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Abstract

Planning to explore the Large-Scale Structure of the Universe and to do fundamental physics with

those? A lightweight guide du routard to the Effective Field Theory for you.

Introduction

Disclaimer: these notes should be considered as my hand-written notes. They are not a

publication, they do not satisfy many of the required standards. They are a collections of

extracts from papers that I used to prepare these lectures. References are mainly only given to

expose where the material has been taken from, look at the cited papers for a complete list of

references.

1. number of modes is almost everything. Example is tilt, non-Gaussianity, etc.

2. CMB has been great, but the primordial CMB has almost exhausted its information.

Still order one improvement.

3. We want large improvements, for example to cross some interesting theory threshold,

or to have a real chance at measuring non-Gaussianities.

4. Large-scale structure has in principle lots of modes

Nmodes ∼
∑
i

∼ V

∫ kmax d3k

(2π)3
∼ V k3

max

2π2
(1)

We have V ∼ (104Mpc/h)3, if kmax ∼ 0.3hMpc−1 , we have

Nmodes ∼ 1010 � 107 ∼ Nmodes CMB (2)



5. Given that Volume is fixed, we can gain by going to high kmax, which means that

we need to understand the short distance dynamics. But this is made complicated

by the formation of very non-linear structures such as galaxies where physics is very

complicated

6. My purpose is to do fundamental physics, therefore we need precision and accuracy.

Can we do this?.

7. Let us observe the dark matter power spectrum. This is the change of matter contained

in a box of size 1/k as we change its location in the universe. We see that at long

distances the fluctuations are very small, and instead at short distances, as expected,

they are very large. We also see that there is an intermediate regime where perturbations

are still smaller than one, though not yet order one. There is the temptation that there

we could perform a rigorous, accurate description of the dynamics in that regime, by

expanding in the smallness of the fluctuations.

8. Notice that large scale structure are very complicated: there is matter, there are grav-

itationally bound objects, such as halos, galaxies, and clusters of galaxies. Again, our

hope is to develop a perturbative and rigorous approach valid at long wavelengths.

9. The EFTofLSS: Why we think this can be possible? Let us remember the case of

dielectric materials. For the propagation of weak-field, long-wavelength photons in a

material, we have developed a set of equations, called the Maxwell dielectric equations,

that describe such a propagation in any medium. The properties associated to the

various different media are encoded in a few coefficients. We do not need to know the

complicated structure of the material at atomic level due derive those equations. The

only thing we need to know is that the fundamental constituent of the material satisfy

some normal principal of physics such as locality, causality, etc.; once this is assumed,

the equations can be written and they ar eright.

10. In a sense, dielectric=composite objects+EM, EFTofLSS=composite objects+GR

Here we are going to do the same for LSS. We start from dark matter

1 From Dark Matter Particles to Cosmic ∼Fluid

See [1]. We take dark matter to be fundamentally described by a set of identical collisionless

classical non-relativistic particles interacting only gravitationally. This is a very good approx-

imation for all dark matter candidates apart from very light axions. We discuss baryons later

on. As we discuss later, we also neglect general relativistic effects and radiation effects. In this

approximation, numerical N -body simulations exactly solve our UV theory. The coefficients

of the effective fluid that we will define can therefore be extracted directly from the N -body

simulations, following directly the procedure described in [1].
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As we will see, we will see that the long-range dynamics is described by fluid-like equations

with some coefficients. The coefficients are determine by the UV physics. Here, the UV

theory is described by a Boltzmann equation. Therefore, in order to be able to extract the

fluid parameters from N -body simulations, we need to derive the fluid equations from the

Boltzmann equations and subsequently express the parameters of the effective fluid directly

in terms of quantities measurable in an N -body simulation. This is one of the task of this

section.

1.1 Boltzmann Equation

Let us start from a one-particle phase space density fn(~x, ~p) such that fn(~x, ~p)d3xd3p repre-

sents the probability for the particle n to occupy the infinitesimal phase space volume d3xd3p.

For a point particle, we have

fn(~x, ~p) = δ(3)(~x− ~xn)δ(3)(~p−ma~vn) . (3)

The total phase space density f is defined such that f(~x, ~p)d3xd3p is the probability that

there is a particle in the infinitesimal phase space volume d3xd3p:

f(~x, ~p) =
∑
n

δ(3)(~x− ~xn)δ(3)(~p−ma~vn) . (4)

We define the mass density ρ, the momentum density πi and the kinetic tensor σij as

ρ(~x, t) =
m

a3

∫
d3p f(~x, ~p) =

m

a3

∑
n

δ(3)(~x− ~xn) , (5)

πi(~x, t) =
1

a4

∫
d3p pif(~x, ~p) =

m

a3

∑
n

vinδ
(3)(~x− ~xn) , (6)

σij(~x, t) =
1

ma5

∫
d3p pipjf(~x, ~p) =

∑
n

m

a3
vinv

j
nδ

(3)(~x− ~xn) .

The particle distribution fn evolves accordingly to the Boltzmann equation

Dfn
Dt

=
∂fn
∂t

+
~p

ma2
· ∂fn
∂~x
−m

∑
n̄ 6=n

∂φn̄
∂~x
· ∂fn
∂~p

= 0 , (7)

where φn is the single-particle Newtonian potential. There are two important points to

highlight about the former equation. First, we have taken the Newtonian limit of the full

general relativistic Boltzmann equation. This is an approximation we make for simplicity.

All our results can be trivially extended to include general relativistic effects. However, it

is easy to realize that the Newtonian approximation is particularly well justified. Non-linear

corrections to the evolution of the dark matter evolution are concentrated at short scales, with

corrections that scale proportional to k/kNL. General relativistic corrections are expected to

scale as (aH)2/k2. This means that we should be able to wavelength shorter than order 300

Mpc before worrying about per mille General-Relativity corrections.
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Furthermore, one of the goals of this construction is to recover the parameters of the

effective fluid of the universe from very short scale simulations valid on distances of order

of the non-linear scale. The parameters we will extract in the Newtonian approximation are

automatically valid also for the description of an effective fluid coupled to gravity in the full

general relativistic setting.

A second important point to highlight in the former Boltzmann equation is about the

single-particle Newtonian potential φn. Following [1], the Newtonian potential φ is defined

through the Poisson equation

∂2φ = 4πGa2 (ρ− ρb) , (8)

with ρb being the background density and ∂2 = δij∂i∂j. We raise and lower spatial indexes

with δij. The solution reads

φ =
∑
n

φn +
4πGa2ρb

µ2
, (9)

φn(~x) = − Gm

|~x− ~xn|
e−µ|~x−~xn| . (10)

Notice that the overall φ(~x) is IR divergent in an infinite universe. This is due to a breaking

of the Newtonian approximation. We have regulated it with an IR cutoff µ that we will take

to zero at the end of the calculation. Our results do not depend on µ, as indeed we are

interested in very short distance physics.

By summing over n, we obtain the Boltzmann equation for f

Df

Dt
=
∂f

∂t
+

~p

ma2
· ∂f
∂~x
−m

∑
n,n̄;n̄6=n

∂φn̄
∂~x
· ∂fn
∂~p

= 0 . (11)

1.2 Smoothing

Following [2], we construct the equations of motion for the effective fluid by smoothing the

Boltzmann equations and by taking moments of the resulting long-distance Boltzmann equa-

tion. The smoothing guarantees that the Boltzmann hierarchy can be truncated, leaving us

with an effective fluid. Indeed, notice that it is not trivial at all that we should end up with an

effective fluid. Fluid equations are usually valid over distances longer than the mean free path

of the particles. But here for dark matter particles the mean free path is virtually infinite.

