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Quantum and classical Q-cohomology

The expectation value of Q-exact operators in a supersymmetric state vanishes:

〈δζOF 〉 = 〈{Qζ ,OF }〉 = 0

Supersymmetric localization relies on a classical version of this statement:

〈δclζ OF 〉 =

ˆ
[DX]{Qζ ,OF }cle−S[X] =

ˆ
[DX]

{
Qζ ,OF e−S[X]

}
cl

= 0

where the last step assumes that the integration measure commutes with Qζ , i.e.

δζ = δclζ

In this talk I will provide evidence that the quantum and classical Q-cohomologies
do not always coincide and will discuss some of the consequences
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A familiar example

N = 1 super Virasoro

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[Lm, Gr] =
1

2
(m− 2r)Gm+r

{Gr, Gs} = 2Lr+s+
c

12
(4r2 − 1)δr+s,0

We will see that a similar anomaly exists in 4 (and 6) dimensions, except that it
only deforms the supersymmetry algebra on curved backgrounds
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The 4d anomaly

In 4d flat space

(δζSi)αβ̇ = {Qβ̇ ,Siα} = σj
αβ̇

(
2Tij − iηij∂kJk + i∂jJi +

1

2
εijkl∂

kJ l
)

where T ij is the stress tensor and J i the R-current

On curved background admitting a (conformal) Killing spinor ζ+, i.e. Diζ+ = Γiζ−

{Q[ζ],Si} =−
1

2
T ijΓjζ+ +

i

8
√

3
Γijk(Γkl − 2gkl)ζ+DjJ l

+
i

2
√

3

(
Γil − 3δil

)
ζ−J l+Aiζ [g,A]

where Aiζ [g,A] is a local functional of the background and represents an rigid
supersymmetry anomaly
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4d N = 1 supercurrent multiplets

N = 1 supercurrent multiplets: T ij , Si, (J i), auxiliary fields

They are components of a real vector superfield

Si = J i + θSi + Siθ + 2(θσjθ)T ij + · · ·

Possible current multiplets differ in auxiliary field content and improvement terms:

Tij → T ′ij = Tij + (ηij∂
2 − ∂i∂j)t, Siα → S′iα = Siα + (σij)

β
α∂

jsβ
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Classical Ward identities

The S-multiplet [Komargodski, Seiberg ’10] always exists and comprises 16+16
off-shell degrees of freedom in the real superfield Sαα̇, an auxiliary chiral
superfield X, and an auxiliary spinor (chiral fieldstrength) superfield χα, satisfying

D
α̇

Sαα̇ = DαX + χα, Dα̇X = 0, Dα̇χα = Dα̇χ
α̇ −Dαχα = 0

The Ferrara-Zumino (FZ)-multiplet is obtained by setting χα = 0 and comprises
12+12 off-shell degrees of freedom. It exists if there are no FI terms and the
Kähler form of the target space is exact.

The R-multiplet is obtained by setting X = 0 and contains also 12+12 off-shell
degrees of freedom. It exists if there is a U(1)R symmetry.

These defining relations correspond to classical Ward identities
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Linear coupling to supergravity

The background supergravity fields reside in a real vector superfield Hi that to
linear order couples to the current superfield as

ˆ
d4θ SiHi

Gauging the global symmetries amounts to assigning a local gauge
transformation to the background superfield

Hαα̇ → H′αα̇ = Hαα̇ +DαLα̇ −Dα̇Lα

and demanding that the above linear coupling is gauge invariant.

These local transformations include diffeomorphisms, local frame rotations, Weyl
and U(1) gauge transformations, as well as local Q- and S-supersymmetry
transformations

The defining relations of the supercurrent multiplet, i.e. the Ward identities, follow
from the Noether’s procedure.
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Local transformation of the currents

The linear coupling

W [· · · ,H] = · · ·+
ˆ
d4x

ˆ
d4θ SiHi

in the effective action implies that the supercurrent multiplet operators can be
defined in the Local Renormalization Group sense [Osborn ’94] as

Si =
δW

δHi

This defines the consistent current multiplet, which couples supergravity. The
covariant current multiplet differs by Bardeen-Zumino terms [Bardeen, Zumino ’84]

The transformation of the current superfield under the local symmetries is given by

δLSi = δL

( δ

δHi

)
W +

δ

δHi
δLW

where the second term is non-zero only in the presence of ’t Hooft anomalies
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Ward identities as first class constraints

An elegant way to compute the gauge transformation of local operators is utilizing
an underlying symplectic structure

The superfields Si and Hi parameterize a symplectic manifold equipped with the
Poisson bracket

{, }PB =

ˆ
d4x

ˆ
d4θ
( δ

δHi

δ

δSi
−

δ

δSi
δ

δHi

)
The functional

C[L] =

ˆ
d4x

ˆ
d4θ Lα

(
D
α̇

Sαα̇ −DαX − χα
)

+ h.c.

is a first class constraint generating local gauge symmetries, i.e.

