N=1 SQFT on curved backgrounds and rigid supersymmetry anomalies

Ioannis Papadimitriou

Korea Institute for Advanced Study

Workshop on Supersymmetric Localization and Holography: Black Hole Entropy and Wilson Loops

ICTP, Trieste, 10 July 2018

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

JHEP07 (2017) 038, arXiv:1703.04299 [hep-th] and work in progress

Quantum and classical *Q*-cohomology

The expectation value of *Q*-exact operators in a supersymmetric state vanishes:

$$\langle \delta_{\zeta} \mathcal{O}_F \rangle = \langle \{ \overline{\mathcal{Q}}_{\zeta}, \mathcal{O}_F \} \rangle = 0$$

Supersymmetric localization relies on a *classical* version of this statement:

$$\langle \delta_{\zeta}^{cl} \mathcal{O}_F \rangle = \int [\mathcal{D}X] \{ \overline{\mathcal{Q}}_{\zeta}, \mathcal{O}_F \}_{cl} e^{-S[X]} = \int [\mathcal{D}X] \Big\{ \overline{\mathcal{Q}}_{\zeta}, \mathcal{O}_F e^{-S[X]} \Big\}_{cl} = 0$$

where the last step *assumes* that the integration measure commutes with \overline{Q}_{ζ} , i.e.

$$\delta_{\zeta} = \delta_{\zeta}^{cl}$$

■ In this talk I will provide evidence that the quantum and classical *Q*-cohomologies do not always coincide and will discuss some of the consequences

A familiar example

 $\blacksquare \ \mathcal{N} = 1 \text{ super Virasoro}$

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}m(m^2 - 1)\delta_{m+n,0}$$
$$[L_m, G_r] = \frac{1}{2}(m-2r)G_{m+r}$$
$$\{G_r, G_s\} = 2L_{r+s} + \frac{c}{12}(4r^2 - 1)\delta_{r+s,0}$$

We will see that a similar anomaly exists in 4 (and 6) dimensions, except that it only deforms the supersymmetry algebra on curved backgrounds

The 4d anomaly

In 4d flat space

$$(\delta_{\zeta}\mathcal{S}^{i})_{\alpha\dot{\beta}} = \{\overline{Q}_{\dot{\beta}}, \mathcal{S}_{i\alpha}\} = \sigma^{j}_{\alpha\dot{\beta}} \left(2\mathcal{T}_{ij} - i\eta_{ij}\partial^{k}\mathcal{J}_{k} + i\partial_{j}\mathcal{J}_{i} + \frac{1}{2}\epsilon_{ijkl}\partial^{k}\mathcal{J}^{l}\right)$$

where \mathcal{T}^{ij} is the stress tensor and \mathcal{J}^i the *R*-current

On curved background admitting a (conformal) Killing spinor ζ_+ , i.e. $\mathcal{D}_i \zeta_+ = \Gamma_i \zeta_-$

$$\begin{split} \{\overline{\mathcal{Q}}[\zeta], \mathcal{S}^i\} &= -\frac{1}{2}\mathcal{T}^{ij}\Gamma_j\zeta_+ + \frac{i}{8\sqrt{3}}\Gamma^{ijk}(\Gamma_{kl} - 2g_{kl})\zeta_+ D_j\mathcal{J}^l \\ &+ \frac{i}{2\sqrt{3}}\Big(\Gamma_l^i - 3\delta_l^i\Big)\zeta_- \mathcal{J}^l + \mathcal{A}_{\zeta}^i[g, A] \end{split}$$

where $\mathcal{A}^i_{\zeta}[g,A]$ is a local functional of the background and represents an rigid supersymmetry anomaly

Outline

1 Superconformal Ward identities and 't Hooft anomalies

- 2 Rigid supersymmetry on curved backgrounds
- 3 Partition functions on backgrounds with two Killing spinors of opposite *R*-charge
- 4 The rigid supersymmetry anomaly
- 5 Casimir charges and the BPS relation
- 6 Conclusions and future directions

Outline

1 Superconformal Ward identities and 't Hooft anomalies

- 2 Rigid supersymmetry on curved backgrounds
- 3 Partition functions on backgrounds with two Killing spinors of opposite *R*-charge
- 4 The rigid supersymmetry anomaly
- 5 Casimir charges and the BPS relation
- 6 Conclusions and future directions

4d $\mathcal{N} = 1$ supercurrent multiplets

 $\blacksquare \mathcal{N} = 1$ supercurrent multiplets: $\mathcal{T}^{ij}, \mathcal{S}^i, (\mathcal{J}^i)$, auxiliary fields

They are components of a real vector superfield

$$\mathbb{S}^{i} = \mathcal{J}^{i} + \overline{\theta}\mathcal{S}^{i} + \overline{\mathcal{S}}^{i}\theta + 2(\overline{\theta}\sigma_{j}\theta)\mathcal{T}^{ij} + \cdots$$