What saves us is that the dark matter particles have had a finite amount of proper time,

of order H−1, to travel since reheating, and they traveled at a very non-relativistic speed.

This defines a length scale vH−1 ∼ 1/kNLsim1/10hMpc−1 which is indeed of order of the

non-linear scale. This length scale plays the role of a mean free path, as verified in [2]. The

truncation of the Boltzmann hierarchy is regulated by powers k/kNL � 1 1.

Mote: in general, EFT’s can be just written down without need to smooth directly the

UV equations. They can be written just based in terms of low-energy degrees of freedom

1This comes from dimensional analysis and inspection of the terms: each successive term in the Boltzmann

equation contributes as v/H · ∂i ∼ k/kNL
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and symmetries. Maybe I will sketch a derivation of this later on. However, once on has the

UV-completion, it is particularly enlightening to derive the EFT from te UV theory.

We define the Gaussian smoothing

WΛ(~x) =

(
Λ√
2π

)3

e−
1
2

Λ2x2

, WΛ(k) = e−
1
2

k2

Λ2 , (12)

with Λ2 representing a k-space, comoving cutoff scale. This will smooth out quantities with

wavenumber k & Λ, or equivalently with waveleghts smaller than λ . 1/Λ. The idea is to

take Λ ∼ kNL ∼ 1/10hMpc−1 . We regularize our observable quantities O(~x, t), ρ, π, φ, . . . ,

by taking convolutions in real space with the filter, defining long-wavelength quantities as

Ol(~x, t) = [O]Λ (~x, t) =

∫
d3x′WΛ(~x− ~x′)O(~x′) . (13)

Notice that in Fourier space W (k)→ 1 as k → 0: our fields are asymptotically untouched at

long distances.

The smoothed Boltzmann equation becomes[
Df

Dt

]
Λ

=
∂fl
∂t

+
~p

ma2
· ∂fl
∂~x
−m

∑
n,n̄,n 6=n̄

∫
d3x′WΛ(~x− ~x′)∂φn

∂~x′
(~x′) · ∂fn̄

∂~p
. (14)

Fluid equations are obtained by taking successive moments∫
d3p pi1 . . . pin

[
Df

Dt

]
Λ

(~x, ~p) = 0 , (15)

creating in this way a set of coupled differential equations known as Boltzmann hierarchy. It

is sufficient to stop at the first two moments: We obtain

ρ̇l + 3Hρl +
1

a
∂i(ρlv

i
l) = 0 , (16)

v̇il +Hvil +
1

a
vjl ∂jv

i
l +

1

a
∂iφl = − 1

aρl
∂j
[
τ ij
]

Λ
. (17)

Let us define the various quantities that enter in these equations. We define the long wave-

length velocity field as the ratio of the momentum and the density

vil =
πil
ρl
. (18)

The right hand side of the momentum equation (47) contains the divergence of an effective

stress tensor which is induced by the short wavelength fluctuations. This is given by[
τ ij
]

Λ
= κijl + Φij

l , (19)

where κ and Φ correspond to ‘kinetically-induced’ and ‘gravitationally-induced’ parts:

κijl = σijl − ρlvilvjl , (20)

Φij
l = − 1

8πGa2

[
wkkl δ

ij − 2wijl − ∂kφl∂kφlδij + 2∂iφl∂
jφl
]
,
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where

wijl (~x) =

∫
d3x′WΛ(~x− ~x′)

[
∂iφ(~x′)∂jφ(~x′)−

∑
n

∂iφn(~x′)∂jφn(~x′)

]
. (21)

Note that we have subtracted out the self term from wijl , as necessary when passing from

the continuous to the discrete description in the Newtonian approximation, and used that

∂2φ = 4πGa2(ρ − ρb) and ∂2φl = 4πGa2(ρl − ρb) to express Φl in terms of φ and φl. In the

limit in which there are no short wavelength fluctuations, and Λ→∞, κl and Φl vanish. In

the literature [1,3] there are available the above expressions written just in terms of the short

wavelength fluctuations.

This stress-tensor encodes how short-distance physics affects long distance one. Not only

the kinetic jiggling, but also the gravitational one act as pressure.

1.3 Integrating out UV Physics

The effective stress tensor that we have identified is explicitly dependent on the short wave-

length fluctuations. These are very large, strongly coupled, and therefore impossible to treat

within the effective theory. The equations we derived so far are not very useful, as they

depend explicitly on the short modes.

When we compute correlation functions of long wavelength fluctuations, we are taking

expectation values. Since short wavelength fluctuations are not observed directly, we can

take the expectation value over short-distances directly. This is the classical field theory

analog of the operation of ‘integrating out’ the UV degrees of freedom in quantum field

theory, now applied to classical field theory. The long wavelength perturbations will affect

the result of the expectation value of the short modes, through, e.g., tidal like effects. This

means that the expectation value will depend on the long modes. In practice, we take the

expectation value on a long wavelength background. The resulting function depends only on

long wavelength fluctuations as degrees of freedom. In this way, we have defined an effective

theory that contains only long wavelength fluctuations. Since long wavelength fluctuations

are perturbatively small, we can Taylor expand in the size of the long wavelength fluctuations.

Schematically we have [1, 2, 4]

τ ij(~x, t) = 〈
[
τ ij
]

Λ
〉δl + ∆τ ij (22)

= fvery complicated (H0,Ωdm, w, . . . ,mdm, . . . , ρdm(~x), ∂i∂jφ, . . .)|on past light cone + ∆τ ij

=

∫ t

dt′
(

Ker0(t, t′)δij + δijKer1(t, t′)∂2φ(~xfl, t
′) + δijKer2(t, t′)lm∂

l∂mφ(t′) +O
(
δ2,

∂

kNL

))
+∆τ ij

• We write down all the terms that are allowed by general relativity (no dependence on

velocity, no dependence on Φ or ∂Φ: only locally observable quantities are included).

• there is a stochastic term: it accounts for the renormalization of the short-wavelength

wavefunction of the modes.
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H−1

Long Scale Fluctuations are small

Short Scale Fluctuations are large

Figure 1:

• coefficients depend explicitly on time: time-translation are spontaneously broken in our

universe.

• Evaluation on the past light cone: the theory is non-local in time: this is very unusual.

In order to obtain a local field theory, we need an hierarchy of scales. k � kNL, so in

space we have locality. In time, the short modes evolve with H time scales, which is the

same as the long modes. Notice that when we evaluate on the past like cone, position

of evaluation is given by the fluid location.

~xfl(~x, t, t′) = ~x−
∫ τ(t)

τ(t′)

dτ ′′ vdm(τ ′′, ~xfl(~x, τ, τ ′′)) , (23)

• The stochastic term is characterized by short distance correlation, on length of order

1/kNL. It therefore has the following Poisson-like correlation functions:

〈∆τ(~x1) . . .∆τ(~xn)〉 =
δ(3)(~x1 − ~x2)

k3
NL

. . .
δ(3)(~xn−1 − ~xn)

k3
NL

(24)

• Notice that the stress tensor enters the equations with a derivative acting on it. The

effective stress tensor encodes how short distance physics affects long distance one.

For the precision we pursue in the rest of the paper, we will stop at linear level in the long

wavelength fluctuations, though nothing stops us from going to higher order.

Finally, the ellipses (. . .) represent terms that are either higher order in δl, or higher

order on derivatives of δl. Indeed, higher derivative terms will be in general suppressed by

k/kNL � 1, and, as typical in effective field theories, we take a derivative expansion in those.
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δ(~xfl(t), t) + ∂2

k2
NL

δ(xfl(t), t) + . . .