{C[L],Hi}PB = −
δC[L]

δSi
= DαLα̇ −Dα̇Lα = δLHi

The gauge transformation of the current superfield is then given by

{C[L],Si}PB = δLSi =
δC[L]

δHi
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Killing symmetries and conserved charges

So far the background fields in Hi and the gauge parameters in Lα are arbitrary

For a given background Hi, the gauge parameters Lαo that satisfy

δLoHi = DαLoα̇ −Dα̇Loα = 0

correspond to Killing symmetries of the background Hi

The Killing spinor of rigid supersymmetry corresponds to a specific component of
the superfield Lαo

The conserved charges Q[Lo] associated with the Killing symmetries can be
obtained through the Ward identities

The quantum transformation of the currents under the Killing symmetries is

{Q[Lo],Si] = δLoSi

which includes the anticommutators {Qβ̇ ,Siα} and {Qβ ,Siα}
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Rigid supersymmetry in flat space

e.g. for the S-multiplet in flat space

{Qβ̇ ,Siα} = σj
αβ̇

(
2Tij +

1

2
εijklF

kl − iηij∂kJk + i∂jJi +
1

2
εijkl∂

kJ l
)

{Qβ ,Siα} = 2iελβ(σij)
λ
β∂

jx†

where Fij the closed two-form and the complex scalar x are auxiliary fields
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Non linear coupling to supergravity

To couple the theory non linear to supergravity one can use the
Festuccia-Seiberg argument [Festuccia, Seiberg ’11]

The superconformal ’t Hooft anomalies can be determined for arbitrary a and c
anomaly coefficients by solving the Wess-Zumino consistency conditions

For the Ferrara-Zumino multiplet this has been done in curved superspace by
[Bonora, Pasti, Tonin ’85]

Extracting the fermionic components is still non trivial...

13 / 35



Quantum Ward identities from holography

Minimal gauged supergravity in 5D holographically describes the current multiplet
of N = 1 SCFTs in 4d, coupled to off-shell (conformal) supergravity

It only describes theories with a = c

The arbitrary sources of the bulk fields

ea(0)i, Ψ(0)+i, A(0)i

specify an arbitrary (non-linear) field theory background

The variation of the renormalized on-shell supergravity action defines the
conjugate (consistent) current operators via

δW =

ˆ
ddx

√
−g(0)

(
− T ia δeai (0) + J iδA(0)i + SiδΨ(0)+i + δΨ(0)+iSi

)
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Fermionic Ward identities

Supersymmetric holographic renormalization determines the Ward identities

DiSi +
1

2
T iaΓaΨ(0)+i −

i

8
√

3
J i(Γij − 2g(0)ij)Γ

jpqDpΨ(0)+q = AS

ΓiSi −
i
√

3

4
J iΨ(0)+i = AsW

including the ’t Hooft anomalies

AS =
ic

18
εisklF(0)skA(0)l(Γij − 2g(0)ij)Γ

jpqDpΨ(0)+q

AsW =
c

2

[ `2
4

(
Rij −

1

6
Rg(0)ij

)
ΓiΓjklDkΨ(0)+l+

2i

3
εijklF(0)jkA(0)lΨ(0)+i

+
i

4
√

3
F(0)jk(2ΓjkΓi − 3Γjki)Γi

pqDpΨ(0)+q

]
Moving the orange terms to the LHS of the fermionic Ward identities shifts the
R-current from the consistent to the covariant (and gauge invariant) one:

J i → J icov = J i +
4c

3
√

3
εijklF(0)jkA(0)l
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Fermionic transformations of the sources

The local supersymmetry and superWeyl transformations of the background fields,
parameterized respectively by the spinors εo+(x) and εo−(x), are:

δεo+,εo−e
a
i (0) =

1

2
(εo+ΓaΨ(0)+i −Ψ(0)+iΓ

aεo+),

δεo+,εo−A(0)i =
i

4
√

3

(
Ψ(0)+iεo− + Ψ(2)−iεo+ − εo+Ψ(2)−i − εo−Ψ(0)+i

)
,

δεo+,εo−Ψ(0)+i = D(0)iεo+ − Γ(0)iεo−

where
Ψ(2)−i = −

1

6
(Γ(0)ij − 2g(0)ij)Γ

jkl
(0)
D(0)kΨ(0)+l.

