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Plan of the talk

◮ Connection between the first stars and neutral hydrogen (HI): cosmic dawn
and reionization

◮ Current constraints on reionization

◮ First detection of the cosmic dawn? (EDGES result)

◮ Upcoming probes of the 21 cm power spectrum and theoretical modelling
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Search for the first stars
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Mitra, TRC & Ratra (2018)

push to fainter luminosities with JWST (2021) and the ELTs
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First stars and hydrogen

Universe expanding and coolingBig Bang Present day

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig
−

tab/nature09527
−

F1.html
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First stars and hydrogen

Universe expanding and coolingBig Bang Present day

Last scattering epoch
First hydrogen atoms form

Origin of the CMBR

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig
−

tab/nature09527
−

F1.html
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First stars and hydrogen

Universe expanding and coolingBig Bang Present day

Dark ages
HI follows DM

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig
−

tab/nature09527
−

F1.html
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First stars and hydrogen

Universe expanding and coolingBig Bang Present day

Cosmic dawn
First stars form

Lyα scattering

X-ray heating

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig
−

tab/nature09527
−

F1.html
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First stars and hydrogen

Universe expanding and coolingBig Bang Present day

Reionization
HI +γ → HII

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig
−

tab/nature09527
−

F1.html
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First stars and hydrogen

Universe expanding and coolingBig Bang Present day

Post-reionization

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig
−

tab/nature09527
−

F1.html
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First stars and hydrogen

Universe expanding and coolingBig Bang Present day

“Final Frontier” of observational cosmology

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig
−

tab/nature09527
−

F1.html
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Quasar absorption spectra at z & 6

Fan, Carilli & Keating (2006)

Fobs = Fcont e−τGP , τGP ∼
(

xHI

10−5

)
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Thomson scattering τel from CMBR

τel = σT c

∫ z[t]

0

dt ne (1 + z)3

Planck Collaboration (2016)
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Thomson scattering τel from CMBR

τel = σT c
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0
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Planck Collaboration (2016)
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Analytical models

◮ Reionization mainly by galaxies

◮ Photon production rate:

ṅγ = ζ

(

Ωb

Ωm

)

dfcoll

dt

Number of ionizing photons in the IGM per baryons
Collapse rate of dark matter haloes

ζ = fesc ǫ∗ × number of photons per baryons in stars

◮ Study the evolution of globally-averaged ionized mass fraction.

◮ Supplemented by temperature and species evolution equations

◮ Predict observables, e.g., τel (or Cℓ), photoionization rate (or mean
transmitted flux), . . .

TRC & Ferrara (2005, 2006)
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Data constrained models

Mitra, TRC & Ferrara (2015)

Constraints based on

◮ Planck15 data on τel

◮ quasar absorption line measurements at z . 6 (either ΓHI or 〈τeff〉)

◮ prior on xHI at z ∼ 5.5 − 6 based on “dark pixel” fraction
McGreer, Mesinger & D’Odorico (2015)
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Data constrained models

Mitra, TRC & Ferrara (2015)

◮ reionization starts at z ∼ 12 − 15

◮ 50% ionized at z ∼ 6 − 10

◮ large uncertainties at 7 . z . 10
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Other probes of reionization

◮ Galaxy luminosity function: uncertain escape fraction

◮ Quasar absorption spectra (damping wings/near zones): only a few quasars
known till date

◮ IGM temperature: requires detailed modelling

◮ Lyman-α emitters (number density and clustering): systematics, model
dependent constraints
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Future: the 21 cm signal

Figure from Zaroubi (2013)

n2

n1

= 3 e−Tspin/T21

CMBRHIResultant

z
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1420

1 + z
MHz ν = 1420 MHz

The signal: δIν ∝ ρHI
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Tspin

)

9



Global 21 cm signature

δTb ∝
Ts − TCMB(z)

Ts

ρHI

T
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T
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Pritchard & Loeb (2012)
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Global 21 cm signature

δTb ∝
Ts − TCMB(z)

Ts

ρHI

T
−1
s =

T
−1
CMB + xcT

−1
k

+ xαT
−1
k

1 + xc + xα

Pritchard & Loeb (2012)

z∗ & z & zα: star formation starts, leading to Lyα coupling.
Then TS ∼ TK < TCMB(z). Absorption signal.
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Global 21 cm signature

δTb ∝
Ts − TCMB(z)

Ts

ρHI

T
−1
s =

T
−1
CMB + xcT

−1
k

+ xαT
−1
k

1 + xc + xα

Pritchard & Loeb (2012)

zα & z & zh: heating becomes significant, though still TS ∼ TK < TCMB(z).
Eventually TK = TCMB(z) at z = zh.
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Global 21 cm signature

δTb ∝
Ts − TCMB(z)

Ts

ρHI

T
−1
s =

T
−1
CMB + xcT

−1
k

+ xαT
−1
k

1 + xc + xα

Pritchard & Loeb (2012)

zh & z & zr : photoheating dominates, giving TS ∼ TK ∼ 104 K ≫ TCMB(z).
Signal in emission. Also [TS − TCMB(z)]/TS ≈ 1 =⇒ δTb ∝ xHI.
Signal directly probes neutral hydrogen density field.
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Recent detection of the global 21 cm signal

Bowman et al (2018)
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Consistent with standard calculations?

Bowman et al (2018)

Pritchard & Loeb (2012)

δTb = 0.023 K xHI

(

Ts − TCMB(z)

Ts

)
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Systematics?

Hills et al (2018) 13



21 cm fluctuations
Ghara, TRC & Datta (2014)
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z ∼ 15 (ν ∼ 90 MHz), xHII ∼ 10−3

z ∼ 12 (ν ∼ 110 MHz), xHII ∼ 0.02

z ∼ 8 (ν ∼ 160 MHz), xHII ∼ 0.56

14



Low frequency instruments

GMRT
LOFAR

MWA PAPER
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21 cm power spectra
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Future telescopes

SKA-LOW HERA
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SKA1 sensitivity
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Errors on P(k) . 10% (1000 hours of integration)
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Semi-numerical calculations

b Self-ionization condition:

nγ(R) ≥ nH(R) =⇒ ζfcoll(R) ≥ 1

Very similar to the halo formation problem

Furlanetto, Zaldarriaga & Hernquist (2004)

Excursion set based method (accounts for bubble overlap)

Photon conservation issues

Paranjape, TRC & Padmanabhan (2016)
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Amount of photon non-conservation
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TRC & Paranjape (2018)

ratio =
nγ

nHII (1 + N̄rec)
6= 1, depends on the resolution!
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Resolution-dependent power spectrum
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b
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photon non-conservation leads to non-converging power spectrum!
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Photon-conserving model
◮ Find ionized bubbles around each “source”.
◮ Distribute excess photons in bubble overlaps to nearby regions.

TRC & Paranjape (2018) 22



Power spectrum converges
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Summary

◮ First stars can be probed through their effect on HI.

◮ 21 cm experiments would open a new window to study the first stars, looking
forward to the next generation of radio telescopes, e.g., SKA1!

◮ Need more accurate (and efficient) theoretical models to interpret the SKA1
data.
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Thank you
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