Possible current multiplets differ in auxiliary field content and *improvement terms*:

$$\mathcal{T}_{ij} \to \mathcal{T}'_{ij} = \mathcal{T}_{ij} + (\eta_{ij}\partial^2 - \partial_i\partial_j)t, \qquad \mathcal{S}_{i\alpha} \to \mathcal{S}'_{i\alpha} = \mathcal{S}_{i\alpha} + (\sigma_{ij})^{\beta}_{\alpha}\partial^j s_{\beta}$$

Classical Ward identities

The S-multiplet [Komargodski, Seiberg '10] always exists and comprises 16+16 off-shell degrees of freedom in the real superfield S_{αά}, an auxiliary chiral superfield X, and an auxiliary spinor (chiral fieldstrength) superfield χ_α, satisfying

 $\overline{D}^{\dot{\alpha}}\mathbb{S}_{\alpha\dot{\alpha}} = D_{\alpha}X + \chi_{\alpha}, \qquad \overline{D}_{\dot{\alpha}}X = 0, \qquad \overline{D}_{\dot{\alpha}}\chi_{\alpha} = \overline{D}_{\dot{\alpha}}\overline{\chi}^{\dot{\alpha}} - D^{\alpha}\chi_{\alpha} = 0$

- The Ferrara-Zumino (FZ)-multiplet is obtained by setting $\chi_{\alpha} = 0$ and comprises 12+12 off-shell degrees of freedom. It exists if there are no FI terms and the Kähler form of the target space is exact.
- The **R-multiplet** is obtained by setting X = 0 and contains also 12+12 off-shell degrees of freedom. It exists if there is a $U(1)_R$ symmetry.
- These defining relations correspond to classical Ward identities

The background supergravity fields reside in a real vector superfield \mathbb{H}_i that to linear order couples to the current superfield as

$$\int d^4\theta \; \mathbb{S}^i \mathbb{H}_i$$

Gauging the global symmetries amounts to assigning a local gauge transformation to the background superfield

$$\mathbb{H}_{\alpha\dot{\alpha}} \to \mathbb{H}'_{\alpha\dot{\alpha}} = \mathbb{H}_{\alpha\dot{\alpha}} + D_{\alpha}\overline{L}_{\dot{\alpha}} - \overline{D}_{\dot{\alpha}}L_{\alpha}$$

and demanding that the above linear coupling is gauge invariant.

- These local transformations include diffeomorphisms, local frame rotations, Weyl and U(1) gauge transformations, as well as local Q- and S-supersymmetry transformations
- The defining relations of the supercurrent multiplet, i.e. the Ward identities, follow from the Noether's procedure.

Local transformation of the currents

The linear coupling

$$W[\cdots,\mathbb{H}]=\cdots+\int d^4x\int d^4\theta\;\mathbb{S}^i\mathbb{H}_i$$

in the effective action implies that the supercurrent multiplet operators can be defined in the Local Renormalization Group sense [Osborn '94] as

$$\mathbb{S}^i = \frac{\delta W}{\delta \mathbb{H}_i}$$

- This defines the consistent current multiplet, which couples supergravity. The covariant current multiplet differs by Bardeen-Zumino terms [Bardeen, Zumino '84]
- The transformation of the current superfield under the local symmetries is given by

$$\delta_L \mathbb{S}^i = \delta_L \Big(\frac{\delta}{\delta \mathbb{H}_i} \Big) W + \frac{\delta}{\delta \mathbb{H}_i} \delta_L W$$

where the second term is non-zero only in the presence of 't Hooft anomalies

Ward identities as first class constraints

- An elegant way to compute the gauge transformation of local operators is utilizing an underlying symplectic structure
- \blacksquare The superfields \mathbb{S}^i and \mathbb{H}_i parameterize a symplectic manifold equipped with the Poisson bracket

$$\{,\}_{\rm PB} = \int d^4x \int d^4\theta \Big(\frac{\delta}{\delta \mathbb{H}_i} \frac{\delta}{\delta \mathbb{S}^i} - \frac{\delta}{\delta \mathbb{S}^i} \frac{\delta}{\delta \mathbb{H}_i} \Big)$$

The functional

$$\mathcal{C}[L] = \int d^4x \int d^4\theta \ L^{\alpha} \Big(\overline{D}^{\dot{\alpha}} \mathbb{S}_{\alpha \dot{\alpha}} - D_{\alpha} X - \chi_{\alpha} \Big) + \text{h.c.}$$

is a first class constraint generating local gauge symmetries, i.e.

$$\{\mathcal{C}[L], \mathbb{H}_i\}_{\rm PB} = -\frac{\delta \mathcal{C}[L]}{\delta \mathbb{S}^i} = D_\alpha \overline{L}_{\dot{\alpha}} - \overline{D}_{\dot{\alpha}} L_\alpha = \delta_L \mathbb{H}_i$$