∼ H−1

Long wavelength fields around trajectory:

Formation time

Collapsing radius:

Fluid trajectory:

Halo/Galaxy

1/kNL

~xfl(t)

Figure 2:

Astrophysically, these terms would corresponds to the effects induced by a sort of higher-

derivative tidal tensor. Once we expand in derivatives of the long wavelength fluctuations,

we take the parameters in (22) to be spatially independent, but time dependent.

The coefficient in the stress tensor are determined by the UV physics and by our smooth-

ing cutoff Λ, and are not predictable within the effective theory. They must be measured

from either N -body simulations, or fit directly to observations. This is akin to what happens

in the Chiral Lagrangian for parameters that can be measured in experiments or in lattice

simulations, such as Fπ. We first define the correlation functions that will allow us to extract

these parameters from small N -body simulations.

Once we plug (22) into (47), we find a set of equations that depend only on the long modes:

all the dependence on the short modes has been encoded in the few coefficients appearing

in (22).

1.4 Smoothing out a fluid

In order to gain some intuition, it is worth to see the same formalism applied to the toy

example where we imagine that the UV system is a perfect pressurless fluid, and we integrate

out short distance fluctuations. We follow [2].

It is instructive to present the derivation of our effective stress-tensor τµν in the Newtonian

context in yet another way. As we saw earlier, we will later define the effective theory for long-

wavelength fluctuations by smoothing the stress-energy tensor τµν on a scale Λ and declaring

that long-wavelength gravitational fields are coupled to it. It is particularly illuminating to

see how τµν arises in we perform the smoothing immediately at the level of the Euler and
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kren = .1 h Mpc-1 HCAMBL

running from Consuelo
at L = 1 �3 Hh �MpcL

kren = .18 h Mpc-1 HCAMBL

L = 1 �3 Hh �MpcL from Consuelo

L = 1 �6 Hh �MpcL from Consuelo

0.2 0.4 0.6 0.8 1.0
6. ´ 10-7

8. ´ 10-7

1. ´ 10-6

1.2 ´ 10-6

1.4 ´ 10-6

L (h/Mpc)

c2 co
m

b(
L

) 
I1

0-
6

c2 M

Running of c2
combHLL at kext=.01, a=1

Figure 3:

Poisson equations. We take the Euler equation (in flat space, for simplicity):{
ρm
[
v̇i + vj∇jv

i
]

+ ρ∇iΦ
}

= 0 (25)

We apply a filter on scales of order Λ−1 to the Euler equation∫
d3x′ WΛ(|~x− ~x′|) ·

{
ρm
[
v̇i + vj∇jv

i
]

+ ρ∇iΦ
}

= 0 . (26)

We define smoothed quantities of all fields X ≡ {ρm,Φ, ρm~v} as

X` ≡ [X]Λ(~x) =

∫
d3x′WΛ(|~x− ~x′|)X(~x′) , (27)

and split the fields into short-wavelength and long-wavelength fluctuations X ≡ X` + Xs.

Straightforward algebra then shows (see Appendix of [2]) that the Euler equation can be

recast in the following way

ρ`
[
v̇i` + vj`∇jv

i
`

]
+ ρ`∇iΦ` = −∇j

[
τ ji
]s
, (28)

where [
τij
]s ≡ [ρmvsi vsj]Λ +

1

8πG

[
2∂iΦs∂jΦs − δij(∇Φs)

2
]

Λ
. (29)

We see that the long-wavelength fluctuations obey an Euler equation in which the stress tensor

τij receives contributions from the short-wavelength fluctuations. Eqn. (29)shows explicitly

how the effective long-wavelength fluid is different from the pressureless fluid we started with

in the continuity and Euler equations (25).

We can also formulate an ansatz for τ 00:

τ 00 = ρm +
1

2
ρmv

2 − 1

8πG

(
∇Φ
)2
. (30)
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There are a few ambiguities in this choice, which correspond to the usual ambiguities of the

definition of the local stress tensor, to which we can add

∂α∂βΣ[αµ][βν] . (31)

Here, the tensor Σ is symmetric under the exchange of the two index pairs, and antisym-

metric within each pair. We now impose that this obeys the 0-component of stress-energy

conservation

0 = ∂µτ
µ0 = ∂0τ

00 + ∂iτ
i0 . (32)

We do not assume that τ i0 is the same as τ 0i defined in (??). As we will see in a moment this

is an interesting point. Taking the time-derivative of (30) and using repeatedly the continuity,

Euler, and Poisson equations, we get

∂0τ
00 = −∂i

[
ρmv

i
(

1 +
1

2
v2 + Φ

)
+

1

4πG
Φ∂iΦ̇

]
. (33)

This is consistent with the local conservation law for

τ i0 = ρmv
i
(

1 +
1

2
v2 + Φ

)
+

1

4πG
Φ∂iΦ̇ ' ρvi (34)

up to relativistic corrections that we neglected.

1.5 Renormalization of the Background

From the above analysis it is straightforward to see that integrating out short-wavelength

fluctuations leads to a renormalization of the background. We define the new background as

the k � Λ limit of the effective fluid,

ρ̄eff ≡ − lim
k�Λ
〈τ 0

0〉 , 3p̄eff ≡ lim
k�Λ
〈τ ii〉 , (Σ̄i

j)eff ≡ lim
k�Λ
〈τ̂ ij〉 . (35)

Eqn. (35) describes the fluid on very large scales, where spatial fluctuations are suppressed by

k2/q2
?, with q? the typical scale of non-linearities. In particular, on superhorizon scales these

fluctuations are highly suppressed.

Let us define:

κij ≡
1

2
〈(1 + δ)vivj〉 (36)

ωij ≡ − 〈φ,iφ,j〉
8πGa2ρ̄

≈ 〈φ,ij φ〉
8πGa2ρ̄

. (37)

κ = κii =
1

2
〈(1 + δ)v2〉 and ω = ωii =

1

2
〈δ φ〉 < 0 . (38)

Density. We find that the effective energy density receives contributions from the kinetic

and potential energies associated with small-scale fluctuations

ρ̄eff = ρ̄m(1 + κ+ ω) . (39)
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This shows that the background energy density is corrected precisely by the total kinetic and

potential energies associated with non-linear small-scale structures.

Pressure. The effective pressure of the fluid is

3p̄eff = ρ̄m(2κ+ ω) , (40)

and its equation of state is

w̄eff ≡
p̄eff

ρ̄eff

=
1

3
(2κ+ ω) . (41)

We see that for virialized scales the effective pressure vanishes. As intuitively expected,

a universe filled with virialized objects acts like pressureless dust. (This agrees with the

conclusion reached by Peebles in [5].) Non-virialized structures, however, do have a small

effect on the long-wavelength universe, giving corrections to the background of order the

velocity dispersion, O(v2). In Ref. [2] (and references therein), it is shown in perturbation

theory that 2κ+ ω > 0 (e.g. in linear theory 2κL + ωL = 1
2
κL > 0 in Einstein-de Sitter), and

that the induced effective pressure is always positive, p̄eff > 0.

Anisotropic stress. On very large scales the anisotropic stress (Σ̄i
j)eff averages to zero, i.e. it

has no long-wavelength contribution:

lim
k�Λ

(Σ̄i
j)eff ≈ 0 . (42)

This straightforwardly follows from the isotropy of the fluctuation power spectrum. On very

large scales, the gravitationally-induced fluid therefore acts like an isotropic fluid; its only

effects are small O(v2) corrections to the background density and pressure. Anisotropic stress,

however, does become important when studying the evolution of perturbations on subhorizon

scales.

This predictions and analytic explanations have recently numerically verified by numerical

codes that solve the GR equations expanded linearly in the metric fluctuations (δgµν � 1) [6].

Comment later on non-renormalization theorem.

