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But wait … 
We should be doing 
this in the INITIAL 
fluctuation field!
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s

g(>δc|s)

0∫
sdS f(S) p(>δc ,s| first δc at S)

≈ 0∫
sdS f(S) p(>δc ,s| δc ,S)



First crossing distributions

• Smooth walks:  p(>δc ,s| δc ,S,first) = 1
• Uncorrelated steps: p(>δc ,s| δc ,S,first) = ½

– This is the Press-Schechter factor of 2
– s f(s) = δc exp(- δc 

2/2s) / √2πs
– Self-similar in units of  ν = δc/√s 

• Correlated steps somewhere in between
– NB. Easy if p(>δc ,s| δc ,S,first) = separable 

function of s and S



For correlated steps  
rather than thinking of a walk

as a list of heights 
(i.e. the path integrals of Bond et al 1991), 
it is more efficient to think of it 

as a curve specified by
its height on one scale and

its derivatives 



Correlated steps
Require walk below barrier on scale just larger than 

s, but above barrier on scale s (Bond et al. 1991):

f(s)ds ≈ ∫dδ′ ∫ dδ p(δ,δ′)   where
δc<δ< δc +∆s δ′ and     δ′ > 0

= ∆s p(δc ,s) ∫ dδ′ p(δ′|δc) δ′
Reduces problem from n >>1 dimensions, to just 2
Generalizes trivially to any barrier shape and also to 

non-Gaussian fields



Correlated steps (constant barrier)

N.B. Not quite universal because of Γ:



From walks to halos

• Assume fraction of walks which cross on scale 
S = fraction of mass in halos of mass m, where 
S(m) from S = σ2(R) and m = ρ (4π/3)R3



For WDM …
• At small enough m, σ(m) is flat
• Fraction of walks which didn’t cross 

barrier prior to this σ = non-negligible 
smooth component which was never 
bound to anything

• fsmooth should be larger at high z
• Fewer halos (progenitors) at high z 

mean less concentrated halos at low z 
• fsmooth should be larger in voids = 

voids are ‘emptier’ (even more so if 
δc(m) larger at small m)

m

σ

CDM

WDM



Simplification because…
• Everything local
• Evolution determined by cosmology (competition 

between gravity and expansion)
• Statistics determined by initial fluctuation field:  for 

Gaussian, specified by initial power-spectrum P(k)
• Nearly universal in scaled units:  δc(z)/σ(m)       where 

σ2(m) = <δm
2> = ∫dk/k  k3P(k)/2π2 W2(kRm)   m ∝ Rm

3

• Fact that only very fat cows are spherical is a detail 
(crucial for precision cosmology); in excursion set 
approach, mass-dependent barrier height increases 
with distance along walk



Spherical evolution model

• ‘Collapse’ depends on 
initial over-density ∆i; 
same for all initial sizes
• Critical density depends 
on cosmology
• Final objects all have 
same density, whatever 
their initial sizes
•Collapsed objects called 
halos are           ~ 200×
denser than critical 
(background?!), whatever 
their mass 

(Figure shows particles at z~2 which, at z~0, are in a cluster) 
Tormen 1997



Assume a spherical herd of spherical cows…



Initial spatial distribution within patch (at z~1000)...

…stochastic (initial 
conditions Gaussian random 
field); study ‘forest’ of merger 
history ‘trees’.

…encodes information 
about subsequent ‘merger 
history’ of object
(Mo & White 1996; Sheth 1996)



• 8 halos,  
1015Msun at 
z=0 in ΛCDM

• Only dark 
matter 
particles 
within R200
shown 



• Same 
objects at 
z=1

• Blue 
shows 
dark 
matter 
within 
20kpc at 
z=0 



• Same 
objects at 
z=2

• Blue 
shows 
dark 
matter 
within 
20kpc at 
z=0 



Spherical evolution mapping …

(Rinitial/R)3 =  Mass/(ρcomVolume) =

1 + δ ≈ (1 – δ0/δsc)−δsc

… can be inverted:

(δ0/δsc) ≈ 1 – (M/ρcomV) −1/δsc

N.B.  For any V, there is a curve δ0(M|V).
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Initially Gaussian 
fluctuation field 
becomes very 

non-Gaussian on 
small scales

Large scale PDF 
~Gaussian even at 

late times



Critical

initial
over-
density

MASS

Easier to get here 
from over-dense 
environment

This 
patch 
forms 
halo of 
mass M

Correlations with environment

over-dense 

under-dense

‘Top-heavy’ 
mass function in 
dense regions

En
vi

ro
nm

en
t =

 e
ffe

ct
iv

e 
co

sm
ol

og
y

n(m|δ0) = n(m)(1 + b(m)δ0)
≠ n(m)(1+δ0)

Ef
fe

ct
iv

e 
gr

ow
th

 fa
ct

or



Effective cosmology

• ‘Biased’ walks will be just like original walk, 
but with ‘shifted’ barrier:
δc – δ0(1+δNL) ~ δc [1– δ0(1+δNL)/δc]

But 1 + δ ≈ (1 – δ0/δsc)−δsc

• =  δc (1+δNL)-1/ δc = δc DEff

• Basis for ‘separate universe’ simulation tests 
of bias.  



Conditional 
first crossing 
distributions

More massive 
halos in dense 

regions = origin 
of halo bias

dense

underdense

Musso, Paranjape, Sheth 2013



Environmental effects
• In hierarchical models, close connection 

between evolution and environment 
(dense region ~ dense universe ~ more 
evolved)

• Gastrophysics determined by formation 
history of halo

• Observed correlations with environment 
test hierarchical galaxy formation models –
all environmental effects because massive 
halos populate densest regions



Close connection between abundance 
and spatial distribution (bias):

• Let δR denote δ (smoothed) on scale R
• A halo of mass M forms from a patch where 

δR>δc, δR+dR<δc, ... 
• Abundance of halos of mass M from

p(δR>δc, δR+dR<δc , …)
• Bias related to p(δ>δc, δR+dR<δc, …|Δ on RΔ)

– Namely, write this as Taylor series in Δ; linear term 
in expansion is linear bias factor. 



Large scale clustering/bias
(from the peak-background split)

1 + δh(ν|δ0,S0) = f(ν|δ0,S0) /f(ν) 
= 1 + b1(ν)δ0 + …

• b(ν) directly from (derivatives of) f(ν) means 
halo abundances predict halo clustering

• b(ν) increases with ν
→ top-heavy mass function in dense regions:
n(m|δ0) = n(m)(1 + b(m)δ0 + …) ≠ n(m)(1+δ0)
→ massive halos (i.e. larger ν) more clustered:

<δhδ0> = b1(ν) <δ0
2> + … 



bLagrangian (ICs) → to bEulerian (later)

1 + δh(m|VEul) = 1 + bEul δmEul

= N(m|VEul) /n(m)VEul

= (VLag/VEul) N(m|VLag)/n(m)VLag

= (1 + δmEul) (1 + bLag δmLag)
(for δ«1, δNL = δLin) 

= 1 + δm + bLag δm + …
= 1 + [1 + bLag] δm



(Almost) 
universal 
mass 
function 
and halo 
bias

See Paranjape 
et al (2013) for 
recent progress 
in modeling this 
from first 
principles

See Castorina et 
al. (2014) for ν’s Sheth-Tormen 1999



The Halo 
Mass 

Function
•Small halos 
collapse/virialize
first
•Can also model 
halo spatial 
distribution
•Massive halos 
more strongly 
clustered

(Reed et al. 2003)

(current parametrizations by Sheth & Tormen 1999; Jenkins etal. 2001)



Aside:
Universal mass 

function + 
universal profile 

shape 
= 

easy to translate 
between different 

halo definitions

Despali et al 2016



Chandra XRay Clusters
Vikhlinin et al. 2008

Counts at one z constrain 
combination of σ8 and Ω; 
evolution breaks this

degeneracy, but must
understand evolution

of p(O|m,z)



