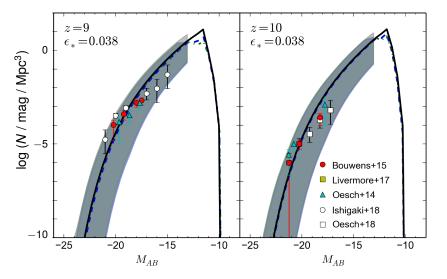
Probing the First Stars with Upcoming Facilities

Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune

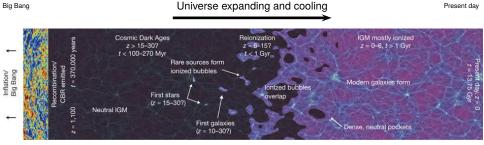
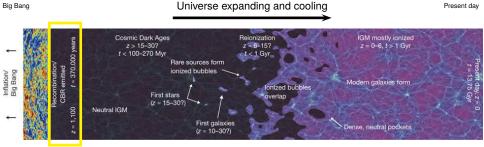

Conference on Shedding Light on the Dark Universe with Extremely Large Telescopes ICTP, Trieste, Italy 4 July 2018

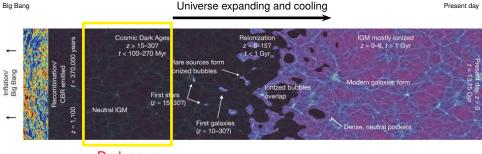
- Connection between the first stars and neutral hydrogen (HI): cosmic dawn and reionization
- Current constraints on reionization
- First detection of the cosmic dawn? (EDGES result)
- Upcoming probes of the 21 cm power spectrum and theoretical modelling

Search for the first stars

Mitra, TRC & Ratra (2018)

push to fainter luminosities with JWST (2021) and the ELTs


Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig_tab/nature09527_F1.html

Last scattering epoch First hydrogen atoms form Origin of the CMBR

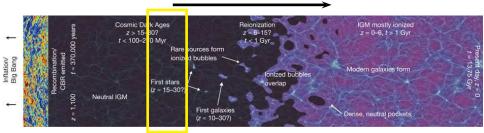
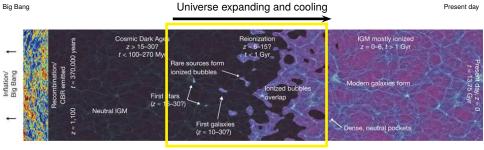
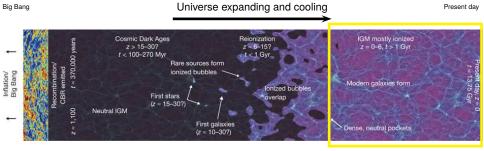

Dark ages HI follows DM

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig_tab/nature09527_F1.html

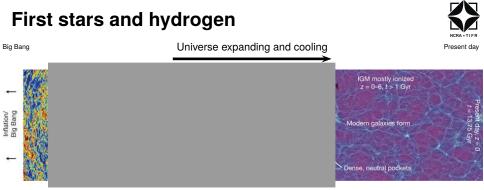


Universe expanding and cooling

Cosmic dawn First stars form $Ly\alpha$ scattering X-ray heating

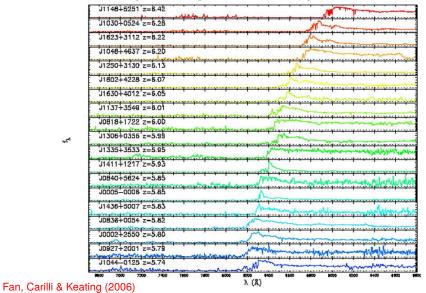


Reionization $HI + \gamma \rightarrow HII$


Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig_tab/nature09527_F1.html

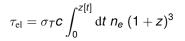
Post-reionization

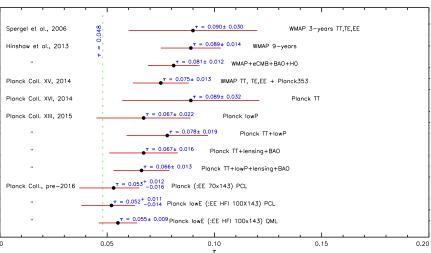
Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig_tab/nature09527_F1.html