2 Perturbation Theory (including Renormalization)

We are now ready to use our long wavelength effective equations to compute perturbatively

correlation function. It is immediate to expand the effective equations in the smallness of

δρ/ρ, and solve perturbatively.

Let us write the equation for the vorticity wil = εijk∂jvk. Neglecting the stochastic terms

that we argued are small, we have(
∂

∂t
+H − 3c2

sv

4Ha2
∂2

)
wil = εijk∂j

(
1

a
εkmnv

m
l w

n
l

)
. (43)

In linear perturbation theory the vorticity is driven to zero, and this occurs even the more

so at this order in perturbation theory, as the source is proportional to wl. While at higher
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vorticity is generated [4], at the lowest order that we keep in this lectures, and therefore for

the purposes of this paper, we can take it to be zero. This means that we can work directly

with the divergence of the velocity

θl = ∂iv
i
l (44)

Let us first neglect the contribution of the stress tensor, which will be included later pertur-

batively. Using a as our time variable, the equations

∂2

a2
φl = H2δl (45)

ρ̇l + 3Hρl +
1

a
∂i(ρlv

i
l) = 0 , (46)

v̇il +Hvil +
1

a
vjl ∂jv

i
l +

1

a
∂iφl = − 1

aρl
∂j
[
τ ij
]

Λ
. (47)

reduce to

aHδ′l + θl = −
∫

d3q

(2π)3
α(~q,~k − ~q)δl(~k − ~q)θl(~q) , (48)

aHθ′l +Hθl +
3

2

H2
0Ωm

a
δl = −

∫
d3q

(2π)3
β(~q,~k − ~q)θl(~k − ~q)θl(~q) ,

where H = a−1∂a/∂τ , subscript 0 for a quantity means that the quantity is evaluated at

present time, we have set a0 = 1, ′ represents ∂/∂a and

α(~k, ~q) =

(
~k + ~q

)
· ~k

k2
, β(~k, ~q) =

(
~k + ~q

)2
~k · ~q

2q2~k2
. (49)

Since the correlation function of matter overdensities is small at large distances, we can

solve the above set of equations (48) perturbatively in the amplitude of the fluctuations. For

the computation of the power spectrum at one loop, it is enough to solve these equations

iteratively up to cubic order. Order by order, the solution is given by convolving the retarded

Green’s function associated to the linear differential operator with the non-linear source term

evaluated on lower order solutions.

Schematically, if D{x,t} is a differential operator, we have

D{x,t}δl = J ⇒ δl(~x, t) =

∫
d4x′GR(x, t;x′, t′) J(x′, t′) (50)

D{x,t}GR(x, t;x′, t′) = δ(4)(xµ − x′µ)

At linear level, we have the following. If D(a) represents the growth factor at scale-factor-

time a, we write the linear solution as

δ
(1)
l (k, a) =

D(a)

D(a0)
δs1(~k) , (51)
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with a0 being the present time, and δs1 representing a classical stochastic variable with

variance equal to the present power spectrum

〈δs1(~k)δs1(~q)〉 = (2π)3δ(3)(~k + ~q)P11,l(k) , (52)

with P11,l(k).

At second order we obtain

δ
(2)
l (~k, a) =

1

16π3D(a0)2
(53)[(∫ a

0

dãG(a, ã)ã2H2(ã)D′(ã)2

)(
2

∫
d3qβ(~q,~k − ~q)δs1(~k − ~q)δs1(~q)

)
+

(∫ a

0

dãG(a, ã)

(
2ã2H2(ã)D′(ã)2 + 3H2

0Ωm
D(ã)2

ã

))
×
(∫

d3qα(~q,~k − ~q)δs1(~k − ~q)δs1(~q)

)]
.

Let us explain some of the relevant expressions that appear here. G(a, ã) is the retarded

Green’s function for the second order linear differential operator associated with δ that is

obtained after substituting θ in the second equation of (48) with the value obtained from the

first, and linearizing. In doing this, it is important to neglect all the terms of order c2
s because,

in our power counting, they count as non-linear terms. The Green’s function is given by

−a2H2(a)∂2
aG(a, ã)− a

(
2H2(a) + aH(a)H′(a)

)
∂aG(a, ã) + 3

ΩmH2
0

2a
G(a, ã) = δ(a− ã) ,

G(a, ã) = 0 for a < ã . (54)

For a ΛCDM cosmology the result can be expressed2 as a hypergeometric function, although

its form is not particularly illuminating. For all calculations presented here it is sufficient

to numerically solve the above differential equation. This can be easily accomplished by

replacing the δ(a − ã) on the RHS of the first equation with zero, but starting with the

boundary conditions being G(a, ã)|a=ã = 0, and ∂
∂a
G(a, ã)|a=ã = 1/(ãH(ã))2 . In principle,

it is possible to include in the linear equations that determine the Green’s function and the

growth functions also the higher-order linear terms proportional to c2
s. Doing this amounts to

resumming the effect of these pressure or viscous terms. The resulting linear equation can be

easely solved numerically, finding for example that the growth factor becomes k-dependent,

being the more suppressed the higher is the wavenumber [7]. However, it is not fully consistent

to resum these terms without including the relevant loop corrections.

Iterating, we obtain the solution for δ at cubic order δ(3).

A very useful simplification is due to the fact the growth factor and the Green’s function

are k-independent. This is due to the fact that at linear level we can neglect the pressure and

viscosity terms that would otherwise induce a k-dependence. Because of this, the convolution

integrals that would couple time integration and momentum integration nicely split into

2Using, e.g., Mathematica’s “DSolve” function.
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separate time integrals and momentum integrals that can be simply performed separately.

We have tried to underline this in (53) by adding suitable parenthesis. In fact, to a very good

numerical approximation, we have that

δ(2)(~k, a) ' D(a)2

D(a0)2

∫
d3q1

(2π)3

∫
d3q2

(2π)3
(2π)3δ

(3)
D (~k − ~q1 − ~q2)F2(~q1, ~q2)δ(1)(~q1, a0)δ(1)(~q2, a0)

δ(3)(~k, a) ' D(a)3

D(a0)3

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3
(2π)3δ

(3)
D (~k − ~q1 − ~q2 − ~q3)

F3(~q1, ~q2, ~q3)δ(1)(~q1, a0)δ(1)(~q2, a0)δ(1)(~q3, a0) (55)

where F2,3 are simple expressions of the q′s (such as 1 + ~q2·~q3
q2
2

). Show picture.

We can now form Feynamn diagrams by contracting then linear fluctuations. At fourth

order in the fluctuations, we have two diagrams, that we denote by P22 and P13.

P22(~k, a) = 〈δ(2)(~k)δ(2)(~k′)〉 = (2π)3δ
(3)
D (~k + ~k′)D(a)4

∫
d3q

(2π)3
F2(~k − ~q, ~q)2P11(q)P11(|~k − ~q|)

P13(~k, a) = 〈δ(1)(~k)δ(3)(~k′)〉 = (2π)3δ
(3)
D (~k + ~k′)D(a)4

∫
d3q

(2π)3
F3(~k,−~q, ~q)2P11(q)P11(k)

P1−loop = P22 + P13 + P31 (56)

δ(1)

x

x1 x2 t = tfinal

δ(2) δ(2)

δ(1) δ(1) δ(1)

t

δ(1)

x

x1 x2 t = tfinal

δ(1)

δ(2)

δ(3)

δ(1) δ(1)

t

Figure 4:

Now, for simplicity, let us imagine that the initial power spectrum was a simple power

law. This is not the case in the true universe, but it helps to make the physics clear.