The gauge transformation of the current superfield is then given by

$$\{\mathcal{C}[L], \mathbb{S}_i\}_{\mathsf{PB}} = \delta_L \mathbb{S}^i = \frac{\delta \mathcal{C}[L]}{\delta \mathbb{H}_i}$$

10/35 <ロト < 母 > < ミト < ミト ミ のへで

Killing symmetries and conserved charges

- So far the background fields in \mathbb{H}_i and the gauge parameters in L^{α} are arbitrary
- For a given background \mathbb{H}_i , the gauge parameters L_o^{α} that satisfy

$$\delta_{L_o} \mathbb{H}_i = D_\alpha \overline{L}_{o\dot{\alpha}} - \overline{D}_{\dot{\alpha}} L_{o\alpha} = 0$$

correspond to Killing symmetries of the background \mathbb{H}_i

- \blacksquare The Killing spinor of rigid supersymmetry corresponds to a specific component of the superfield L^{α}_o
- \blacksquare The conserved charges $\mathbb{Q}[L_o]$ associated with the Killing symmetries can be obtained through the Ward identities
- The quantum transformation of the currents under the Killing symmetries is

$$\{\mathbb{Q}[L_o], \mathbb{S}^i] = \delta_{L_o} \mathbb{S}^i$$

which includes the anticommutators $\{\overline{Q}_{\dot{\beta}}, S_{i\alpha}\}$ and $\{Q_{\beta}, S_{i\alpha}\}$

Rigid supersymmetry in flat space

e.g. for the S-multiplet in flat space

$$\{\overline{Q}_{\dot{\beta}}, S_{i\alpha}\} = \sigma^{j}_{\alpha\dot{\beta}} \left(2\mathcal{T}_{ij} + \frac{1}{2}\epsilon_{ijkl}F^{kl} - i\eta_{ij}\partial^{k}\mathcal{J}_{k} + i\partial_{j}\mathcal{J}_{i} + \frac{1}{2}\epsilon_{ijkl}\partial^{k}\mathcal{J}^{l} \right)$$

$$\{Q_{\beta}, S_{i\alpha}\} = 2i\epsilon_{\lambda\beta}(\sigma_{ij})^{\lambda}_{\beta}\partial^{j}x^{\dagger}$$

where F_{ij} the closed two-form and the complex scalar x are auxiliary fields

Non linear coupling to supergravity

- To couple the theory non linear to supergravity one can use the Festuccia-Seiberg argument [Festuccia, Seiberg '11]
- The superconformal 't Hooft anomalies can be determined for arbitrary *a* and *c* anomaly coefficients by solving the Wess-Zumino consistency conditions
- For the Ferrara-Zumino multiplet this has been done in curved superspace by [Bonora, Pasti, Tonin '85]
- Extracting the fermionic components is still non trivial...

Quantum Ward identities from holography

Minimal gauged supergravity in 5D holographically describes the current multiplet of $\mathcal{N} = 1$ SCFTs in 4d, coupled to off-shell (conformal) supergravity

- It only describes theories with a = c
- The arbitrary sources of the bulk fields

$$e^a_{(0)i}, \quad \Psi_{(0)+i}, \quad A_{(0)i}$$

specify an arbitrary (non-linear) field theory background

The variation of the renormalized on-shell supergravity action defines the conjugate (consistent) current operators via

$$\delta W = \int d^d x \sqrt{-g_{(0)}} \left(-\mathcal{T}^i_a \delta e^a_{i\ (0)} + \mathcal{J}^i \delta A_{(0)i} + \overline{\mathcal{S}}^i \delta \Psi_{(0)+i} + \delta \overline{\Psi}_{(0)+i} \mathcal{S}^i \right)$$

Fermionic Ward identities

Supersymmetric holographic renormalization determines the Ward identities

$$\begin{aligned} \mathcal{D}_i \mathcal{S}^i &+ \frac{1}{2} \mathcal{T}_a^i \Gamma^a \Psi_{(0)+i} - \frac{i}{8\sqrt{3}} \mathcal{J}^i (\Gamma_{ij} - 2g_{(0)ij}) \Gamma^{jpq} \mathcal{D}_p \Psi_{(0)+q} = \mathcal{A}_S \\ \Gamma_i \mathcal{S}^i &- \frac{i\sqrt{3}}{4} \mathcal{J}^i \Psi_{(0)+i} = \mathcal{A}_{sW} \end{aligned}$$

including the 't Hooft anomalies

$$\mathcal{A}_{S} = \frac{ic}{18} \epsilon^{iskl} F_{(0)sk} A_{(0)l} (\Gamma_{ij} - 2g_{(0)ij}) \Gamma^{jpq} \mathcal{D}_{p} \Psi_{(0)+q}$$
$$\mathcal{A}_{sW} = \frac{c}{2} \Big[\frac{\ell^{2}}{4} \Big(R_{ij} - \frac{1}{6} Rg_{(0)ij} \Big) \Gamma^{i} \Gamma^{jkl} \mathcal{D}_{k} \Psi_{(0)+l} + \frac{2i}{3} \epsilon^{ijkl} F_{(0)jk} A_{(0)l} \Psi_{(0)+i} + \frac{i}{4\sqrt{3}} F_{(0)jk} (2\Gamma^{jk} \Gamma^{i} - 3\Gamma^{jki}) \Gamma_{i}^{pq} \mathcal{D}_{p} \Psi_{(0)+q} \Big]$$

