
ICTP Summer School on Dynamical Systems
Rotations of the circle and renormalization
Solutions 2

Solutions to Exercise 2.1

Part (a) See Lecture Notes

Part (b) Let us recall that a0(x) is the integer part of 1/x. Thus, since

3

4
< x <

4

5
⇔ 4

3
<

1

x
<

5

4
,

we have that a0(x) = [1/x] = 1. Then G(x) = 1/x− 1 and since from the previous inequality

4

3
− 1 <

1

x
− 1 <

5

4
− 1 ⇔ 1

3
< G(x) <

1

4
,

so that 3 < 1/G(x) < 4. Thus a1(x) = [1/G(x)] = 3.
Recall from the lecture that ak(x) = [1/Gk(x)]. Thus, since G2(x) = x, the continued fraction entries of x

are periodic with period 2. Since the first two entries by part (a) are a0(x) = 1 and a1(x) = 3, we have that
an(x) = 1 for any n even and an(x) = 3 for any n odd. From the periodic expression for the continued fraction
x = [1, 3, 1, 3, 1, 3, . . . ].

Alternatively, one can also compute x explicitly. Since a0(x) = 1 by Part (a), G(x) = 1
x − a0(x) = 1

x − 1.
Similarly, since a1(x) = 3 again by Part (a),

G2(x) =
1

G(x)
− a1(x) =

1

G(x)
− 3 =

1
1
x − 1

− 3.

Thus, if G2(x) = x, this means that

x =
1

1
x − 1

− 3 ⇔ (4x− 4

−x+ 1

This leads to a quadratic equation for x, namely x2 − 3x+ 1, which one can solve. Only one of the two solutions
lies in the prescribed interval (one can also see that the any branch of G2 which correspond to prescribing the
two first entries intersect the diagonal in a unique point). Explicitely, x has the form

x =
−3 +

√
32 + 4 · 3
2a

= −3

2
+

√
21

2
.

One can also compute x explicitly from the knowledge that x = [1, 3, 1, 3, 1, 3, . . . ], by remarking that then
x = [1, 3 + x], i.e.

x =
1

1 + 1
3+x

⇔ 1

x
− 1 =

1

3 + x
,

which leads to the same degree two equation.

Part (c) Let x = [3, x0, 3, x1, 3, x2, . . . ] where xi is an increasing sequence of integers, that is satisfy limi→∞ xi =
∞. Since the 2nth entry is equal to 3 and the following digit is xn and the Gauss map acts as a shift on entries
of the continued fraction expansion, we have that G2n(x) = [3, xn, . . . ] so that

G2n(y) ∈ P2 ∩G−1(Pxn) = P2 ∩G−1
(

1

xn + 1
,

1

xn

]
.

Let us call this intersection In. The preimage G−1(Pxn) consists of countably many intervals, of the form[
1

i+ 1
xn

,
1

i+ 1
xn+1

)
, i ∈ N.

Since we are interesting it with P2 = (1/4, 1/3], we have that

G2n(y) ∈ In =

(
1

3 + 1
xn

,
1

3 + 1
xn+1

)
,

Since as n tends to infinity and hence xn → +∞ both the endpoints of the interval In tend to 1/3, this shows by
the pinching or sandwitch theorem that G2n(y)→ 1/3 as n→∞.
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Solutions to Exercise

We will use Weyl Theorem to answer this question. We will show that the frequency of the digit k as leading
digit in the sequence (2n)n∈N is given by

lim
N→∞

Card{0 ≤ n < N s.t. the leading digit of 2n is k}
N

= log10

(
1 +

1

k

)
where log10 denotes the logarithm in base 10 (that is, log10(a) = b if and only if 10a = b).

Notice that the leading digit of 2n is k if and only if there exists an integer r ≥ 0 such that

k10r ≤ 2n < (k + 1)10r.

For example, 2 · 100 ≤ 256 < 3 · 100 shows that the leading digit of 256 is 2.
Taking logarithms in base 10 and using the properties of logarithms (as log10(ab) = log10(a) + log10(b) and

log10 10r = r), this shows that

log10(k10r) ≤ log10 2n < log10((k + 1)10r),

log10 k + r ≤ n log10 2 < log10(k + 1) + r.

Thus, equivalently,
(n log10 2 mod 1) ∈ Ik = [log10 k, log10(k + 1)] .

Notice that if we call α = log10 2, the sequence

(n log10 2 mod 1)n∈N = 0, log10 2 mod 1, 2 log10 2 mod 1, 3 log10 mod 1, . . .

= 0, log10 2 mod 1, log10 2 + log10 2 mod 1, 2 log10 2 + log10 2 mod 1, . . .

is the orbit O+
Rα

(0) of 0 under the rotation by α. Thus,

Card { 0 ≤ n < N such that the leading digit of 2n is k }
N

=

Card { 0 ≤ n < N such that (n log10 2 mod 1) ∈ Ik }
N

=

Card { 0 ≤ n < N such that Rnα(0) ∈ Ik }
N

=
1

N

N−1∑
n=0

χIk(Rnα(0)).

One can show that log10 2 is irrational, thus Rα is an irrational rotation and hence by Weyl theorem the orbit of
any point, in particular 0, is equidistributed. This gives that

lim
N→∞

Card{0 ≤ n < N s.t. the leading digit of 2n is k}
N

= lim
N→∞

1

N

N−1∑
n=0

χIk(Rnα(0))

= λ(Ik) = log10(k + 1)− log10 k = log10

(
1 +

1

k

)
.
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