Halo formation more complicated 
than simple spherical

• Halos may be closely related to 
peaks in the initial field 
(BBKS 1986; Paranjape et al. 2013)

• Shear must also matter 
(Bond, Myers 1996; Sheth, Mo, Tormen 2001)



Sheth, Chan, Scoccimarro 2013; Castorina et al. 2016

larger shear → larger 
overdensity



Excursion set 
peaks + shear 

works quite well

(Paranjape et al. 2013; 
Castorina et al. 2016)

Castorina et al. 2016



Density bias 
quite well 

understood

Room for 
improvement 
in tidal bias 

models

Modi et al. 2017



Tracer n(m) = ∫ dδ ... g(δ,δ’,δ’’,shear,…)
Bias from  n(m|∆,Σ)/n(m)

= ∫ dδ ... g(δ,δ’,…|∆,Σ)/n(m)
But <∆|halo> 

= ∫ dδ ... g(δ,δ’,…) <∆|δ,δ’,…>/n(m)
so close connection between bias and profile 

around bias tracers
δ’: velocity bias (Desjacques, Sheth 2009)

δ’’: scale dependent bias (Musso, Paranjape, Sheth 2013)
N.B.  Environment = effective cosmology built-in 
(e.g.Martino-Sheth 2009 for density; Desjacques 2013 for shear)





Scale dependence of bias depends on 
the properties of a proto-halo patch 

which determine halo formation
E.g., if protohalo is (i) a sufficiently overdense initial patch 
which is (ii) a local maximum, and which is (iii) less dense 
when smoothed on a larger scale, then

bias(k) = [b100 + b010 k2Rh
2

+ b001 dlnW(kRh)/dlnRh] W(kRh)
Coefficients depend on halo mass (Rh), density (i), steepness 
(iii), isolation (ii); Common to ‘marginalize’ over (ii) and (iii)
Woe to any approach which assumes W is sharp in k!
N.B.  This is just linear bias; there are even more coefficients 
for quadratic and higher order bias …



Scale-dependent 
bias at all levels

Generically: 
- constant at small k 
- k2 at intermediate k
- cutoff at high k  
(because halos are not
point particles)

Modi et al. 2017



Density profile = 
cross correlation 

between peak 
and mass

Generic:  Low 
mass = more 
concentrated

Lagrangian bias 
is scale 

dependent

Massara et al. 2018

High mass
bias>0

Low mass

bias<0



Density profile 
= cross 

correlation 
with mass

Generic:  Small 
void = obvious 

wall



In simulations, small voids 
indeed surrounded by walls

Hamaus et al. 2014



Summary
• Getting closer to a model which includes 

nonlocal, nonspherical effects, and 
reconciles peaks/halos

• These generate k-dependent bias 
(monopole), as well as anisotropic bias (e.g. 
quadrupole), even in real-space

• Nonlocal bias matters at high mass
• Useful for making physically motivated 

‘fitting formulae’ which simplify data analysis



Study of random walks with 
correlated steps 

=
Cosmological constraints from 

large scale structures



The other half of phase space:
Non-Maxwellian Velocities

• v = vvir + vhalo

• Maxwellian/Gaussian velocity within halo 
(dispersion depends on parent halo mass, 
because v2 ~ GM/rvir ~ M2/3)       
+ Gaussian velocity of parent halo (from 
linear theory ≈ independent of m)

• Hence, at fixed m, distribution of v is 
convolution of two Gaussians, i.e., 
p(v|m) is Gaussian, with dispersion
σvir

2(m) + σLin
2 = (m/m*)2/3σvir

2(m*) + σLin
2



Two contributions to velocities
• Virial motions 

(i.e., nonlinear 
theory terms)  
dominate for 
particles in 
massive halos

• Halo motions 
(linear theory) 
dominate for 
particles in low 
mass halos 

Growth rate of halo motions ~ consistent with linear theory; 
Zeldovich should be good approximation for halo motions 

