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1 Introduction to Dynamical Systems

Dynamical systems is an exciting and very active field in pure and applied mathematics, that
involves tools and techniques from many areas such as analyses, geometry and number theory
and has applications in many fields as physics, astronomy, biology, meterology, economics.

The adjective dynamical refers to the fact that the systems we are interested in is evolving
in time. In applied dynamics the systems studied could be for example a box containing
molecules of gas in physics, a species population in biology, the financial market in economics,
the wind currents in metereology. In pure mathematics, a dynamical system can be obtained
by iterating a function or letting evolve in time the solution of equation.

Discrete dynamical systems are systems for which the time evolves in discrete units. For
example, we could record the number of individuals of a population every year and analyze the
growth year by year. The time is parametrized by a discrete variable n which assumes integer
values: we will denote natural numbers by N and integer numbers by Z. In a continuous
dynamical system the time variable changes continuously and it is given a real number t. We
will denote real numbers by R.

Our main examples of discrete dynamical systems are obtained by iterating a map. Let
X be a space. For example, X could be the unit interval [0, 1], the unit square [0, 1]× [0, 1], a
circle (but also the surface of a doughnut or a Cantor set). Let f : X → X be a map. We can
think as f as the map which gives the time evolution of the points of X. If x ∈ X, consider
the iterates x, f(x), f(f(x)), . . . .

Notation 1.1. For n > 0 we denote by fn(x) the nth iterate of f at x, i.e. f ◦ f ◦ · · · ◦ f ,
n times.1 In particular, f1 = f and by convention f0 : is the identity map, which will be
denoted by Id (Id(x) = x for all x ∈ X).

We can think of fn(x) as the status of the point x at time n. We call forward orbit2 the
evolution of a point x.

Definition 1.1. We denote by O+
f (x) the forward orbit of a point x ∈ X under iterates of

the map f , i.e.

O+
f (x) := {x, f(x), f2(x), . . . , fn(x), . . . }

= {fn(x), n ∈ N}.

This gives an example of a discrete dynamical system parametrized by n ∈ N.

Example 1.1. Let X = [0, 1] be the unit interval. Let f : X → X be the map f(x) = 4x(1−x).
For example
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Example 1.2. Let X be a circle of radius 1. An example of map f : X → X is the (clockwise)
rotation by an angle 2πα, which maps each point on the circle to the point obtained by rotating
clockwise by an angle 2πα.

If f is invertible, we have a well defined inverse f−1 : X → X and we can also consider
backwards iterates f−1(x), f−2(x), . . . .

1Do not confuse this notation with the nth derivative, which will be denoted by f (n), or by the nth power,
which will not be used!

2The name orbit cames from astronomy. The first dynamical system studied were indeed the solar system,
where trajectory of a point (in this case a planet or a star) is an orbit.
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Notation 1.2. If f is invertible and n < 0, we denote by fn(x) the nth iterate of f−1 at x,
i.e. f−1 ◦ f−1 ◦ · · · ◦ f−1, n times. Remark that even if f is not invertible, we will often write
f−1(A) where A ⊂ X to denote the set of premimges of A, i.e. the set of x ∈ X such that
f(x) ∈ A.

Definition 1.2. If f is invertible, we denote by Of (x) the (full) orbit of a point x ∈ X under
forward and backward iterates of f , i.e.

Of (x) := {. . . , f−k(x), . . . , f−2(x), f−1(x), x, f(x), f2(x), . . . , fk(x), . . . }
= {fk(x), k ∈ Z}.

In this case, we have an example of discrete dynamical system in which we are interested
in both past and future and the time is indexed by Z.

Even if the rule of evolution is deterministic, the long term behavior of the system is often
”‘chaotic”’. For example, even if two points x, y are very close, there exists a large n such that
fn(x) and fn(y) are far apart. This property (which we will express formally later) is known
as sensistive dependence of initial conditions. There are various mathematical definitions of
chaos, but they all include sensitive dependence of initial conditions. Different branches of
dynamical systems, in particular topological dynamics and ergodic theory, provide tools to
quantify how chaotic is a systems and to predict the asymptotic behaviour. We will see that
often even if one cannot predict the behaviour of each single orbit (since even if deterministic
it is too complicated), one can predict the average behaviour.