Let us therefore image that P11 = 1
k3

NL

(
k
kNL

)n
, with −1 < n < 1. In this case, we have

that P13 is divergent. If we cut it off at q = Λ.

P13(k) = D(a)4

{(
Λ

kNL

)n+1
k2

k2
NL

+ cn

(
k

kNL

)n+3
}
P11(k) . (57)

We notice that the result would be infinitely large. We have cut it off, but at the cost at

an unphysical cutoff dependence.
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This is cannot be the right result, as cutoff dependence is unphysical. The reason of the

mistake is that our contribution is UV sensitive. But in that regime perturbation theory is

not supposed to apply, and not even our equations are correct. What do we do?

The effect of short distance physics was encoded in the stress tensor. With its free coeffi-

cient, it should be able to cancel the error that we make in perturbation theory and give the

correct result. Let us therefore use the stress tensor perturbatively. At leading order, we can

take the stress tensor at linear level. We obtain

δ
(3)

c2s
(~k, a) = −k2

{∫ a

0

da′ G(a, a′)

[∫ a′

da′′Ker1(a′, a′′)
D(a′′)

D(a)

]}
δ(1)(~k, a) (58)

≡ c2
s(a)D(a)3 k

2

k2
NL

δ(1)(~k, a) .

show diagram

δ(1)

x

x1 x2 t = tfinal

c2
comb

δ(3)

δ(1)

t

Figure 5:

Notice that we have defined a time-dependent speed of sound. There are two things to

discuss:

1. since time-translations are spontaneously broken, the coefficients are time-dependent

2. since the theory was non-local in time, parameters are time-dependent kernels, and

there are additional time integrals in the solutions. However, thanks to the fact that

the solution has the factorized structure

δ(k, a) ∼
∑
n

D(n)(a)

∫
dq1 . . . dqn δ

(3)
D (~k− ~q1− . . . ~qn)Fn(q1, . . . , qn) δ(~q1) . . . δ(~qn) (59)

then we can always symbolically do the time integrals over the kernels(∫
da′Ker(a, a′)

∑
n

D(n)(a′)

)∫
dq1 . . . dqnδ

(3)
D (~k − ~q1 − . . . ~qn)Fn(q1, . . . , qn) δ(~q1) . . . δ(~qn) =

=
∑
i

cn,i(a)

∫
dq1 . . . dqn δ

(3)
D (~k − ~q1 − . . . ~qn) Fn(q1, . . . , qn) δ(~q1) . . . δ(~qn) (60)
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So, we just get a different value of the counterterm for each order in the perturbative

expansion we use a counterterm.

Instead, if the theory were to be local in time, we would get the same coefficient asso-

ciated to the counterterm as for each different order in perturbation theory at which

we evaluate the counterterm. In local in time field theories, the perturbative time-non-

locality in encoded in the small higher derivative terms ∂t/ωUV.

So we have

P13,cs = c2
sD

4 k
2

k2
NL

P11(k) (61)

Notice that the counterterm has the same k-functional form as the UV divergent part of

the one loop diagram in (57). This means that we can define

c2
s = −

(
Λ

kNL

)n+1

+ c2
s, finite (62)

to obtain

P1−loop = 2P13 + P22 + 2P13,cs = D4

{
c2
s, finite

k2

k2
NL

+ cn

(
k

kNL

)n+3
}
P11(k) . (63)

The result is finite and cutoff independent. And furthermore, we have that

P1−loop � P11 for k � kNL (64)

so, perturbation theory is well defined. To achieve this, it was essential to introduce the stress

tensor, which allowed us to reabsorb the UV difergencies.

Was this good? We have found a well defined perturbative expansion at the cost of

introducing some counterterms. The prefactor of the non-analytic part,
(

k
kNL

)n+3

P11(k),

called cn, is known and cannot be changed by the counterterms. It is predictive. Instead, the

prefactor of the analytic part, k2P (k), instead can be changed by the counterterm. The factor

of cs is a new coupling constant that can be either measured in the data (as we have done for

the standard model of particle physics), or measured in simulations (one can also use some

approximate treatments such as the mass functions, to have a prior for these parameters).

Overall, the theory is still predictive (just bit less than a theory will a smaller number of

parameters).

Let us check better the expansion parameters. The integrand of P13 has the following

limits:

P13(k)

P11(k)
⊃ εδ< =

∫
q∼k

d3qP11(q) (65)

P13(k)

P11(k)
⊃ εs> =

∫
q�k

d3q
k2

q2
P11(q) ≡ (kδs>)2

P13(k)

P11(k)
⊃ εs< =

∫
q�k

d3q
k2

q2
P11(q) ≡ (kδs<)2

(66)
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The first contribution is the effect of ∂2φ, the force of gravity. The second is the ratio of the

wavelength of interest with respect to the displacement associated to the shorter wavelength

modes. In fact, the displacement is, at linear level,

s ∼ v H−1 ∼ ∂i

∂2
δ , Ps ∼ Pδ/k

2 (67)

The third is the ratio of the wavelength of interest with respect to the displacement

associated to the longer wavelength modes 3 Notice that δ modes of wavelength shorter than

the one of interest do not contribute. At the level of the UV, the contribution is suppressed

by k2/q2: this was indicated by the stress tensor, indeed.

Show pictures

Infrared modes: There is also a contribution from infrared modes. In reality, this

contribution is order one for modes larger than k ∼ 0.1hMpc−1 . It is possible to resum

the contribution of these modes because they simply correspond to long modes displacing,

translating short modes. This can be done. Intuition was there for a long time, but the first

correct formula (consistent with the principles of physics) was developed in the context of

the EFT in [8] (see [9–11] for some simplifications of different power and of different level of

accuracy). I do not have time to talk about it... maybe.

What about the stochastic counterterm? The UV limit of P22 is

P22(k) ⊃
∫
q�k

d3q
k4

q4
P (q)2 ∼ k4 (68)

But indeed

δ
(2)
stoch(~k, a) = kikj

∫ a

da′ G(a, a′) ∆τ ij(a′) , (69)

⇒ 〈δ(2)
stoch(~k, a)δ

(2)
stoch(~k′, a)〉 = kikjk

′
lk
′
m

∫ a

da′
∫ a

da′′ G(a, a′)G(a, a′′)〈∆τij(k, a′)∆τlm(k, a′′)〉

Using that

∆τij(k, a
′)∆τlm(k, a′′) =

δ
(3)
D (~k + ~k′)

k3
NL

(
εstoch,1(a′, a′′) δilδjm + εstoch,2(a′, a′′) δijδlm

)
, (70)

we have

〈δ(2)
stoch(~k, a)δ

(2)
stoch(~k′, a)〉 (71)

= k4

∫ a

da′
∫ a

da′′ G(a, a′)G(a, a′′) (εstoch,1(a′, a′′) + εstoch,2(a′, a′′)) =
k4

k4
NL

ε̃stoch(a)

So, this has the exact k-dependence to correct the UV contribution from P22.

3For IR-safe quantities, εs< should be modified to εs< =
∫
kBAO'q�k d

3q k2

q2 P11(q) ≡ (kδs<)2, as only modes

longer than the BAO scalem kBAO, contribute. Quantitatively, for the power spectrum of our universe, this

does not change the answer.
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〈∆τ∆τ〉

t

x

x1 x2 t = tfinal

δ(2)
δ(2)

Figure 6:

For a particularly pedagogical discussion of renormalization in the EFTofLSS in the con-

text of scaling universes, see [12] (see also [1, 13])

It is time to show some results on dark matter.