Moving the orange terms to the LHS of the fermionic Ward identities shifts the R-current from the consistent to the covariant (and gauge invariant) one:

$$\mathcal{J}^i \to \mathcal{J}^i{}_{\rm cov} = \mathcal{J}^i + \frac{4c}{3\sqrt{3}} \epsilon^{ijkl} F_{(0)jk} A_{(0)l}$$

15/35 イロト (日) (日) (王) (王) (元)

Fermionic transformations of the sources

The local supersymmetry and superWeyl transformations of the background fields, parameterized respectively by the spinors $\epsilon_{o+}(x)$ and $\epsilon_{o-}(x)$, are:

$$\begin{split} \delta_{\epsilon_{o+},\epsilon_{o-}} e_i^a{}_{(0)} &= \frac{1}{2} (\overline{\epsilon}_{o+} \Gamma^a \Psi_{(0)+i} - \overline{\Psi}_{(0)+i} \Gamma^a \epsilon_{o+}), \\ \delta_{\epsilon_{o+},\epsilon_{o-}} A_{(0)i} &= \frac{i}{4\sqrt{3}} \Big(\overline{\Psi}_{(0)+i} \epsilon_{o-} + \overline{\Psi}_{(2)-i} \epsilon_{o+} - \overline{\epsilon}_{o+} \Psi_{(2)-i} - \overline{\epsilon}_{o-} \Psi_{(0)+i} \Big), \\ \delta_{\epsilon_{o+},\epsilon_{o-}} \Psi_{(0)+i} &= \mathcal{D}_{(0)i} \epsilon_{o+} - \Gamma_{(0)i} \epsilon_{o-} \end{split}$$

where

$$\Psi_{(2)-i} = -\frac{1}{6} (\Gamma_{(0)ij} - 2g_{(0)ij}) \Gamma_{(0)}^{jkl} \mathcal{D}_{(0)k} \Psi_{(0)+l}.$$

These are the transformations of off-shell $\mathcal{N} = 1$ conformal supergravity

Fermionic transformations of the supercurrent

The local supersymmetry and superWeyl transformations of the supercurrent are:

$$\begin{split} \delta_{\epsilon_{o+}} \mathcal{S}^{i} &= -\frac{1}{2} \mathcal{T}_{a}^{i} \Gamma^{a} \epsilon_{o+} \\ &+ \frac{i\ell}{8\sqrt{3}} \Gamma_{(0)}^{ijk} (\Gamma_{(0)kl} - 2g_{(0)kl}) \mathcal{D}_{(0)j} \Big[\Big(\mathcal{J}^{l} + \frac{4c}{3\sqrt{3}} \epsilon^{lpqs} F_{(0)pq} A_{(0)s} \Big) \epsilon_{o+} \Big] \end{split}$$

$$\delta_{\epsilon_{o-}} \mathcal{S}^{i} = -\frac{i\sqrt{3}}{4} \left(\mathcal{J}^{i} + \frac{4c}{3\sqrt{3}} \epsilon^{lpqs} F_{(0)pq} A_{(0)s} \right) \epsilon_{o-} \\ -\frac{c}{8} \Gamma^{ijk}_{(0)} \Gamma^{l}_{(0)} \mathcal{D}_{(0)j} \left[\left(R_{kl}[g_{(0)}] - \frac{1}{6} R[g_{(0)}]g_{(0)kl} \right) \epsilon_{o-} \right] \\ -\frac{ic}{8\sqrt{3}} \Gamma^{ij}_{(0)k} \left(2\Gamma^{k}_{(0)} \Gamma^{pq}_{(0)} - 3\Gamma^{kpq}_{(0)} \right) \mathcal{D}_{(0)j}(F_{(0)pq} \epsilon_{o-})$$

Notice contribution from 't Hooft anomalies!