These are the transformations of off-shell N = 1 conformal supergravity
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Fermionic transformations of the supercurrent

The local supersymmetry and superWeyl transformations of the supercurrent are:

δεo+S
i = −

1

2
T iaΓaεo+

+
i`

8
√

3
Γijk

(0)
(Γ(0)kl − 2g(0)kl)D(0)j

[(
J l+

4c

3
√

3
εlpqsF(0)pqA(0)s

)
εo+
]

δεo−S
i = −

i
√

3

4

(
J i+

4c

3
√

3
εlpqsF(0)pqA(0)s

)
εo−

−
c

8
Γijk

(0)
Γl(0)D(0)j

[(
Rkl[g(0)]−

1

6
R[g(0)]g(0)kl

)
εo−
]

−
ic

8
√

3
Γij

(0)k

(
2Γk(0)Γ

pq
(0)
− 3Γkpq

(0)

)
D(0)j(F(0)pqεo−)

Notice contribution from ’t Hooft anomalies!
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Notions of rigid supersymmetry

Covariantly constant spinors (very restrictive):

∇µζ = 0

Twistor equation:

∇µζ = σµη̃, η̃ = −
1

4
σ̃µ∇µζ

Twist by a line bundle (Kähler base):

(∇µ − iAµ)ζ = 0

Twistor equation twisted by line bundle (conformal supergravity):

(∇µ − iAµ)ζ = σµη̃

New minimal supergravity:

(∇µ − iAµ)ζ = −iVµζ − iV νσµνζ, ∇µV µ = 0
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Classification of solutions

Killing spinor equations have been studied extensively and the manifolds that
support Killing spinors have been largely classified.

Killing spinors of new minimal and conformal supergravity and the restrictions they
impose on the manifoldM were studied in [Klare, Tomansiello, Zaffaroni: 1205.1062;
Dumitrescu, Festuccia, Seiberg: 1205.1115]

N = 1 theories in 4d can be coupled to different background supergravities
[Festuccia, Seiberg: 1105.0689]. The Killing spinor equations arise from the gravitino
variations of the corresponding supergravity.

This talk concerns local properties ofM and so the difference between the new
minimal and conformal supergravity spinor equations is not important.

Rigid supersymmetry is independent of the particular theory, since it only depends
on the background supergravity fields!
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Manifolds with two KSs of opposite R-charge

Manifolds that admit two Killing spinors, ζ and ζ̃, of opposite R-charge are T 2

fibrations over a Riemann surface with metric

ds2 = Ω(z, z)2
(

(dw + h(z, z)dz)(dw + h(z, z)dz) + c(z, z)2dzdz
)

Such manifolds possess a complex Killing vector Kµ = ζσµζ̃ that commutes with
its conjugate.

In Lorentzian signature ζ and ζ̃ are related by complex conjugation.

I will focus on the special case when one cycle is trivially fibered:

ds2 = Ω(z, z)2dτ2 + ds2M3

ds2M3
= Ω(z, z)2

(
(dψ + a(z, z) + a(z, z)dz)2 + c(z, z)2dzdz

)
By dimensional reduction, such backgrounds are related to Seifert manifolds in 3d
and, if the second cycle is also trivially fibered, to the A-twist in 2d.

Examples: S3 × S1, L(r, s)× S1, where L(r, s) is a Lens space.
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Partition functions on Hermitian manifolds

Closset, Dumitrescu, Festuccia and Komargodski studied the dependence of
general supersymmetric partition functions on the geometric data of generic
Hermitian manifoldsM4 and the related line bundles.

They first studied the linearized deformation problem around flat space [1309.5876]
and later the non-linear problem by means of the holomorphic twist [1407.2598].

