assumed that the
normalizations in the Mtot versus proxy relation are obtained
from self-calibration while we use direct mass measurements
for a well observed subsample.

The variations of the best-fit parameters due to the systematics
discussed above are reported in Table 2 along with the dominant
source of error for each combination of cosmological data sets.
For example, variations in the evolution of the Mtot–Mgas and
Mtot–YX relations affect the best fit to the cluster data only by
Δw0 = ±0.1, while statistical uncertainties are ±0.2 to ±0.3
for fixed ΩX (Section 8.2); unless the systematics in this case
are a factor of 2 larger than our estimates, they are unimportant.

8.4.2. Systematics in the Combined Constraints

The most interesting case to consider is the reduction in the
systematic errors from combining both SN and cluster data with
the WMAP and BAO priors. In the SN+CMB+BAO case, the
SNe systematics cause variations in the best-fit w0 by ±0.076
(reduced from ±0.13 for the SN-only case mainly by includ-
ing WMAP priors). Cluster systematics affects the w0 con-
straints from the clusters+WMAP+BAO combination by ±0.04
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(dominated by the ±9% uncertainties in the absolute mass
scale). The influence of both sources of error is significantly
reduced in the combined constraints. We find that the best fit w0
from SN+clusters+WMAP+BAO is affected by ±0.022 by SN
systematics, and by ±0.033 by cluster systematics. The total sys-
tematic error in the combined constraint is thus Δw0 = ±0.04,
almost a factor of 2 reduction from ±0.076 achievable without
clusters.

We also note that if we significantly underestimate the cluster
systematics, the most likely direction is that the cluster total
masses are underestimated.14 If the cluster Mtot are revised high,
this would lead to an increase in the derived σ8, and decrease
in w0 when cluster data are combined with the CMB priors.
Dark energy models predicting the equation-of-state parameter
significantly above w0 = −1 will be even less consistent with
observations in this case.

8.4.3. Prospects for Further Reduction of Systematic Errors

It is reassuring that all sources of systematic errors we
considered affect the dark energy equation-of-state constraints
within the statistical measurement errors. This implies that while
systematic errors are important, they do not yet dominate the
current error budget. The situation will reverse in the future as
the data sets expand. More effort will be needed then to reduce
the systematics still further. We briefly outline the prospects
for reducing the cluster-related systematics. Some of this will
happen automatically as the high-z surveys become deeper and
cover a larger area. For example, the V (M) uncertainties for
our range of redshifts can be eliminated simply by decreasing
the flux threshold by a factor of ∼ 4 compared with the 400d
limit, making the sample volume-limited; such an extension
will provide also a more accurate measurement of the LX–Mtot
relation. The absolute calibration of Mtot in low-z clusters can be
improved by constraining sources of nonthermal pressure (e.g.,
if turbulence is of any importance for the Mtot estimates, it is
easily detectable with an X-ray microcalorimeter), or through
stacked weak-lensing analysis (e.g., measuring average lensing
shear profiles for a large set of clusters with the same YX).
To improve limits on nonstandard evolution in the Mtot versus
proxy relations, we cannot use direct mass measurements of
the high-z objects because they will be degenerate with the
assumed distance–redshift relation. Instead, we should improve
reliability of numerical models for cluster evolution. The biggest
uncertainties in these models at present are related to the
processes of gas cooling and star formation, and also to energy
feedback from the central AGN. The strategy for future progress
can be based on the fact that these processes most strongly
affect cluster cores, which we do not use for the mass estimates.
We can, therefore, use the data from the central regions to
bracket a likely range of uncertainty in the model predictions
for the cluster outer regions, where we derive the Mtot proxies.
However, even with the current estimated uncertainties, the
samples can grow by a factor of ∼ 4 before the systematics start
to dominate. Ultimately, as the cluster surveys detect ∼ 104

clusters with accurately measured X-ray parameters, the so-
called self-calibration techniques (Majumdar & Mohr 2004;

14 The X-ray hydrostatic analysis includes only the gas thermal pressure and
assumes that the cluster gas body is close to being spherically symmetric. The
presence of additional components in the pressure, clumpiness, and turbulent
motions in the gas all lead to underestimation of Mtot derived from X-ray data.
Probably the only possibility for overestimation of Mtot in the X-ray analysis is
a gross miscalibration of the Chandra spectral response, for which strong
experimental limits are available.

Lima & Hu 2004) can be employed to further constrain the
evolution in the Mtot versus proxy relations.