The main objective in dynamical systems is to understand the behaviour of all (or almost
all) the orbits. Orbits can be fairly complicated even if the map is quite simple. A first basic
question is whether orbits are finite or infinite. Even if the index run through a infinite set
(as N or Z) it could happen that Of (x) is finite, for example if the points in the orbit repeat
each other. This is the simplest type of orbit.

Definition 1.3. A point x ∈ X is periodic if there exists n ∈ N\{0}, such that fn(x) = x.
If n = 1, so that we have f(x) = x, we say that x is a fixed point. More in general, if
fn(x) = x we say that x is periodic of periodic n or that n is a period for x. In particular,
fn+j(x) = f j(x) for all j ≥ 0.

Example 1.3. In example 1.1, the point x = 3/4 is a fixed point, since f(3/4) = 4 · 3/4(1−
3/4) = 3/4.

Example 1.4. In example 1, α = 1/4, i.e. we consider the rotation by π/2, all points are
periodic with period 4 and all orbits consist of four points: the initial points are the points
obtained rotating it by π/2, π and 3π/2.

Definition 1.4. If x is a periodic point, the minimal period of x is the minimum integer
n ≥ 1 such that fn(x) = x.

In particular, if n is the minimal period of x, the points f(x), . . . , fn−1(x) are all different
than x. Be aware that in some textbook the period of a periodic point x means the minimal
period.

Definition 1.5. A point x ∈ X is preperiodic if there exists k, n ∈ N such that fn+k(x) =
fk(x). In this case fn+j(fk(x)) = f j(fk(x)) for all j ∈ N.

Exercise 1.1. Show that if f is invertible every preperiodic point is periodic.

Examples of questions that are investigated in dynamical systems are:

Q1 Are there fixed points? Are there periodic points?
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Q2 Are periodic points dense?

Q3 Is there an orbit which is dense, i.e. an orbit which gets arbitrarily close to any other
point in X?

Q4 Are all orbits dense?

We will answer these questions for the first examples in the next lectures. More in general,
these properties are studied in topological dynamics3, see Chapter 2.

If an orbit is dense, it visits every part of the space. A further natural question is how
much time it spends in each part of the space. For example, let A ⊂ X be a subset of the
space. We can count the number of visits of a segment {x, f(x), . . . , fn(x)} of the orbit O+

f (x)
to the set A. If χA denotes the characteristic function of A, i.e.

χA(x) =

{
1 ifx ∈ A
0 if x /∈ A ,

let us count the number of visits

Card{0 ≤ k < n, such that fk(x) ∈ X} =

n−1∑
k=0

χA(fk(x))

and divide by n to get the frequency of visits in time n:

1

n

n−1∑
k=0

χA(fk(x)). (1)

Intuitively, orbit O+
f (x) is equidistributed if the frequency in (1) is getting closer and closer,

as n increases, to the volume of A (or the lenght, or the area, . . . )4. This means that the
orbit asymptotically spends in each part of the space a time proportional to the volume.

Q1 Are orbits equidistributed?

This last question is a main quesition in ergodic theory5 A priory, not even the existence
of a limit of the frequency (1) is guaranteed. One of the main theorems that we will see
in Chapter 4, the Birkhoff ergodic theorem, will show that for almost all points the limit
exists and guarantee that if the system is enough chaotic (more precisely, ergodic), than the
frequency converge to the expected limit. As we will see, questions related to equidistributions
have many connections and applications in number theory.

1.1 Extra: Continuous Dynamical Systems

A continous dynamical system can be given by a 1−parameter family of maps ft : X → X
where t ∈ R. The main example is given by solutions of a differential equation. Let X ⊂ Rn
be a space, g : X → Rn a function, x0 ∈ X an initial condition and{

ẋ(t) = g(x)
x(0) = x0

(2)

be a differential equation. If the solution x(x0, t) is well defined, unique and exists for all t and
all initial conditions x0 ∈ X, if we set ft(x0) := x(x0, t) we have an example of a continous
dynamical system. In this case, an orbit is given by the trajectory described by the solution:

3Topological Dynamics is a branch of dynamics that investigate the properties of continous maps.
4More in general, we will have a measure on X (lenght, area and volume are all examples of measures)

which is preserved by the map f and we will ask if the frequency tends to the measure of A. See Chapter 4.
5Ergodic Theory is a branch of dynamics which investigate the chaotic properties of maps which preserves

a measure.
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Definition 1.6. If {ft}t∈R is a continuous dynamical system, we denote

Oft(x) := {ft(x), t ∈ R}.