ForM4 that admit two Killing spinors of opposite R-charge they find that ZM4 :

does not depend on the Hermitian metric on M4

depends holomorphically on a subset of the complex structure and line bundle moduli

In the case when one T 2 cycle is trivially fibered, the above conditions imply that
the partition function is independent of the functions a(z, z), a(z, z) and c(z, z).
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Sketch of the proof

The R-multiplet for N = 1 theories with a U(1)R symmetry in 4d contains the
following operators:

j
(R)
µ , Sαµ, S̃α̇µ , Tµν , Fµν

These operators couple to the background fields in new minimal supergravity:

A
(R)
µ , Ψαµ, Ψ̃α̇µ, gµν , Bµν

The (flat space) supersymmetry algebra determines

{
Q,

1

|ζ|2
ζ†σρS̃µ

}
= −2i(δνρ + iJνρ)Tµν

where
Tµν = Tµν +

i

4
εµνρσFρλ −

i

4
εµνρλ∂

ρj(R)λ −
i

2
∂νj

(R)
µ

is conserved, ∂µTµν = 0, and the complex structure is given by

Jνρ = −
2i

|ζ|2
ζ†σνρζ
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The variation of the partition function with respect to the background fields is given
by the linearized coupling of the R-multiplet operators to supergravity:

∆L = −
1

2
∆gµνTµν + ∆A(R)µj

(R)
µ +

i

4
εµνρλ∆BµνFρλ

An explicit calculation shows that the variation of the partition function with respect
to the geometric data parameterizing the Hermitian manifoldM4 around flat
space, up to a total derivative, takes the form

∆L = −∆gij̄Tij̄ − i
∑
j=j̄

∆J j̄ jTj̄ī

Since Tµν is Q-exact, this completes the proof.

Caveat: the argument relies on the classical supersymmetry algebra
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Supersymmetric partition function from holography

[Genolini, Cassani, Martelli, Sparks: 1612.06761] holographically computed the
variation of the supersymmetric partition function with respect to the geometric
data parameterizing the Lorentzian (conformal supergravity) backgrounds

ds2(0) = − dt2 +
(

dψ +
i
2
∂z̄µdz̄ −

i
2
∂zµdz

)2
+ 4ewdzdz̄,

AConf.
(0) = −

1
√

3

[
−

1

8
e−w∂z∂z̄µdt+

1

4
e−w∂z∂z̄µ

(
dψ +

i
2
∂z̄µdz̄ −

i
2
∂zµdz

)
+

i
4

(∂z̄wdz̄ − ∂zwdz) + γ′dt+ γdψ + dλ
]

where w(z, z̄) and µ(z, z̄) are arbitrary functions, and γ′, γ and λ(z, z̄) are locally
pure gauge but contain global information.

These are analytically continued versions of the T 2-fibrations with one trivial fiber.

Killing spinor equation (and complex conjugate)

D(0)iζ+ = Γ(0)iζ−, ζ− =
1

4
Γj

(0)
D(0)j

ζ+ 6= 0
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w and µ dependence of the partition function

Under a local deformation of the function w(z, z̄), keeping µ(z, z̄) fixed:

δwW =
1

263κ2

ˆ
d4x
√
−g(0) δw

(
−u2R2d −

1

2
�2du

2 +
19

32
u4

+
8

9
(γ + 2γ′)(2uR2d + 2�2du− u3)

)
where u = e−w∂z∂z̄µ.

Under a local deformation of the function µ(z, z̄), keeping w(z, z̄) fixed:

δµW =
1

2932κ2

ˆ
d4x
√
−g(0)(e

−w∂z∂z̄δµ)
(

24uR2d − 19u3

+
32

3
(γ + 2γ′)(3u2 − 4R2d)

)
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Rigid SUSY transformation of the supercurrent

Restricting the local fermionic parameters εo+(x) and εo−(x) in the local
transformation of the supercurrent to the conformal Killing spinor (ζ+, ζ−) gives
the transformation of the supercurrent under rigid supersymmetry:

δζSi = −
1

2
T ij Γ̂(0)jζ+

+
i

8
√

3
Γijk

(0)
(Γ(0)kl − 2g(0)kl)ζ+D(0)j

(
J l+

4c

3
√

3
ε̂lpqsF(0)pqA(0)s

)
+

i

2
√

3
(Γi(0)l − 3δil )ζ−

(
J l+

4c

3
√

3
εlpqsF(0)pqA(0)s

)
−
c

8
Γijk

(0)
Γl(0)D(0)j

[(
Rkl[g(0)]−

1

6
R[g(0)]g(0)kl

)
ζ−
]