Outline

Superconformal Ward identities and 't Hooft anomalie

2 Rigid supersymmetry on curved backgrounds

3 Partition functions on backgrounds with two Killing spinors of opposite *R*-charge

4 The rigid supersymmetry anomaly

5 Casimir charges and the BPS relation

6 Conclusions and future directions

Notions of rigid supersymmetry

Covariantly constant spinors (very restrictive):

 $\nabla_{\mu}\zeta = 0$

Twistor equation:

$$\nabla_{\mu}\zeta = \sigma_{\mu}\widetilde{\eta}, \qquad \widetilde{\eta} = -\frac{1}{4}\widetilde{\sigma}^{\mu}\nabla_{\mu}\zeta$$

Twist by a line bundle (Kähler base):

$$(\nabla_{\mu} - iA_{\mu})\zeta = 0$$

Twistor equation twisted by line bundle (conformal supergravity):

$$(\nabla_{\mu} - iA_{\mu})\zeta = \sigma_{\mu}\tilde{\eta}$$

New minimal supergravity:

$$(\nabla_{\mu} - iA_{\mu})\zeta = -iV_{\mu}\zeta - iV^{\nu}\sigma_{\mu\nu}\zeta, \qquad \nabla_{\mu}V^{\mu} = 0$$

19/35 イロト イクト イミト イミト ミークへぐ

Classification of solutions

- Killing spinor equations have been studied extensively and the manifolds that support Killing spinors have been largely classified.
- Killing spinors of new minimal and conformal supergravity and the restrictions they impose on the manifold *M* were studied in [Klare, Tomansiello, Zaffaroni: 1205.1062; Dumitrescu, Festuccia, Seiberg: 1205.1115]
- $\mathcal{N} = 1$ theories in 4d can be coupled to different background supergravities [Festuccia, Seiberg: 1105.0689]. The Killing spinor equations arise from the gravitino variations of the corresponding supergravity.
- This talk concerns local properties of M and so the difference between the new minimal and conformal supergravity spinor equations is not important.
- Rigid supersymmetry is independent of the particular theory, since it only depends on the background supergravity fields!

Manifolds with two KSs of opposite *R*-charge

Manifolds that admit two Killing spinors, ζ and ζ̃, of opposite *R*-charge are T² fibrations over a Riemann surface with metric

$$ds^{2} = \Omega(z,\overline{z})^{2} \left((dw + h(z,\overline{z})dz)(d\overline{w} + \overline{h}(z,\overline{z})d\overline{z}) + c(z,\overline{z})^{2}dzd\overline{z} \right)$$

- Such manifolds possess a complex Killing vector $K^{\mu} = \zeta \sigma^{\mu} \widetilde{\zeta}$ that commutes with its conjugate.
- In Lorentzian signature ζ and $\tilde{\zeta}$ are related by complex conjugation.
- I will focus on the special case when one cycle is trivially fibered:

$$ds^{2} = \Omega(z,\overline{z})^{2} d\tau^{2} + ds^{2}_{\mathcal{M}_{3}}$$
$$ds^{2}_{\mathcal{M}_{3}} = \Omega(z,\overline{z})^{2} \left((d\psi + a(z,\overline{z}) + \overline{a}(z,\overline{z})d\overline{z})^{2} + c(z,\overline{z})^{2} dz d\overline{z} \right)$$

- By dimensional reduction, such backgrounds are related to Seifert manifolds in 3d and, if the second cycle is also trivially fibered, to the A-twist in 2d.
- Examples: $S^3 \times S^1$, $L(r, s) \times S^1$, where L(r, s) is a Lens space.

Outline

Superconformal Ward identities and 't Hooft anomalies

- 2 Rigid supersymmetry on curved backgrounds
- 3 Partition functions on backgrounds with two Killing spinors of opposite *R*-charge
- 4 The rigid supersymmetry anomaly
- 5 Casimir charges and the BPS relation
- 6 Conclusions and future directions

Partition functions on Hermitian manifolds

- Closset, Dumitrescu, Festuccia and Komargodski studied the dependence of general supersymmetric partition functions on the geometric data of generic Hermitian manifolds M₄ and the related line bundles.
- They first studied the linearized deformation problem around flat space [1309.5876] and later the non-linear problem by means of the holomorphic twist [1407.2598].
- For \mathcal{M}_4 that admit two Killing spinors of opposite *R*-charge they find that $Z_{\mathcal{M}_4}$:
 - \blacksquare does not depend on the Hermitian metric on \mathcal{M}_4
 - depends holomorphically on a subset of the complex structure and line bundle moduli
- In the case when one T^2 cycle is trivially fibered, the above conditions imply that the partition function is independent of the functions $a(z, \overline{z}), \overline{a}(z, \overline{z})$ and $c(z, \overline{z})$.