~ mass1/3



Exponential tails are generic
• p(v) = ∫dm mn(m) G(v|m)

F(t) = ∫dv eivt p(v) = ∫dm n(m)m e-t2σvir2(m)/2 e-t2σLin2/2

• For P(k) ~ k−1, mass function n(m) ~ power-law times  
exp[−(m/m*)2/3/2], so integral is: 
F(t) = e-t2σLin2/2 [1 + t2σvir

2(m*)]−1/2

• Fourier transform is product of Gaussian and FT of K0
Bessel function, so p(v) is convolution of G(v) with 
K0(v)

• Since σvir(m*)~ σLin, p(v) ~ Gaussian at |v|<σLin but 
exponential-like tails extend to large v



Comparison with simulations

Gaussian core with exponential tails as expected
Similarly p(tSZ) and p(kSZ) should be non-Gaussian.

Sheth & Diaferio 2001



Structure grows because of 
perturbations in the initial velocity field 



Because of these 
motions, the 

fluctuation field 
can become very 

non-Gaussian 
(even though the 

displacements 
themselves are 

Gaussian)



The Zeldovich Approximation I.
x = q + D(t) u(q)/(fH) = q + D(t) S(q)

How are Zeldovich displacements S (for shift) 
related to density?  

dxi/dqj = δij + D(t) dSi/dqj
= δij - D(t) d[dΦ/dqi]/dqj

• Displacements are related to one derivative of potential 
so Jacobian of x-q transformation involves second 
derivatives of potential:  a 3x3 matrix.  
• The 3 eigenvalues of  Φij, say λ1, λ2, λ3, describe the 
principal axes of an ellipsoid (not a sphere!):  in this 
respect, Zeldovich is more general than spherical.



Zeldovich approximation II.
In principal axis frame:  

dxi/dqi = 1 - D(t) λi
Thus D(t) λ describes how the axis shrinks (or expands).  

Hence, the density is  
1 + δ(t) =   Πi=1

3 (1 – D(t)λi)−1

To lowest order this is 
1 + δ(t) = 1 + D(t) ∑ λi + D2(t) (λ1λ2 + λ1λ3 + λ2 λ3) + … 

= 1 + D(t) δinitial + D2(t) (λ1λ2 + λ1λ3 + λ2 λ3) + … 
Evidently, δLinear is just the trace of Φij. This is why it can be 
arbitrarily negative, and even when it is, the true 
overdensity is still sensible.  
Second order is combination of δ2

Linear and tidal effects.



III. Zeldovich sphere

Expansion/contraction same in all 
directions means λ1=λ2=λ3

1 + δ(t) = [1 – D(t) λ]−3

= [1 – D(t) δL/3]−3

This has δc = 3 (because it ignores 
accelerated collapse as object shrinks)



Lagrangian EFT philosophy
x = q + SPT(q,t) + SNL(q,t)

• SNL is correction to the displacement 
predicted by PT (where PT can mean 
Zeldovich, or higher order).  
 One could think of it as a sum of terms, each 

associated with a ‘turnaround’ in the ‘multi-
stream’, ‘shell-crossed’ regime

• In halo model, expect halo motions to be 
well-approximated by PT, but virial 
motions will not be, so think of SNL ~ Svir.



Halos and Lagrangian EFT
x = q + S(q,t)

x-xhalo + xhalo = q-qhalo + qhalo+Shalo(q,t) + S(q,t)-Shalo(q,t)

x - xhalo = q - qhalo + S(q,t) - Shalo(q,t)
S(q,t) = x - xhalo – (q - qhalo) + Shalo(q,t)

x - q = x - xhalo – (q - qhalo) + SPThalo(q,t) + EFT(q,t)
virial protohalo center-of-mass motion   Error

profile profile in PT                   .
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