−
ic

8
√

3
Γij

(0)k

(
2Γk(0)Γ

pq
(0)
− 3Γ̂kpq

(0)

)
D(0)j(F(0)pqζ−)

The anomalous terms in this transformation are non-vanishing for this class of
supersymmetric backgrounds, even though all bosonic anomalies in the Ward
identities are numerically zero!
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w and µ dependence of the partition function

Under a local deformation of the function w(z, z̄), keeping µ(z, z̄) fixed:

δwW =

ˆ
d4x
√
−g(0) δw i

√
2ew/2

(
δanom
ζ Sz

∣∣∣
1

+ δanom
ζ Sz

∣∣∣
2

)
=

1

263κ2

ˆ
d4x
√
−g(0) δw

(
−u2R2d −

1

2
�2du

2 +
19

32
u4

+
8

9
(γ + 2γ′)(2uR2d + 2�2du− u3)

)
where u = e−w∂z∂z̄µ and we have used the fact that 〈δζSi〉susy = 0.

Under a local deformation of the function µ(z, z̄), keeping w(z, z̄) fixed:

δµW =

ˆ
d4x
√
−g(0)

{√
2
[ i

2

(
δanom
ζ S z̄

∣∣∣
1
− δanom

ζ S z̄
∣∣∣
2

)
+

1

4
e−

w
2

(
δanom
ζ St

∣∣∣
1

+ δanom
ζ St

∣∣∣
2

)]
∂z̄δµ+ h.c.

}
=

1

2932κ2

ˆ
d4x
√
−g(0)(e

−w∂z∂z̄δµ)
(

24uR2d − 19u3

+
32

3
(γ + 2γ′)(3u2 − 4R2d)

)
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w and µ dependence of the partition function

The final expressions in these variations agree with [Genolini, Cassani, Martelli,
Sparks: 1612.06761], but the actual calculation and the explanation provided for the
non-invariance of the partition function are different:

We follow the argument of [Closset, Dumitrescu, Festuccia, Komargodski: 1309.5876,
1407.2598], except that:

we consider infinitesimal variations of the partition function around a generic Hermitian
four-manifold (within the class specified above), instead of flat space

we have used the quantum transformation of the supercurrent, which is anomalous

This leads to a specific dependence of the supersymmetric partition function on
the complex structure moduli, i.e. µ(z, z̄), and the Hermitian metric, i.e. w(z, z̄).

Since the anomalous transformation of the supercurrent is derived for local
supersymmetry transformations, it can be applied to any Hermitian manifold,
beyond the class considered here.
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Casimir charges and the BPS relation

The conserved charges can be obtained from the Ward identities

For the supersymmetric backgrounds specified above they take the form:

Qωe =
1
√

3

ˆ
dσi

(
〈J i〉 − ω

2`

3
√

3 κ2
εipqsF(0)pqA(0)s

)
Qω [K] = −

ˆ
dσi

[
〈T ij 〉 −

(
〈J i〉 − ω

2`

3
√

3 κ2
εipqsF(0)pqA(0)s

)
A(0)j

]
Kj

where the parameter ω is arbitrary. ω = −2 corresponds to the Maxwell charges
and ω = 1 to the Page charges.

Contracting the identity 〈δζSi〉susy = 0 with iζ+ leads to the BPS relation

Mω + Jω + (γ − γ′)Qωe = Qωanomaly.

where
Mω = Qω [−∂t], Jω = Qω [∂ψ ],

and Qωanomaly is a non-vanishing anomaly charge that is local in the background.
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Conclusions and future directions

Conclusions:

In generic 4d curved backgrounds admitting (conformal) Killing spinors the
supercurrent transforms anomalously under rigid supersymmetry

The supersymmetric partition function on such backgrounds is not invariant under
deformations of the complex structure or of the Hermitian metric

The BPS relation between the bosonic charges is anomalous

Future directions:

Determine the supercurrent anomaly for arbitrary a and c and for different
background supergravities

Concrete examples where localization computations are affected?

The supercurrent anomaly can be converted to a gravitational anomaly using a
local non-covariant counterterm? (For a = c local counterterm given in [Genolini,
Cassani, Martelli, Sparks: 1612.06761])
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