8.5. Effects of Nonzero Neutrino Mass

If light neutrinos have masses in the range of a few 0.1 eV,
they become nonrelativistic between zCMB and z = 0, and this
transition produces distortions in the matter perturbations power
spectrum relative to the prediction of the pure CDM+baryons
model. Using approximations of the transfer function from
Eisenstein & Hu (1999), it is easy to verify that the effect
is approximately proportional to the total mass of neutrinos
(more exactly, to

∑
mν/ΩM), and the rms fluctuations at cluster

scales today are suppressed by approximately 20% if
∑

mν =
0.5 eV and ΩM = 0.26. This effect is far outside the mea-
surement uncertainties in σ8 from clusters (we quote systematic
errors of 3% from uncertainties in the Mtot calibration and sta-
tistical uncertainties are even smaller, see Table 1). Therefore,
neutrino masses in this range (1) may affect the dark energy
constraints when cluster data are combined with WMAP (be-
cause they will effectively change the relation between σ8 and
the CMB normalization, Equation (3)), and (2) can be tightly
constrained by our cluster data.

To test the effect of neutrinos, we ran an additional set of
models in which the total neutrino mass was allowed to vary
between 0 and 1 eV. For simplicity, we assumed that there are
three neutrino species with the same mass, but the final results
are not very sensitive to this assumption. The only component
of our procedure, which is significantly affected by the nonzero
neutrino mass is contrasting the cluster-derived σ8 with the
WMAP normalization of the CMB power spectrum. We can
no longer rely on Equation (3) and should instead use the full
procedure described in Section 5.5 of Komatsu et al. (2009).
Otherwise, the analysis is equivalent to the

∑
mν = 0 case.

The likelihood for all cosmological data sets was computed
on our usual grid plus

∑
mν as an additional free parameter,

and then marginalized over ΩX, h, and σ8. Finally, we took
into account that a combination of WMAP, BAO, and SN data
provides some sensitivity to the neutrino mass through the so-
called early integrated Sachs-Wolfe effect (see discussion in
Section 6.1.3 of Komatsu et al. 2009, and references therein).
From this analysis, Komatsu et al. derive a 95% upper limit of∑

mν < 0.66 eV. Since our procedure of using WMAP priors
(Section 8.1) ignores this additional information, we included
it approximately by adding a Gaussian prior

∑
mν = 0 ± 0.33

eV to the final marginalized likelihood.
The derived constraints on

∑
mν and w0 are shown in

Figure 11. As expected, when the σ8 versus CMB normalization
constraint is added, there is a degeneracy between the best-fit
w0 and the total neutrino mass. If we were using only clusters
and WMAP, the degeneracy would approximately follow the
line w0 + 1 = −0.4

∑
mν and would extend to

∑
mν ≈ 1.3 eV

(the WMAP-only bound on the neutrino mass, Dunkley et al.
2009). This degeneracy is broken, however, when we add the
BAO and SN information: low values of w0 required by clus-
ters+CMB for high values of the neutrino mass are inconsistent
with these two data sets. Therefore, a combination of all four
data sets can be used to constrain both w0 and neutrino mass.
The best-fit value is

∑
mν = 0.10±0.12 eV, with a 95% CL up-

per limit of
∑

mν < 0.33 eV. This limit is significantly tighter
than that is achievable without clusters (< 0.66 eV at 95% CL).
The constraint on w0 degrades somewhat compared with the
mν = 0 case: w0 = −1.02 ± 0.055 (compared with ±0.045 for
mν = 0), but is still better than ±0.067 without clusters (see
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Table 1
Cosmological Constraints from X-ray Cluster Data

Parameter Value Determined by Systematic Errors Dominant Source
of Systematic Uncertainties

ΩMh 0.184 ± 0.024 Shape of the local mass function, Section 5 ±0.027 Slope of the L–M relation
ΩM 0.255 ± 0.043 Shape of the local mass function plus HST prior on h, Section 5 ±0.037 Slope of the L–M relation
σ8(ΩM/0.25)0.47 0.813 ± 0.013 Normalization of the local mass function, Section 6 ±0.024 Absolute mass calibration at z = 0
ΩM 0.34 ± 0.08 Evolution of the TX-based mass function, Section 7 ±0.055 Evolution of the M–T relation

Table 2
Parameter Constraints from the Combination of Clusters with Other Cosmological Data Sets

Parameter Value Data Set Systematic Dominant Source
Errors of Systematics

Flat (Ωk = 0), constant w (w = w0)
w0 −1.14 ± 0.21 evol+shape+h, Section 8.2 ±0.10, ±0.08, Evolution of Mtot vs. proxy relations,

evolution in LX–Mtot, respectively
w0 −1.08 ± 0.15 evol+CMB, Section 8.3 ±0.025 Evolution of Mtot vs. proxy relations
w0 −0.97 ± 0.12 evol+CMB+σ8+BAO, Section 8.3 ±0.038 Absolute cluster mass calibration
ΩX 0.732 ± 0.016 CMB+BAO+SN, Section 8.3
w0 −0.995 ± 0.067 CMB+BAO+SN, Section 8.3 ±0.076 SN systematics
w0 −0.991 ± 0.045 CMB+BAO+SN+evol+σ 8, Section 8.3 ±0.022, ±0.033 SN systematics, cluster masses