Before doing so, it might be useful to notice that there is an equivalent description. As

for fluids there are the Eulerian and the Lagrangian coordinates, we can do the same also for

our system. We can think of each non-linear scale as a particle endowed of a finite size, given

by the non-linear scale. Particle with finite size evolve not as point-like particles. Since they

have an extension, they feel the tidal tensor, and also, they can overlap. This leads to the

following equation:

d2~zL(~q, η)

dη2
+Hd~zL(~q, η)

dη
= −~∂x

[
ΦL[~zL(~q, η)] +

1

2
Qij(~q, η)∂i∂jΦL[~zL(~q, η)] + · · ·

]
+ ~aS(~q, η) ,

(72)

The quadrupole and the higher moments, as well as the stochastic force, are the counterterms

that can be expressed in terms of long wavelength field using vevs, responses, and stochastic

terms. This approach to the EFTofLSS based in Lagrangian space was developed in [14].

Uniqueness: One of the reasons why we know that EFT’s are the correct description

of the system is their universality, which means also their uniqueness. Indeed, only one

set of equations can describe a given system. Therefore, different descriptions, if correct,

can at best be equivalent. The difference between the Lagrangian-space EFTofLSS and the

Eulerian-space EFTofLSS is the different number of parameters in which they Taylor-expand.

The Lagrangian-space formulation does not expand in εs<, while the Eulerian-space EFT

does. However, the IR-resummed Eulerian-space EFTofLSS does not expand in εs< as well.

So, all EFTofLSS’s are the same and should give the same result, up to higher order terms

that were not computed and that constitute the theoretical error.
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3 Baryons

See [15]. So far we have talked about dark matter. But we know that there are baryons,

which contribute and are affected by star formation physics, which moves them around.

Can we develop an accurate description of baryons, notwithstanding the huge complications

associated to star formation physiscs? In fact, star formation physics is so complicated that

it cannot be even simulated. One can find simulations around, but they are models, nobody

is claiming to describe the ab-initio physics, which means that they are creating some ad hoc

recipes. This is the reason why there are many star formation models (AGN, feedback, no

feedback, Supernovae, wind, no wind).

But let us observe nature. For how complicated star formation events are, baryons are still

inside a cluster: they are not moved much around. This means that their overall displacement

is of order 1/kNL. The construction of the EFTofLSS for dark matter was just based on the

fact that dark matter particles could move only 1/kNL, and on longer distances we had a

fluid-like system.

Here with baryons we have the same situation. So, baryons are just another fluid-like

system! A universe of dark matter plus baryons is just a universe with two fluid-like systems.

The only difference with respect to the case of only dark matter is that there is number

conservation for dark matter and for baryons separately. So, both fluids satisfy an exact

continuity equation, so that

∂Ndm

∂t
=

∫
d3xδ̇ = −

∫
d3x∂i(π

i) = 0 (73)

but the two system can exchange momentum.

In the case of dark matter only, we had on the right hand side

π̇i + . . . = ∂jτ
ij, (74)

so that
∂Πi

∂t
=

∫
d3x

∂πi

∂t
⊃
∫
d3x∂jτ

ij = 0 , (75)

that is short distance physics could not change the overall momentum: momentum was con-

served.

Instead, baryons and dark matter can exchange momentum, however, the overall momen-

tum of the system is conserved. So we can write:

∇2φ =
3

2
H2

0

a3
0

a
(Ωcδc + Ωbδb) (76)

δ̇c = −1

a
∂i((1 + δc)v

i
c)

δ̇b = −1

a
∂i((1 + δb)v

i
b)

∂iv̇
i
c +H∂iv

i
c +

1

a
∂i(v

j
c∂jv

i
c) +

1

a
∂2φ = −1

a
∂i (∂τρ)

i
c +

1

a
∂i(γ)ic ,

∂iv̇
i
b +H∂iv

i
b +

1

a
∂i(v

j
b∂jv

i
b) +

1

a
∂2φ = −1

a
∂i (∂τρ)

i
b +

1

a
∂i(γ)ib ,
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where

(∂τρ)
i
σ =

1

ρσ
∂jτ

ij
σ , (γ)ic =

1

ρc
V i , (γ)ib = − 1

ρb
V i . (77)

There is, on top of the effective stress tensor, an effective force.

Again, as before, we can write

− (∂τρ)
i
σ (a, ~x) + (γ)iσ(a, ~x) = (78)∫

da′
[
κ(1)
σ (a, a′) ∂i∂2φ(a′, ~xfl(~x; a, a′)) + κ(2)

σ (a, a′)
1

H
∂i∂jv

j
σ(a′, ~xfl(~x; a, a′)) . . .

]
,

This theory is supposed to be able to describe the baryons and dark matter analytically, at

long distances, with arbitrary precision.

Let us study a bit of the dynamics. In our universe, baryons and dark matter start at

the CMB time with different velocities. However, the relative velocity rapidly decays. So,

we can consider that they have the same velocity in the dark ages. At some point then, star

formation begins, and baryons move differently due to the radiation pressure. This short

distance physics effect is encoded in the effect of the counterterms.

The leading effect is again a cs-like effect. We have

∆Pb−c ∼ c2
?k

2P (k) (79)

This means that the analytic form of the baryonic effect is known: all different star forma-

tion physics effects are encoded in a different c? (similar to the fact that different dielectric

coefficients fit all dielectric material). From the figure, we see that this seems to work.
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Figure 7: Fit of the EFTofLSS to the total-matter power spectrum with different starformation

models. By adjusting cs,? we seem to fit all star formation models.

.
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4 Galaxies, Halos, biased tracers

See [16,17]. We wish to write how the distribution of galaxies depends on the distribution of

the dark matter. Galaxies form because of gravitational collapse, therefore they will depend on

the underlying values of the gravitational field and dark matter field. Since the overdensities

of galaxies is a scalar quantity, it can only depend on similarly scalar quantities built out

of these fields. Let us consider each of these terms one at a time (this discussion can be

interpreted also as a more detailed discussion of the terms that can enter in the dark matter

stress tensor).

Tidal tensor: Concerning the gravitational field, because of the equivalence principle,

the number of galaxies at a given location can only depend on the gravitational potential φ

with at least two derivatives acting on it, as it is for the curvature. φ without derivatives does

appear in curvature terms only at non-linear level in terms such as φ∂2φ or (∂φ)2. These are

general relativistic corrections, which are important only at long distances of order Hubble,

where perturbations can be treated as linear to a very good approximation. We will therefore

neglect these terms.

In the Eulerian EFT, the dark matter field is identified by the density field δ and the

momentum field πi [4]. This is a useful quantity because its divergence is related to the time

derivative of the matter overdensity by the continuity equation. Due to Newton’s equation, the

density field is constrained to be proportional to ∂2φ, so it can be discarded as an independent

field. Concerning the momentum field, clearly a spatially constant momentum field cannot

affect the formation of galaxies. Indeed, the momentum is not a scalar quantity. Under a

spatial diffeomorphism

xi → xi +

∫ τ

dτ ′ V i (80)

the momentum shifts as

πi → πi + V iρ . (81)

where ρ is the dark matter density ρ = ρb(1 + δ), with ρb being the background density.

gradient of velocity: Working with the field πi has the advantage, as discussed in [4],

that no new counterterm is needed to define correlation functions of ∂iπ
i once the correlation

functions of δ have been renomalized. Alternatively, one can work with the velocity field vi,

defined as

v(~x, t)i =
π(~x, t)i

ρ(~x, t)
. (82)

The velocity field has the advantage that ∂iv
j is a scalar quantity. However, vi is defined

as the ratio of two operators at the same location. It is therefore a composite operator that

requires its own counterterm and a new renormalization even after the matter correlation

functions have been renormalized [4] (see also [18]). As we will see, when dealing with biased

tracer, one has to define contact operators in any event, and vi has simpler transformation

properties than πi. Therefore, instead of working with πi, we work with vi. In analogy to

what we have just discussed, the galaxy field can depend on vi only through ∂jv
i and its

derivatives.
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kM: The field of collapsed objects at a given location will not depend just on the grav-

itational field or the derivatives of the velocity field at the same location. There will be a

length scale enclosing the points of influence. This length scale will be of order the spatial

range covered by the matter that ended up collapsing in a given collapsed object. We call

the wavenumber associated to this scale kM , as it depends on the nature of the object, most

probably prominently through its mass. We expect kM ∼ 2π(4π
3

ρb,0
M

)1/3, where M is the mass

of the object and ρb,0 is the present day matter density. In particular, kM can be different

from kNL, the scale as which the dark matter field becomes non-linear 4. If we are interested

on correlations on collapsed objects of wavenumbers k � kM, we can clearly Taylor expand

this spatially non-local dependence in spatial derivatives.