More in general, a 1-parameter family {ft}t∈R is called a flow if f0 is the identity map
and for all t, s ∈ R we have ft+s = ft ◦ fs, i.e.

ft+s(x) = ft(fs(x)) = fs(ft(x)), for all x ∈ X.

1.2 Extra: Dynamical systems as actions

A more formal way to define a dynamical system is the following, using the notion of action.
Let X be a space and G group (as Z or R or Rd) or a semigroup (as N).

Definition 1.7. An action of G on X is a map ψ : G × X → X such that, if we write
ψ(g, x) = ψg(x) we have

(1) If e id the identity element of G, ψe : X → X is the identity map;

(2) For all g1, g2 ∈ G we have ψg1 ◦ ψg2 = ψg1g2 .6

A discrete dynamical systems is then defined as an action of the group Z or of the semigroup
N. A continous dynamical system is an action of R. There are more complicated dynamical
systems defined for example by actions of other groups (for example Rd).

Exercise 1.2. Prove that the iterates of a map f : X → X give an action of N on X. The
action N×X → X is given by

(n, x)→ fn(x).

Prove that if f is invertible, one has an action of Z.

Exercise 1.3. Prove that the solutions of a differential equation as (2) (assuming that for
all points x0 ∈ X the solutions are unique and well defined for all times) give an action of R
on X.

2 Rotations of the circle:
periodic points and dense orbits

Consider a circle of unit radius. More precisely, we will denote by S1 the set

S1 = {(x, y)|
√
x2 + y2 = 1} ⊂ R2.

Identifying R2 with the complex plane C, we can also write

S1 = {e2πiθ, 0 ≤ θ < 1} ⊂ C.

Consider a rotation Rα of angle 2πα on the circle (see Figure 1). It is given by

Rα(e2πiθ) = e2πi(θ+α) = e2πiαe2πiθ.

Since complex numbers in S1 are multiplied by e2πiα, this is known as multiplicative notation
for the rotation Rα.

6If X has an additional structure (for example X is a topological space or X is a measured space), we can
ask the additional requirement that for each g ∈ G, ψg : X → X preserves the structure of X (for example ψg

is a continous map if X is a topological space or ψg preserves the measure. We will see more precisely these
definitions in Chapters 2 and 4.
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f(f(x))

f(x)

x

Figure 1: A rotation of S1.

There is a natural distance d(z1, z2) between points on S1, which is given by the arc
lenght distance. We will renormalized it by dividing by 2π. For example, if 0 ≤ θ1 < θ2 and
2π(θ2 − θ1) < π we have

d(e2πiθ1 , e2πiθ2) =
arc lenght distance = 2π(θ2 − θ1)

2π
= θ2 − θ1.

This is clear by the geometric meaning that, since both points are rotated by the same angle
2πα, this distance is preserved i.e.

d(Rα(z1), Rα(z2)) = d(z1, z2), for all z1, z2 ∈ S1.

Thus, the rotation of the circle is an example of an isometry, i.e. a map which preserves a
distance.

There is another alternative way to describe a circle, that will be often more convenient.
Imagine to cut open the circle to obtain an interval. Let I/ ∼ denote the unit interval
with the endpoints identified: the symbol ∼ recalls us that 0 ∼ 1 are glued together. Then
I/ ∼ is equivalent to a circle. More formally, consider R/Z, i.e. the space whose points are
equivalence classes x + Z of real numbers x up to integers: two reals x1, x2 ∈ R are in the
same equivalence class iff there exists k ∈ Z such that x1 = x2 + k. Then R/Z = I/ ∼ since
the unit interval I = [0, 1] contains exactly one representative for each equivalence class with
the only exception of 0 and 1, which belong to the same equivalence class, but are identifyed.

The map Ψ : R/Z→ S1 given by

x
Ψ→ Ψ(x) = e2πix (3)

establishes a one-to-one correspondence between R/Z and S1. The distance given by arc
lenght divided by 2π, gives the following distance on R/Z:

d(x, y) = min{|x− y|, 1− |x− y|}. (4)

Thus, we will use the same symbol d for both distances.