"Final Frontier" of observational cosmology

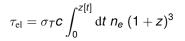
Figure courlesy: http://www.nature.com/nature/journal/v468/n7320/fig_tab/nature09527_F1.html

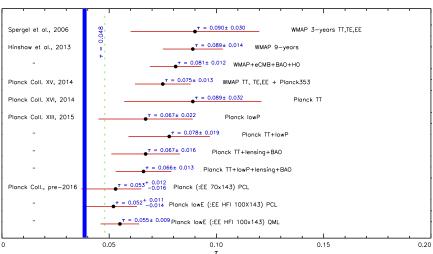

Quasar absorption spectra at $z \ge 6$


~

$$F_{\rm obs} = F_{\rm cont} \ {\rm e}^{- au_{\rm GP}}, \ \ au_{\rm GP} \sim \left(rac{x_{\rm HI}}{10^{-5}}
ight)$$

Thomson scattering τ_{el} from CMBR





Planck Collaboration (2016)

Thomson scattering τ_{el} from CMBR

Planck Collaboration (2016)

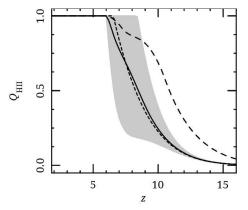
Analytical models

- Reionization mainly by galaxies
- Photon production rate:

Number of ionizing photons in the IGM per baryons Collapse rate of dark matter haloes-

 $\zeta = \mathit{f}_{\mathrm{esc}} \; \epsilon_{*} \; imes \;$ number of photons per baryons in stars

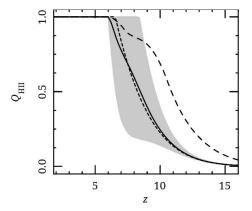
 $\frac{\mathrm{d}f_{\mathrm{coll}}}{\mathrm{d}t}$


- Study the evolution of globally-averaged ionized mass fraction.
- Supplemented by temperature and species evolution equations
- ► Predict observables, e.g., τ_{el} (or C_{ℓ}), photoionization rate (or mean transmitted flux), ...

 $\dot{n}_{\gamma} = \underbrace{\zeta} \left(\frac{\Omega_b}{\Omega_m} \right)$

TRC & Ferrara (2005, 2006)

Data constrained models

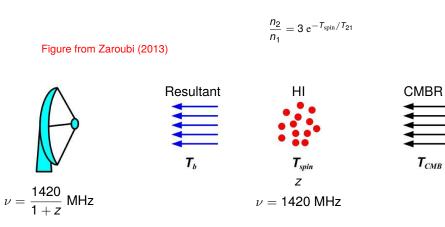


Mitra, **TRC** & Ferrara (2015) Constraints based on

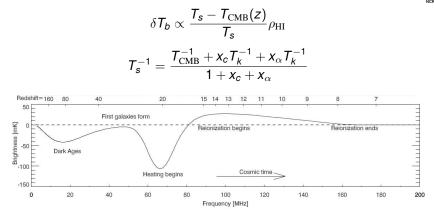
- Planck15 data on \(\tau_{el}\)
- quasar absorption line measurements at $z \lesssim 6$ (either Γ_{HI} or $\langle \tau_{\text{eff}} \rangle$)
- ▶ prior on x_{HI} at z ~ 5.5 6 based on "dark pixel" fraction McGreer, Mesinger & D'Odorico (2015)

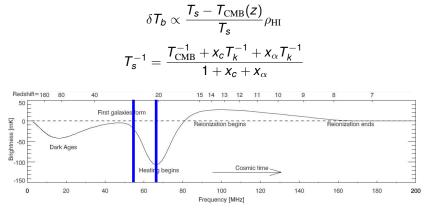
Data constrained models

Mitra, TRC & Ferrara (2015)

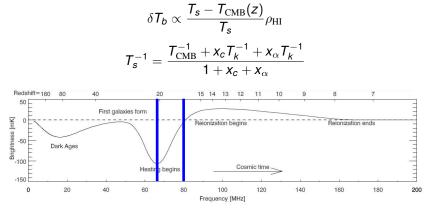

- reionization starts at $z \sim 12 15$
- 50% ionized at $z \sim 6 10$
- large uncertainties at $7 \lesssim z \lesssim 10$

- Galaxy luminosity function: uncertain escape fraction
- Quasar absorption spectra (damping wings/near zones): only a few quasars known till date
- ► IGM temperature: requires detailed modelling
- ► Lyman-α emitters (number density and clustering): systematics, model dependent constraints


