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Black hole entropy

Our starting point and motivation: black holes.

Black holes are a theorist’s laboratory to understand gravity.
Key property:

S =
kB c3

GN ~
AH

4
+ α logAH + . . .+ e−β AH + . . .

Semi-classical physics gives the leading term in a large area expansion.
[Hawking‘71],[Bekenstein‘73]

Corrections to Bekenstein-Hawking probe the quantum gravity regime.

A natural question: can we give a Boltzmann interpretation of the exact
entropy S in terms of microscopic degeneracies?

S ?
= kB log dmicro
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Thermodynamic vs. Boltzmann entropy

Progress has been made for supersymmetric models.

Asymptotically flat BHs: string theory successfully accounts for
Bekenstein-Hawking entropy by realizing the black hole as a brane system.

[Strominger,Vafa‘96]

In fact, brane picture is very powerful: also allows for the computation of
sub-leading corrections to the entropy. [Maldacena,Strominger,Witten‘97]

[Dijkgraaf,Verlinde,Verlinde‘97],[Maldacena,Moore,Strominger‘99]

For certain supersymmetric black holes, microscopic degeneracies are fully
known as functions of the charges carried by the brane system.

Generating functions obtained from topological invariants (elliptic genus and
generalizations).
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Thermodynamic vs. Boltzmann entropy (cont.)

Asymptotically AdS BHs: recent progress for AdS4 spherically symmetric
BPS black holes via microstate counting in the dual field theory.

[Benini,Hristov,Zaffaroni‘16]

One can compute the topologically twisted index in the CFT3 (ABJM) via
supersymmetric localization.

Resulting matrix model is valid for all N, but difficult to evaluate exactly.
At large N, it reproduces the Bekenstein-Hawking entropy of the BH.

The sub-leading contributions are encoded in the matrix model.

Followed (a lot of) generalizations to other models, other dimensions, etc...

[Azzurli,Bobev,Cabo-Bizet,Crichigno,Hosseini,Liu,Min,Nedelin,Giraldo-Rivera,

Pando Zayas,Passias,Pilch,Rathee,Zhao...]
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Aim of this talk

Given the degeneracies computed in the microscopic picture, can we define
(and compute!) the corrections to S directly in the macroscopic picture?

If so, do the two descriptions agree and at which order?

We will examine these questions using

I The quantum entropy of asymptotically AdS black holes

I Localization in gauged supergravity (gSUGRA)
[Dabholkar,Drukker,Gomes‘14],[Nian,Zhang‘17]

See also talks by B. de Wit and I. Jeon.
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Outline

1 Introduction and motivation

2 Setting up the problem

3 Localization in gSUGRA and quantum black hole entropy

4 Conclusion
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In general, want to examine solutions of 4d N = 2 gauged SUGRA, with
electric and magnetic charges and AdS asymptotics.

Full BH solution interpolates between AdS4 vacuum at infinity and the
near-horizon AdS2 × S2 geometry.

The solution preserves 2 supercharges (1/4-BPS), and in the near-horizon
region there is an enhancement to 4 supercharges (1/2-BPS).

General feature of the attractor mechanism in gauged SUGRA.
[Cacciatori,Klemm‘09],[Dall’Agata,Gnecchi‘10],[Hristov,Vandoren‘10]

Focus on the entropy contribution from the near-horizon.

Allows to consider a large class of asymptotically AdS BHs at once, namely
all those with near-horizon attractor geometry AdS2 × S2.
See also talk by K. Hristov.
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The AdS2 factor is a key ingredient to explore the quantum entropy of BHs.

Proposal: compute the following expectation value [Sen‘08]

The quantum entropy

eS(p,q) := W (p, q) =

〈
exp
[
−i qI

∮
AI
τ dτ

]〉finite

AdS2

The Wilson line enforces the microcanonical ensemble: in AdS2, the charge
mode of a gauge field is dominant and we keep it fixed (boundary condition).