Stochastic: In addition, in general there is a difference between the average dependence

of the galactic field on a given realization of the long wavelength dark matter fields, and its

actual response in a specific realization. To account for this, we add a stochastic term ε to

the general dependence of the galaxy field. ε is a stochastic variable with zero mean but with

other non-trivial, Poisson-in-space-distributed, correlation functions.

Time derivative and their more physical description:

This suggest that we should add in the bias terms that go as 1
ωshort

∂
∂t

, such as 1
ωshort

∂ ∂2φ
∂t

.

It is pretty clear that these term are not diff. invariant. Under a time-dependent spatial diff.,

∂/∂t shifts as 5

∂

∂t
→ ∂

∂t
− V i ∂

∂xi
. (83)

A diff. invariant combination can be formed by allowing the presence of the dark matter

velocity field vi without derivatives acting on it, and defining a flow time-derivative, familiar

from fluid dynamics, as
D

Dt
=

∂

∂t
+ vi

∂

∂xi
. (84)

We are therefore led to naively lead to include terms of the form

δM(~x, t) ⊃ cDt∂2φ(t)
1

H2

1

ωshort

D∂2φ

Dt
+ . . . . (85)

In reality, the situation is even more peculiar, at least at first. In fact, let us ask ourselves

what is the scale ωshort that suppresses the higher derivative operators. Naively, ωshort is

of order H, as this is the timescale of the short modes collapsing into halos. This is the

same time-scale as the long modes we are keeping in in our effective theory! This means

that the parameters controlling the Taylor expansion in 1
ωshort

D
Dt
∼ H

ωshort
is actually of order

one. Therefore, what we have to do is to generalize these formulas: since the formation time

of a collapsed object is of order Hubble, we have to allow for the density of the collapsed

objects to depend on the underlying long-wavelength fields evaluated at all times up to an

4kNL can be unambiguously defined as the scale at which dark matter correlation functions computed with

the EFT stop converging.
5People familiar with the Effective Field Theory of Inflation [19,20] might remember that g0µ∂µ is invariant,

not ∂/∂t.
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order one Hubble time earlier. This means that the formula relating compact objects and

long-wavelength fields will actually be non-local in time. Therefore we have

δM(~x, t) '
∫ t

dt′ H(t′)

[
c̄∂2φ(t, t′)

∂2φ(~xfl, t
′)

H(t′)2
(86)

+c̄∂ivi(t, t
′)
∂iv

i(~xfl, t
′)

H(t′)
+ c̄∂i∂jφ∂i∂jφ(t, t′)

∂i∂jφ(~xfl, t
′)

H(t′)2

∂i∂jφ(~xfl, t
′)

H(t′)2
+ . . .

+c̄ε(t, t
′) ε(~xfl, t

′) + c̄ε∂2φ(t, t′) ε(~xfl, t
′)
∂2φ(~xfl, t

′)

H(t′)2
+ . . .

+c̄∂4φ(t, t′)
∂2
xfl

kM
2

∂2φ(~xfl, t
′)

H(t′)2
+ . . .

]
.

Here c̄...(t, t
′) are dimensionless kernels with support of order one Hubble time and with size

of order one, and ~xfl is defined iteratively as

~xfl(~x, τ, τ ′) = ~x−
∫ τ

τ ′
dτ ′′ ~v(τ ′′, ~xfl(~x, τ, τ ′′)) . (87)

where τ is conformal time.

Another way to derive the above formula (86) is to notice that the local number density of

galaxies, ngal(~x, t), is given by a very-complicated formula. This complicated formula depends

on a huge amount of variables: all the cosmological parameters, all the local density of dark

matter and baryons, the local gradients of the velocities, the local curvature, but also the

electron and proton mass and the electroweak charges (as they affect the molecular levels

that affect the cooling mechanism and consequently the star formation mechanism), and

many more variables like this one. And everything must be evaluated on the past light cone

of the point under consideration 6. We can write:

ngal(~x, t) = (88)

fvery complicated({H,Ωm,Ωb, w, ρdm(~x′, t′), ρb(~x′, t), ∂i∂jφ(~x′, t′), . . . ,mp,me, gew, . . .}on past ligh cone)

However, if we are interested only in long-wavelength correlations of this quantity, we notice

that the only variables that carry spatial dependence are a few and that these quantities,

at long wavelengths, have small fluctuations. We can therefore Taylor expand (88) in those

quantities, to obtain (86).

In this way, correlation functions of galaxies can be computed in terms of correlation

functions of dark-matter density and velocity fields, that we compute before. In particular,

the non-locality in time is treated exactly as before: each perturbative solution has a factorized

form in terms of time and spatial dependence, and we can ultimately perform the integration

easely.

Again, this theory is supposed to match distribution of galaxies with arbitrary precision.

6In other words, Galaxies are very UV-sensitive objects. This is one way to say why it is so complicated

to simulate their formation from first principles.
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In summary, we have the following schematic structure of the perturbative expansion for

dark-matter, δ, and galaxies, δM , correlation functions:

〈δ(~k)δ(~k)〉′ ∼ (89)

〈δ(~k)δ(~k))〉′tree ×
[

1 +

(
k

kNL

)2

+ . . .+

(
k

kNL

)D]
︸ ︷︷ ︸

Derivative Expansion

[
1 +

(
k

kNL

)(3+n)

+ . . .+

(
k

kNL

)(3+n)L
]

︸ ︷︷ ︸
Loop Expansion

+

[(
k

kNL

)4

+

(
k

kNL

)6

+ . . .

]
︸ ︷︷ ︸

Stochastic Terms

,

〈δM(~k)δ(~k)〉′ ∼ P11(k1) (90)

×


[
c∂2φ + c∂4φ

(
k

kM

)2

+ . . .+ c∂2Dφ

(
k

kM

)2D−2
]

︸ ︷︷ ︸
Linear Bias Derivative Expansion

[
1 +

(
k

kNL

)(3+n)

+ . . .+

(
k

kNL

)(3+n)L
]

︸ ︷︷ ︸
Matter Loop Expansion

+

[
c(∂2φ)2 + c∂2(∂2φ)2

(
k

kM

)2

+ . . .+ c∂2D−2(∂2φ)2

(
k

kM

)2D−2
]

︸ ︷︷ ︸
Quadratic Bias Derivative Expansion

×
(

k

kNL

)3+n

︸ ︷︷ ︸
Quadratic Bias

[
1 +

(
k

kNL

)(3+n)

+ . . .+

(
k

kNL

)(3+n)L
]

︸ ︷︷ ︸
Matter Loop Expansion

+

[
c(∂2φ)3 + c∂2(∂2φ)3

(
k

kM

)2

+ . . .+ c∂2D−2(∂2φ)3

(
k

kM

)2D−2
]

︸ ︷︷ ︸
Cubic Bias Derivative Expansion

×
(

k

kNL

)2(3+n)

︸ ︷︷ ︸
Cubic Bias

[
1 +

(
k

kNL

)(3+n)

+ . . .+

(
k

kNL

)(3+n)L
]

︸ ︷︷ ︸
Matter Loop Expansion


+

[
cε0 cm,stoch,1 + ca, ε2

(
k

kM

)2

+ cm,stoch,2

(
k

kNL

)2

+ . . .