X 0.740 ± 0.012 CMB+BAO+SN+evol+σ 8, Section 8.3

h 0.715 ± 0.012 CMB+BAO+SN+evol+σ 8, Section 8.3

σ 8 0.786 ± 0.011 CMB+BAO+SN+evol+σ 8, Section 8.3

Flat (Ωk = 0), constant w (w = w0), nonzero neutrino mass
w0 − 1.02 ± 0.055 σ8+CMBν+CMB+BAO+SN+evol, Section 8.5 ±0.064 SN systematics.∑

mν 0.1 ± 0.12 eV, σ8+CMBν+CMB+BAO+SN+evol, Section 8.5 ±0.1 eV SN systematics, cluster masses
< 0.33 eV (95% CL)

Flat (Ωk = 0), evolving w: w = w0 + wa(1 − a)
wa + 3.64(1 + w0) 0.05 ± 0.17 CMB+BAO+SN+evol+σ8, Section 9.1

Constant w (w = w0), nonflat (Ωk �= 0)
w0 −1.03 ± 0.06 CMB+BAO+SN+evol+σ8, Section 9.2

Notes. Codes used in column 3: evol, evolution of the cluster mass function; h, HST prior on Hubble constant; shape, shape of the cluster mass function; CMB,
WMAP-5 distance priors; σ8, comparison of the cluster-derived σ8 with the CMB power-spectrum normalization (reflecting growth of perturbations between zCMB

and z = 0); BAO, BAO distance prior; SN, SN Ia luminosity distances; CMBν , WMAP-5+BAO+SN constraints on the neutrino mass (Section 8.5).

Figure 11. Equation of states from WMAP, BAO, SN Ia, and clusters in the case
of a nonzero neutrino mass.

Table 2). To conclude, adding the cluster information allows us
to set tight limits on the neutrino mass while still improving the
w0 measurements with respect to the SN+WMAP+BAO case.

Our constraints on the neutrino mass are still weaker than
the published results from Lyα forest data,

∑
mν < 0.17 eV

(Seljak et al. 2006). Both the cluster and Lyα-based constraints
use the same effect—suppression of the power spectrum at
small scales by neutrinos—but they have completely different
systematics. The main unknown in the Lyα analysis is the
thermal state of the low-density intergalactic medium (IGM),
usually estimated from numerical simulations; it has been
suggested that the thermal state may be more complex than
that assumed in previous work thus significantly weakening
the mν bounds (Bolton et al. 2008). For clusters, the main
uncertainty is the absolute mass calibration for low-redshift
objects which affects the measurement of σ8 (Section 6). The
9% systematic uncertainties on ΔM/M that we quote would
translate into approximately ±0.075 eV for

∑
mν , negligible

compared with the current statistical uncertainties. We note
that if the X-ray cluster mass measurements are wrong by
more than 9%, it is almost certainly in the sense that they are
underestimated (see footnote 14); the true value of σ8 will then
be higher than our measurement and the bound on the neutrino
mass will be even tighter. Therefore, our 95% CL bound of∑

mν < 0.33 eV can be considered as a conservative upper
limit.

9. MORE GENERAL DARK ENERGY MODELS

Finally, we demonstrate how our cluster data improves
parameter constraints for more general dark energy models.
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Figure 12. Constrains on evolving equation of state, w(z) = w0 + waz/(1 + z),
in a flat universe.

We consider two cases —evolving equation of state, w =
w(z), and constant equation of state in a nonflat universe.
The results are presented less completely than for the case
of constant w in a flat universe. We also do not discuss
systematic uncertainties separately for these cases; we checked
that the importance of different sources of systematics and their
fraction of statistical uncertainties is approximately the same
as reported in Section 8.4 for the constant w, a flat universe
case.

9.1. w(z) in a Flat Universe

We consider an often used parameterization of the equation-
of-state evolution in which w changes linearly with the ex-
pansion factor, w(a) = w0 + wa(1 − a), or equivalently,
w(z) = w0 + waz/(1 + z). We do not consider more complex
parameterizations because constraints on the evolution term are
still weak, and because neither parameterization has a clear
physical motivation.