Sketch of the proof

The *R*-multiplet for $\mathcal{N} = 1$ theories with a $U(1)_R$ symmetry in 4d contains the following operators:

$$j^{(R)}_{\mu}, \quad S_{\alpha\mu}, \quad \widetilde{S}^{\dot{\alpha}}_{\mu}, \quad T_{\mu\nu}, \quad \mathcal{F}^{\mu\nu}$$

These operators couple to the background fields in new minimal supergravity:

$$A^{(R)}_{\mu}, \quad \Psi_{\alpha\mu}, \quad \widetilde{\Psi}^{\dot{\alpha}}{}_{\mu}, \quad g_{\mu\nu}, \quad B_{\mu\nu}$$

The (flat space) supersymmetry algebra determines

$$\left\{Q, \frac{1}{|\zeta|^2} \zeta^{\dagger} \sigma_{\rho} \tilde{S}_{\mu}\right\} = -2i(\delta^{\nu}{}_{\rho} + iJ^{\nu}{}_{\rho})\mathcal{T}_{\mu\nu}$$

where

$$\mathcal{T}_{\mu\nu} = T_{\mu\nu} + \frac{i}{4} \varepsilon_{\mu\nu\rho\sigma} \mathcal{F}^{\rho\lambda} - \frac{i}{4} \varepsilon_{\mu\nu\rho\lambda} \partial^{\rho} j^{(R)\lambda} - \frac{i}{2} \partial_{\nu} j^{(R)}_{\mu\nu}$$

is conserved, $\partial^{\mu} \mathcal{T}_{\mu\nu} = 0$, and the complex structure is given by

$$J^{\nu}{}_{\rho} = -\frac{2i}{|\zeta|^2} \zeta^{\dagger} \sigma^{\nu}{}_{\rho} \zeta$$

24/35 イロト (日) (日) (王) (王) (マヘベ The variation of the partition function with respect to the background fields is given by the linearized coupling of the *R*-multiplet operators to supergravity:

$$\Delta \mathcal{L} = -\frac{1}{2} \Delta g^{\mu\nu} T_{\mu\nu} + \Delta A^{(R)\mu} j^{(R)}_{\mu} + \frac{i}{4} \epsilon^{\mu\nu\rho\lambda} \Delta B_{\mu\nu} \mathcal{F}_{\rho\lambda}$$

An explicit calculation shows that the variation of the partition function with respect to the geometric data parameterizing the Hermitian manifold M₄ around flat space, up to a total derivative, takes the form

$$\Delta \mathcal{L} = -\Delta g^{i\bar{j}} \mathcal{T}_{i\bar{j}} - i \sum_{j=\bar{j}} \Delta J^{\bar{j}}{}_{j} \mathcal{T}_{\bar{j}\bar{i}}$$

- Since $\mathcal{T}_{\mu\nu}$ is *Q*-exact, this completes the proof.
- Caveat: the argument relies on the classical supersymmetry algebra

Supersymmetric partition function from holography

[Genolini, Cassani, Martelli, Sparks: 1612.06761] holographically computed the variation of the supersymmetric partition function with respect to the geometric data parameterizing the Lorentzian (conformal supergravity) backgrounds

$$\begin{split} ds_{(0)}^2 &= -\operatorname{d}t^2 + \left(\operatorname{d}\psi + \frac{\mathrm{i}}{2}\partial_{\bar{z}}\mu\operatorname{d}\bar{z} - \frac{\mathrm{i}}{2}\partial_z\mu\operatorname{d}z\right)^2 + 4e^w\operatorname{d}z\operatorname{d}\bar{z}, \\ A_{(0)}^{\mathrm{Conf.}} &= -\frac{1}{\sqrt{3}}\Big[-\frac{1}{8}e^{-w}\partial_z\partial_{\bar{z}}\mu\operatorname{d}t + \frac{1}{4}e^{-w}\partial_z\partial_{\bar{z}}\mu\Big(\operatorname{d}\psi + \frac{\mathrm{i}}{2}\partial_{\bar{z}}\mu\operatorname{d}\bar{z} - \frac{\mathrm{i}}{2}\partial_z\mu\operatorname{d}z\Big) \\ &\quad + \frac{\mathrm{i}}{4}(\partial_{\bar{z}}w\operatorname{d}\bar{z} - \partial_zw\operatorname{d}z) + \gamma'\operatorname{d}t + \gamma\operatorname{d}\psi + \operatorname{d}\lambda\Big] \end{split}$$

where $w(z, \bar{z})$ and $\mu(z, \bar{z})$ are arbitrary functions, and γ', γ and $\lambda(z, \bar{z})$ are locally pure gauge but contain global information.

These are analytically continued versions of the T^2 -fibrations with one trivial fiber.

Killing spinor equation (and complex conjugate)

$$\mathcal{D}_{(0)i}\zeta_{+} = \Gamma_{(0)i}\zeta_{-}, \qquad \zeta_{-} = \frac{1}{4}\Gamma^{j}_{(0)}\mathcal{D}_{(0)j}\zeta_{+} \neq 0$$

26/35 イロト (日) (日) (王) (王) (元)

w and μ dependence of the partition function

■ Under a local deformation of the function $w(z, \bar{z})$, keeping $\mu(z, \bar{z})$ fixed:

$$\delta_w W = \frac{1}{2^6 3\kappa^2} \int d^4 x \sqrt{-g_{(0)}} \, \delta w \Big(-u^2 R_{2d} - \frac{1}{2} \Box_{2d} u^2 + \frac{19}{32} u^4 \\ + \frac{8}{9} (\gamma + 2\gamma') (2u R_{2d} + 2\Box_{2d} u - u^3) \Big)$$

where $u = e^{-w} \partial_z \partial_{\bar{z}} \mu$.