Future: the 21 cm signal

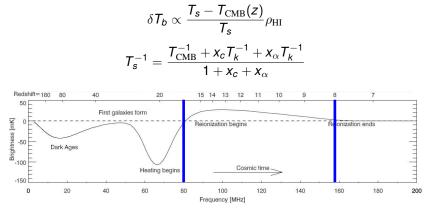

The signal:
$$\delta I_{\nu} \propto \rho_{\rm HI} \left(1 - \frac{T_{\rm CMB}}{T_{\rm spin}}\right)$$

Pritchard & Loeb (2012)



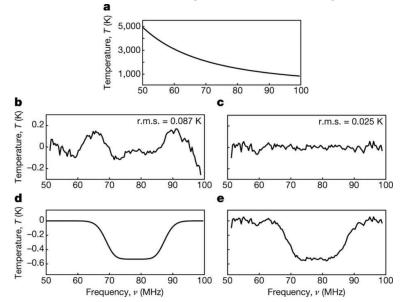
Pritchard & Loeb (2012)

 $z_* \gtrsim z \gtrsim z_{\alpha}$: star formation starts, leading to Ly α coupling. Then $T_S \sim T_K < T_{CMB}(z)$. Absorption signal.



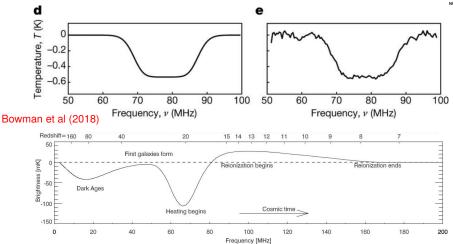
Pritchard & Loeb (2012)

 $z_{\alpha} \gtrsim z \gtrsim z_h$: heating becomes significant, though still $T_S \sim T_K < T_{CMB}(z)$. Eventually $T_K = T_{CMB}(z)$ at $z = z_h$.



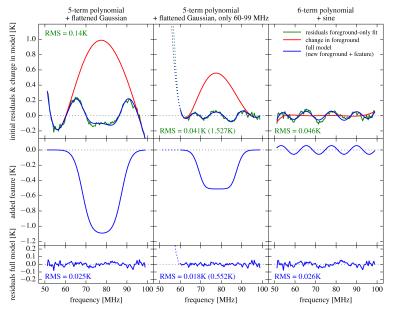
Pritchard & Loeb (2012)

 $z_h \gtrsim z \gtrsim z_r$: photoheating dominates, giving $T_S \sim T_K \sim 10^4 \text{ K} \gg T_{\text{CMB}}(z)$. Signal in emission. Also $[T_S - T_{\text{CMB}}(z)]/T_S \approx 1 \Longrightarrow \delta T_b \propto x_{\text{HI}}$. Signal directly probes neutral hydrogen density field.


Recent detection of the global 21 cm signal

Bowman et al (2018)

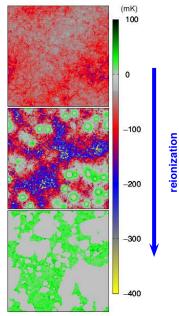
Consistent with standard calculations?


Pritchard & Loeb (2012)

1

$$\delta T_b = 0.023 \text{ K} x_{\text{HI}} \left(\frac{T_s - T_{\text{CMB}}(z)}{T_s} \right)$$

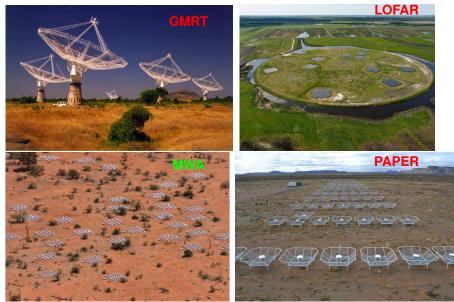
Systematics?