The likelihood function is computed on the ΩM, w0, wa, h,
σ8 grid and then marginalized over ΩM, h, and σ8, leading to
constraints in the w0 −wa plane shown in Figure 12. Constraints
on wa are weak with or without clusters. For example, the
model with w0 = −1.2 and wa = 1 (leading to w = −0.7 by
z = 1) is perfectly consistent with the data. However, clusters
make the confidence region substantially narrower (improve
wa constraints for a fixed w0). A cosmological constant model
(w0 = −1, wa = 0) is still consistent with the data.

Finally, we note that in either case, the degeneracy between w0
and wa is almost linear, wa = A + B w0. For such degeneracies,
constraints on constant w are equivalent to those for evolving
w at the pivot redshift, ap = (1 + zp)−1 = 1 + 1/B (Hu &
Jain 2004). From the slopes of degeneracies in Figure 12, we
find zp ≈ 0.29 without clusters and zp ≈ 0.38 when cluster
information is included. Therefore, our combined constraints
on constant w (Section 8) can also be interpreted as those for
evolving w at this pivot redshift.

Figure 13. Equation-of-state constrains from WMAP, BAO, SN Ia, and clusters
in the case of a nonflat universe. We find w0 = −1.03 ± 0.06 and Ωk =
−0.008 ± 0.009 with all the data combined.

9.2. w0 in a Nonflat Universe

The final case we consider is constant w in a nonflat universe.
The cosmological grid in this case is (Ωk, ΩM, w0, h, σ8) with
the requirement that the dark energy density is ΩX = 1 −
ΩM − Ωk . The likelihood is marginalized over ΩM, h, σ8, and
the constraints on Ωk and w0 are shown in Figure 13. Including
clusters does not noticeably improve the measurement of Ωk; by
far the most significant contribution to the Ωk constraint is from
the combination of WMAP and BAO data (Komatsu et al. 2009).
However, clusters do substantially improve the equation-of-state
measurement: w0 = −1.03 ± 0.06 to be compared with ±0.085
without clusters. A flat ΛCDM model (Ωk = 0, w0 = −1) is
still consistent with the data within 68% CL.

10. SUMMARY AND CONCLUSIONS

We presented constraints on the cosmological parameters
from a new measurement on the galaxy cluster mass function in
the redshift range z = 0–0.9. All major sources of information
contained in the cluster mass function—its overall normalization
and slope at z = 0, and evolution at high redshifts—are
determined with our new data with a higher statistical accuracy
and smaller systematic errors than before. This leads to much
improved and more reliable constraints on the cosmological
parameters.

From the normalization of the mass function estimated at
low redshifts, we derive the σ8 parameter degenerate with
ΩM: σ8(ΩM/0.25)0.47 = 0.813 ± 0.013 (stat) ±0.024 (sys).
The slope of the low-z mass function is a measure of ΩMh:
ΩMh = 0.184 ± 0.037; combined with the HST prior on h, this
is an independent measurement of ΩM = 0.255 ± 0.043. The
matter density can be independently measured with our cluster
data using the evolution of the temperature function, yielding
consistent results, ΩM = 0.30±0.05 in a flat ΛCDM model and
0.34 ± 0.08 in a general cosmology.

Evolution of the mass functions between z = 0 and 0.5
(median redshift for our high-z sample) constrains ΩΛ = 0.83±
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0.15 in nonflat ΛCDM cosmology, or the dark energy equation-
of-state parameter, w0 = −1.14 ± 0.21, in a spatially flat
universe. Inclusion of the information provided by our cluster
data also significantly improves the equation-of-state constraints
obtained from the combination of multiple cosmological data
sets. For example, by combining the 5 year WMAP, most recent
SNe measurements, and detection of BAOs in the SDSS with
our cluster data, we obtain w0 = −0.991 ± 0.045 (stat) ±0.040
(sys); both the statistical and systematic errors in the combined
constraint are a factor of 1.5–2 smaller than those without
clusters. Including cluster information also improves results for
an evolving equation-of-state parameter and for constant w in
a nonflat universe. A spatially flat ΛCDM model is within the
68% CL interval from the best fit in all cases that we tested.

A good agreement between the geometric and growth of
structure-based measurements of w in principle can be used
to place limits on modified gravity theories which attempt to
explain cosmic acceleration without dark energy (e.g., Wang
et al. 2007). When self-consistent models of nonlinear collapse
in such theories become available, it should be straightforward
to use our cluster data in such tests also.

Comparison of the power-spectrum normalization at z =
0 obtained from clusters with the amplitude of the CMB
fluctuations is a sensitive measure of the masses of light
neutrinos. We constrain

∑
mν < 0.33 eV at 95% CL, at the

expense of slightly weakening the measurement of w0 obtained
assuming that the neutrino masses are negligibly small.

To facilitate the use of our cluster results in our cosmological
studies, we provide at the project Web site15 machine-readable
tables of the likelihood function computed on several cosmo-
logical grids.
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