■ Under a local deformation of the function $\mu(z, \bar{z})$, keeping $w(z, \bar{z})$ fixed:

$$\begin{split} \delta_{\mu}W &= \frac{1}{2^{9}3^{2}\kappa^{2}}\int d^{4}x \sqrt{-g_{(0)}}(e^{-w}\partial_{z}\partial_{\bar{z}}\delta\mu) \Big(24uR_{2d} - 19u^{3} \\ &\quad + \frac{32}{3}(\gamma + 2\gamma')(3u^{2} - 4R_{2d})\Big) \end{split}$$

27/35 <□▶<륜▶<≧▶<≧▶ ≥ ∽੧<

Outline

Superconformal Ward identities and 't Hooft anomalies

- 2 Rigid supersymmetry on curved backgrounds
- 3 Partition functions on backgrounds with two Killing spinors of opposite *R*-charge
- 4 The rigid supersymmetry anomaly
- 5 Casimir charges and the BPS relation
- 6 Conclusions and future directions

Rigid SUSY transformation of the supercurrent

Restricting the local fermionic parameters $\epsilon_{o+}(x)$ and $\epsilon_{o-}(x)$ in the local transformation of the supercurrent to the conformal Killing spinor (ζ_+, ζ_-) gives the transformation of the supercurrent under rigid supersymmetry:

$$\begin{split} \delta_{\zeta} \mathcal{S}^{i} &= -\frac{1}{2} \mathcal{T}^{ij} \widehat{\Gamma}_{(0)j} \zeta_{+} \\ &+ \frac{i}{8\sqrt{3}} \Gamma^{ijk}_{(0)} (\Gamma_{(0)kl} - 2g_{(0)kl}) \zeta_{+} D_{(0)j} \left(\mathcal{J}^{l} + \frac{4c}{3\sqrt{3}} \widehat{\epsilon}^{lpqs} F_{(0)pq} A_{(0)s} \right) \\ &+ \frac{i}{2\sqrt{3}} (\Gamma^{i}_{(0)l} - 3\delta^{i}_{l}) \zeta_{-} \left(\mathcal{J}^{l} + \frac{4c}{3\sqrt{3}} \epsilon^{lpqs} F_{(0)pq} A_{(0)s} \right) \\ &- \frac{c}{8} \Gamma^{ijk}_{(0)} \Gamma^{l}_{(0)} \mathcal{D}_{(0)j} \left[\left(R_{kl} [g_{(0)}] - \frac{1}{6} R[g_{(0)}] g_{(0)kl} \right) \zeta_{-} \right] \\ &- \frac{ic}{8\sqrt{3}} \Gamma^{ij}_{(0)k} \left(2\Gamma^{k}_{(0)} \Gamma^{pq}_{(0)} - 3\widehat{\Gamma}^{kpq}_{(0)} \right) \mathcal{D}_{(0)j} (F_{(0)pq} \zeta_{-}) \end{split}$$

The anomalous terms in this transformation are non-vanishing for this class of supersymmetric backgrounds, even though all bosonic anomalies in the Ward identities are numerically zero!

w and μ dependence of the partition function

■ Under a local deformation of the function $w(z, \bar{z})$, keeping $\mu(z, \bar{z})$ fixed:

$$\begin{split} \delta_{w}W &= \int d^{4}x \sqrt{-g_{(0)}} \; \delta w \; \mathrm{i}\sqrt{2}e^{w/2} \Big(\left. \delta_{\zeta}^{\mathsf{anom}} \mathcal{S}^{z} \right|_{1} + \left. \delta_{\zeta}^{\mathsf{anom}} \mathcal{S}^{z} \right|_{2} \Big) \\ &= \frac{1}{2^{6}3\kappa^{2}} \int d^{4}x \sqrt{-g_{(0)}} \; \delta w \Big(-u^{2}R_{2d} - \frac{1}{2}\Box_{2d}u^{2} + \frac{19}{32}u^{4} \\ &+ \frac{8}{9}(\gamma + 2\gamma')(2uR_{2d} + 2\Box_{2d}u - u^{3}) \Big) \end{split}$$

where $u = e^{-w} \partial_z \partial_{\bar{z}} \mu$ and we have used the fact that $\langle \delta_{\zeta} S^i \rangle_{susy} = 0$.