]
︸ ︷︷ ︸

Stochastic Bias Derivative Expansion

1

(kM
3k3

NL)1/2

(
k

kNL

)2

︸ ︷︷ ︸
Stochastic Bias

+ . . . .

For the additional fields that galaxies and dark matter can depend on in the presence

of baryons, see [17], and in the presence of primordial non-gaussianities [17, 21, 22]. These
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expressions need to be IR-resummed. By the equivalence principle, the formula is exactly the

same as for dark matter (see [17]).

An equivalent but different basis to the one developed in [16], (that is a change of basis),

that some people might find more easy to handle than the one presented here has been then

proposed in [23].

5 Redshift space distortions

See [24]. When we look at objects in redshift space, we look at them in redshift space, not

in real-space coordinates. The relation between the position in real space ~x and in redshift

space ~xr is given by (see for example [25]):

~xr = ~x+
ẑ · ~v
aH

ẑ . (91)

Mass conservation relates the density in real space ρ(~x) and in redshift space ρr(~xr):

ρr(~xr) d
3xr = ρ(~x) d3x , (92)

which implies

δr(~xr) = [1 + δ (~x(~xr))]

∣∣∣∣∂~xr∂~x

∣∣∣∣−1

~x(~xr)

− 1 . (93)

In Fourier space, this relationship becomes

δr(~k) = δ(~k) +

∫
d3x e−i

~k·~x
(

exp

[
−i kz
aH

vz(~x)

]
− 1

)
(1 + δ(~x)) . (94)

We now assume we can Taylor expand the exponential of the velocity field to obtain an

expression that is more amenable to perturbation theory (this is where the Eulerian approach

that we describe here, and the Lagrangian approach that we mentioned earlier differ, but

once the Eulerian-space has been IR-resummed, they are equivalent). For the purpose of this

paper, we will show formulas that are valid only up to one loop. We therefore can Taylor

expand up to cubic order, to obtain

δr(~k) ' δ(~k) + (95)∫
d3x e−i

~k·~x

[(
−i kz
aH

vz(~x) +
i2

2

(
kz
aH

)2

vz(~x)2 − i3

3!

(
kz
aH

)3

vz(~x)3

)

+

(
−i kz
aH

vz(~x) +
i2

2

(
kz
aH

)2

vz(~x)2

)
δ(~x)

]

= δ(~k)− i kz
aH

vz(~k) +
i2

2

(
kz
aH

)2

[v2
z ]~k −

i3

3!

(
kz
aH

)3

[v3
z ]~k − i

kz
aH

[vzδ]~k +
i2

2

(
kz
aH

)2

[v2
zδ]~k ,

where in the last line we have introduced the notation [f ]~k =
∫
d3x e−i

~k·~x f(~x).
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The product of fields at the same location is highly UV sensitive. As usual, we need to

correct for every dependence we get from the non-linear scale. Therefore, we need to replace:

[v2
z ]R,~k = ẑiẑj

{
[vivj]~k +

(
aH

kNL

)2 [
c1δ

ij +

(
c2δ

ij + c3
kikj

k2

)
δ(~k)

]
+ . . .

}
(96)

= [v2
z ]~k +

(
aH

kNL

)2 [
c1 + c2 δ(~k)

]
+

(
aH

kNL

)2

c3
k2
z

k2
δ(~k) + . . . ,

[v3
z ]R,~k = ẑiẑj ẑl

{
[vivjvl]k +

(
aH

kNL

)2

c1

(
δij vl(~k) + 2 permutations

)
+ . . .

}

= [v3
z ]~k +

(
aH

kNL

)2

3 c1 vz(~k) + . . . ,

[v2
zδ]R,~k = ẑiẑj

{
[vivjδ]k +

(
aH

kNL

)2

c1 δij δ(~k) + . . .

}

= [v2
zδ]~k +

(
aH

kNL

)2

c1 δ(~k) + . . . .

So, computing correlation functions in redshift space have reduced to compute correlation

functions in physical space of dark matter density and velocities.

In the presence of primordial non-Gaussianities and baryonic fields, additional countert-

erms are needed. See [26].

IR-resummation in redshift space was developed in [24,26].

6 Calculations and comparison with numerical simula-

tions

Here is an incomplete list of calculations and comparisons with simulations that have been

performed in the context of the EFTofLSS.

1. dark matter: power spectrum at one-loop [1], at two-loops [4, 27–30]. Bispectrum at

one-loop [9, 31].

2. biased tracers: power spectrum at one-loop [17]. Tree-level Bispectrum [17], leading-

in-mass one-loop bispectrum [32]. Leading-in-high-mass higher-derivative terms in tree-

level bispectrum [33].

3. dark matter in redshift space: one-loop power spectrum [26]

4. tracers in redshift space: one-loop power spectrum [34].

5. Baryonic effects: one-loop power spectrum: [15].

6. dark-energy: one-loop power spectrum: [37,38].
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7. neutrinos: one-loop power spectrum [35] and tree-level bispectrum [36].

7 More stuff

Interesting things that I have not time to discuss about.

1. IR-Resummation [8] (see [9–11] for some simplifications of different power and of

different level of accuracy). For IR-resummation for biased tracers (which is the same

as for dark-matter, see [17]). In redshift space, see [26]. For an application of the

IR-resummation-in-redshift-space to biased tracers, see [34].

2. primordial non-gaussianities: the presence of primordial non-Gaussianities implies

that the UV-sensitive terms could depend on terms that are different than the ones

allowed by diff. invariance. For real space, see [17, 21, 22]. For the new counterterms

that arise in redshift space, see [26].

3. neutrinos: the EFTofLSS has been upgraded to describe also the effect due to neutri-

nos [35, 36].

4. dark energy: the EFTofLSS has been upgraded to describe also the effect due to dark

energy [37,38].

5. analytic calculation: a formalism to compute correlation functions in a practically

analytical way has been developed in [39].

8 Looking Ahead

1. say that it is the result of 30 years of reaserch: we could not do this before, now that

we can, we have thousands of things to compute. For example, to start, take every

n-point function of any observable, find out what is the maximum order at which it was

computed, see if you can compute the next order

2. I do not think we should expect many older people to work on this. This means that, if

the EFTofLSS is right (as I think it is), they are leaving an open door for the younger

people to contribute.

3. Most importantly, there are LSS observations that are already limited by lack of the-

oretical predictions (evidently, all the methods that had been developed before the

EFTofLSS had not been sufficient to do this). So, we should compute all correlation

functions at the highest order possible, as much as we can, and compare to data. We

should also use the available models and/or simulations to obtain priors for the param-

eters of the EFTofLSS, so that we limit the price we pay due to the free parameters.
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4. To me, we are in the following situation. It is as if QCD had been discovered, and LHC

was going to turn on in a couple of years (actually, it has already turned on, as my

understanding is such that we are not analyzing the data because of lack of accurate-

enough theory predictions). At that time, people started to do computations and those

results now stay in the history of physics, as QCD happened to be the right theory. It

seems to me (though I could be wrong), that we are in the same situation now with

LSS and the EFTofLSS, as I think that the EFTofLSS is right (or equivalently, if it is

not right, I think it being wrong would represent a revolution of physics).
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