Exercise 2.1. Check that the arc lenght distance divided by 2π becomes the distance in (4)
on R/Z under the identification given by Ψ, i.e.

d(x, y) =
arc lenght between Ψ(x) and Ψ(y)

2π
.

The rotation Rα, under this identification between S1 and R/Z becomes the map Rα :
R/Z→ R/Z given by

Rα = x+ α mod 1,
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where mod 1 means that we subtract the integer part (for example 3.14 mod 1 = 0.14),
hence taking the representative of the equivalence class x + α + Z which lies in [0, 1). We
call α the rotation number of Rα (remark that the rotation angle is 2πα). More explicitely,
if α ∈ [0, 1] we have

Rα =

{
x+ α if x+ α < 1
x+ α− 1 if x+ α ≥ 1

We call this additive notation (since here the rotation becomes addition mod 1).
Rotations of the circle display a very different behaviour according if the rotation number

α is rational (α ∈ Q) or irrational (α ∈ R\Q). Recall that

Definition 2.1. The orbit Of (z1) is dense if for all z2 ∈ S1 and for all ε > 0 there exists
n > 0 such that Rnα(z1) ∈ B(z2, ε) where B(z2, ε) is the ball of radius ε and center z2,
i.e. B(z2, ε) = {z ∈ S1| d(z, z2) < ε}.

Theorem 2.1 (Dichotomy for Rotations). Let Rα : R/Z→ R/Z be a rotation of the circle.

(1) If α = p/q is rational, with p, q ∈ Z, all orbits are periodic of period q;

(2) If α is irrational, for every point z ∈ S1 the orbit ORα(z) is dense.

In both cases the dynamics of the rotation is quite simple to describe: either all orbits are
periodic, or all orbits are dense.

Proof. Let α = p/q with p, q ∈ Z. Then for each x ∈ R/Z

Rqα(x) = x+ q
p

q
mod 1 = x+ p mod 1 = x.

Thus every point is periodic of period q. This proves (1).

Let us now prove (2). In this case it will be convenient to work on S1 and use multiplicative
notation. Assume that α is irrational. In particular, for each z1 = e2πix1 ∈ S1, for all
m 6= n, Rnα(e2πix1) 6= Rmα (e2πix1). Indeed, if they were equal, e2πi(x1+mα) = e2πi(x1+nα) thus
2π(x1 + mα) = 2π(x1 + nα) + 2πk for some integer k ∈ N. Thus, mα = nα + k. But this
shows that α = k/(m− n), contradicting the assumption that α is irrational.

To show that the orbit of z1 ∈ S1 is dense, we have to show that for each z2 ∈ S1 and
ε > 0 there is a point of Of (z1) inside the ball B(z2, ε). Let N be big enough so that 1/N < ε.
Consider the points z1, Rα(z1), . . . , RN−1

α (z1). Since as we proved before they are all distinct,
by Pigeon Hole principle, there exists n,m such that 0 ≤ n < m ≤ N and

d(Rnα(z1), Rmα (z1)) ≤ 1

N
< ε.

This means that for some θ with |θ| < 1/N we have

Rmα (z1) = e2πiθRnα(z1) ⇔ e2πimαz1 = e2πiθe2πinαz1 ⇔
e2πimα

e2πinα
= e2πiθ (5)

Consider now Rm−nα . We claim that it is again a rotation by an agle smaller than ε.
Indeed, from (??) we see that

Rm−nα (z1) = e2πimαe−2πinαz1 =
e2πimα

e2πinα
z1 = e2πiθz1

Rm−nα is a rotation by θ where |θ| < 1/N , so

Thus, if we consider multiples R
(m−n)
α (z1), R

2(m−n)
α (z1), R

3(m−n)
α (z1), . . . we obtain points

e2πix1 , e2πi(x1+θ), e2πi(x1+2θ), . . . , e2πi(x1+kθ), . . . ,

whose spacing on S1 is less than ε. Thus, there will be a j > 0 such that R
j(m−n)
α (z1) enters

the ball B(z2, ε).
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Exercise 2.2. Prove that if α = p/q and (p, q) = 1 i.e. p and q are coprime, than q is the
minimal period, i.e. for each x ∈ R/Z we have Rkα(x) 6= x for each 1 ≤ k < q.

Remark 2.1. If α = p/q and (p, q) = 1 then |p| gives the winding number, i.e. the number
of ”‘turns”’ that the orbit of any point does around the circle S1 before closing up.
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