■ Under a local deformation of the function $\mu(z, \bar{z})$, keeping $w(z, \bar{z})$ fixed:

$$\begin{split} \delta_{\mu}W &= \int d^{4}x \sqrt{-g_{(0)}} \Big\{ \sqrt{2} \Big[\frac{\mathrm{i}}{2} \Big(\left. \delta_{\zeta}^{\mathrm{anom}} \mathcal{S}^{\bar{z}} \right|_{1} - \left. \delta_{\zeta}^{\mathrm{anom}} \mathcal{S}^{\bar{z}} \right|_{2} \Big) \\ &+ \frac{1}{4} e^{-\frac{w}{2}} \Big(\left. \delta_{\zeta}^{\mathrm{anom}} \mathcal{S}^{t} \right|_{1} + \left. \delta_{\zeta}^{\mathrm{anom}} \mathcal{S}^{t} \right|_{2} \Big) \Big] \partial_{\bar{z}} \delta\mu + \mathrm{h.c.} \Big\} \\ &= \frac{1}{2^{9} 3^{2} \kappa^{2}} \int d^{4}x \sqrt{-g_{(0)}} (e^{-w} \partial_{z} \partial_{\bar{z}} \delta\mu) \Big(24u R_{2d} - 19u^{3} \\ &+ \frac{32}{3} (\gamma + 2\gamma') (3u^{2} - 4R_{2d}) \Big) \end{split}$$

30/35 < □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ ∽ < <

w and μ dependence of the partition function

The final expressions in these variations agree with [Genolini, Cassani, Martelli, Sparks: 1612.06761], but the actual calculation and the explanation provided for the non-invariance of the partition function are different:

■ We follow the argument of [Closset, Dumitrescu, Festuccia, Komargodski: 1309.5876, 1407.2598], except that:

- we consider infinitesimal variations of the partition function around a generic Hermitian four-manifold (within the class specified above), instead of flat space
- we have used the quantum transformation of the supercurrent, which is anomalous

This leads to a specific dependence of the supersymmetric partition function on the complex structure moduli, i.e. $\mu(z, \bar{z})$, and the Hermitian metric, i.e. $w(z, \bar{z})$.

Since the anomalous transformation of the supercurrent is derived for local supersymmetry transformations, it can be applied to any Hermitian manifold, beyond the class considered here.

Outline

Superconformal Ward identities and 't Hooft anomalies

- 2 Rigid supersymmetry on curved backgrounds
- 3 Partition functions on backgrounds with two Killing spinors of opposite *R*-charge
- 4 The rigid supersymmetry anomaly
- 5 Casimir charges and the BPS relation
- 6 Conclusions and future directions

Casimir charges and the BPS relation

The conserved charges can be obtained from the Ward identities

For the supersymmetric backgrounds specified above they take the form:

$$\begin{aligned} \mathcal{Q}_{e}^{\omega} &= \frac{1}{\sqrt{3}} \int d\sigma_{i} \left(\langle \mathcal{J}^{i} \rangle - \omega \frac{2\ell}{3\sqrt{3} \kappa^{2}} \epsilon^{ipqs} F_{(0)pq} A_{(0)s} \right) \\ \mathcal{Q}^{\omega}[\mathcal{K}] &= -\int d\sigma_{i} \left[\langle \mathcal{T}_{j}^{i} \rangle - \left(\langle \mathcal{J}^{i} \rangle - \omega \frac{2\ell}{3\sqrt{3} \kappa^{2}} \epsilon^{ipqs} F_{(0)pq} A_{(0)s} \right) A_{(0)j} \right] \mathcal{K}^{j} \end{aligned}$$

where the parameter ω is arbitrary. $\omega = -2$ corresponds to the Maxwell charges and $\omega = 1$ to the Page charges.

Contracting the identity $\langle \delta_{\zeta} S^i \rangle_{susy} = 0$ with $i\overline{\zeta}_+$ leads to the BPS relation

$$M^{\omega} + J^{\omega} + (\gamma - \gamma')\mathcal{Q}_{e}^{\omega} = \mathcal{Q}_{anomaly}^{\omega}.$$

where

$$M^{\omega} = \mathcal{Q}^{\omega}[-\partial_t], \qquad J^{\omega} = \mathcal{Q}^{\omega}[\partial_{\psi}],$$

and $\mathcal{Q}^{\omega}_{\text{anomaly}}$ is a non-vanishing anomaly charge that is local in the background.

Outline

6 Conclusions and future directions

Conclusions and future directions

Conclusions:

- In generic 4d curved backgrounds admitting (conformal) Killing spinors the supercurrent transforms anomalously under rigid supersymmetry
- The supersymmetric partition function on such backgrounds is not invariant under deformations of the complex structure or of the Hermitian metric
- The BPS relation between the bosonic charges is anomalous

Future directions:

- Determine the supercurrent anomaly for arbitrary a and c and for different background supergravities
- Concrete examples where localization computations are affected?
- The supercurrent anomaly can be converted to a gravitational anomaly using a local non-covariant counterterm? (For *a* = *c* local counterterm given in [Genolini, Cassani, Martelli, Sparks: 1612.06761])