Hills et al (2018)

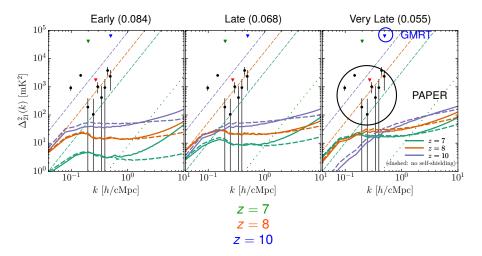
21 cm fluctuations

Ghara, TRC & Datta (2014)


 $z\sim$ 15 ($\nu\sim$ 90 MHz), $x_{
m HII}\sim$ 10⁻³

$$z \sim 12 \ (\nu \sim 110 \text{ MHz}), \ x_{\text{HII}} \sim 0.02$$

 $z \sim 8 \ (\nu \sim 160 \text{ MHz}), \ x_{\mathrm{HII}} \sim 0.56$

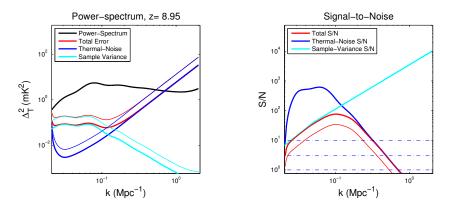

Low frequency instruments

21 cm power spectra

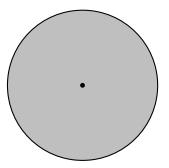


Kulkarni, TRC, Puchwein & Haehnelt (2016)

Future telescopes


SKA-LOW

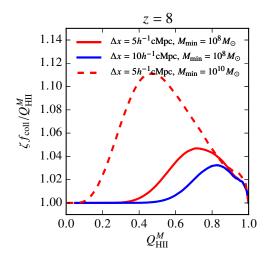
SKA1 sensitivity


Koopmans et al (2015)

Errors on $P(k) \lesssim 10\%$ (1000 hours of integration)

Semi-numerical calculations

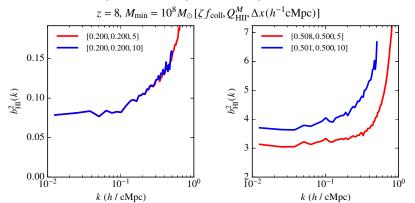
Excursion set based method (accounts for bubble overlap)


Self-ionization condition: $n_{\gamma}(R) \ge n_{H}(R) \Longrightarrow \zeta f_{\text{coll}}(R) \ge 1$

Very similar to the halo formation problem Furlanetto, Zaldarriaga & Hernquist (2004)

Photon conservation issues Paranjape, **TRC** & Padmanabhan (2016)

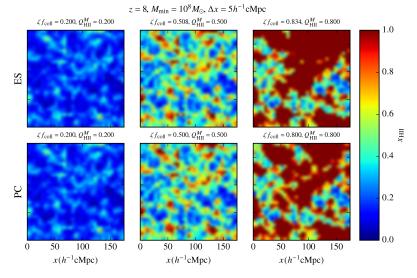
Amount of photon non-conservation



TRC & Paranjape (2018)

ratio = $\frac{n_{\gamma}}{n_{\rm HII} (1 + \bar{N}_{\rm rec})} \neq$ 1, depends on the resolution!

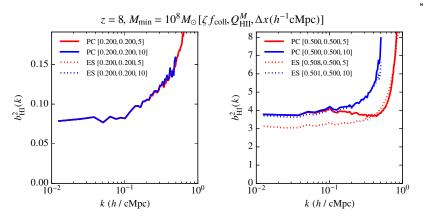
Resolution-dependent power spectrum


TRC & Paranjape (2018)

$$b_{
m HI}^2(k) = rac{P_{
m HI}(k)}{P_{
m DM}(k)}$$

photon non-conservation leads to non-converging power spectrum!

Photon-conserving model


- ► Find ionized bubbles around each "source".
- Distribute excess photons in bubble overlaps to nearby regions.

TRC & Paranjape (2018)

Power spectrum converges

TRC & Paranjape (2018)

$$b_{
m HI}^2(k) = rac{P_{
m HI}(k)}{P_{
m DM}(k)}$$

Summary

- ► First stars can be probed through their effect on HI.
- 21 cm experiments would open a new window to study the first stars, looking forward to the next generation of radio telescopes, e.g., SKA1!
- Need more accurate (and efficient) theoretical models to interpret the SKA1 data.

Summary

- ► First stars can be probed through their effect on HI.
- 21 cm experiments would open a new window to study the first stars, looking forward to the next generation of radio telescopes, e.g., SKA1!
- Need more accurate (and efficient) theoretical models to interpret the SKA1 data.