‘finite’ denotes a regularization procedure, due to non-compactness of AdS2.

In a (suitable) large charge limit, this is expected to reproduce the
Bekenstein-Hawking(-Wald) entropy of the BH.

Holographically, corresponds to a Witten index in the dual CFT1 counting the
number of ground states (microstates).
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The quantum entropy defines the non-perturbative entropy of extremal BPS
BHs as a Euclidean path integral (expectation value of a Wilson line).

Localization gives an exact one-loop evaluation of path integrals.
[Witten‘88],[Pestun‘07],...

Apply localization in 4d N = 2 gSUGRA. Will use superconformal
formulation of the theory, which ensures off-shell closure of the gauge algebra.

[de Wit,van Holten,van Proeyen‘80],...

Field content: Weyl multiplet, nv + 1 vector multiplets and 1 hypermultiplet,
including the gauge compensators.

Specify the near-horizon 1/2-BPS field configuration, and look for off-shell
BPS fluctuations around this background satisfying the attractor b.c.’s.
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The Weyl multiplet:

W = (eµ
a, ψµ

i , bµ, Aµ, Vµi j |Tab, χ
i , D)

In Euclidean, vector multiplets comprise 2 real scalars: [de Wit,VR‘17]

VI = (X I
+, X

I
−, W

I
µ, Ωi I |Y ij I )

The (on-shell) compensating hypermultiplet:

H = (Ai
α, ζα)

The gauging is specified by (ξI , ξ
I = 0) and generators tαβ ,

DµAi
α = (∂µ − bµ)Ai

α + 1
2 Vµ i

j Aj
α − ξI W I

µ t
α
β Ai

β

In the gauge-fixed Poincaré theory, the gravitini are electrically charged.
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Weyl multiplet (bosonic) attractor configuration:

g̊µν dxµ dxν = v1

[
(r2 − 1) dτ 2 +

dr2

r2 − 1

]
+ v2 dΩ2

2

T̊∓12 = ± 2
√
v1

D̊ = −1

6

( 1

v1
+

2

v2

)

The hypermultiplet compensator fixes the SU(2)R gauge,

χ
−1/2
H Åi

α = δi
α where χH = 1

2 ε
ijΩαβ Åi

α Åj
β

Vector multiplets (bosonic) attractor configuration:

ξI F̊
∓ I
34 =

1

4v2
ξI X̊

I
∓ =

1

4
√
v1

Y̊ I
ij = 2χH N̊ IJ(X+,X−) ξJ εik t

k
j

SU(2)R gauge field fixed in terms of the vectors, V̊µi j = −2 ξI W̊
I
µ t

i
j .
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α Åj
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Now look for off-shell BPS fluctuations. Must solve the gravitini SUSY
variation for arbitrary metric and Killing spinor respecting b.c.’s.

Hard problem. In ungauged SUGRA, solved for fluctuations around the
full-BPS attractor configuration where, in particular, the SU(2)R vanishes.

[Gupta,Murthy‘12]

The result is that the only BPS configuration is the attractor geometry itself!

In gSUGRA, we assume that this is also the case: W = W̊ and εi = ε̊i .

As a result, we use the attractor geometry and Killing spinors and look for
off-shell BPS fluctuations of gauge and matter fields only.

Among the 4 supercharges of the attractor background, we pick

Algebra of the localizing supercharge(
Q loc

)2
= Lτ + δSU(2)

(
1√
v1
t i j
)

+ δgauge(X±)
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In the vector multiplet sector, impose the vanishing of gaugini variation

Q loc Ωi I !
= 0

Supercharge parametrized by a particular attractor Killing spinor. Due to the
non-trivial SU(2)R gauge field, the gauging effects a twist on the S2.

The localizing KS is constant on the 2-sphere. The localizing equations are
non-trivial in the radial direction, less constraining in the angular directions.

Parametrization for the off-shell fluctuations

X I
± = X̊ I

± + x I± F I
ab = F̊ I

ab + f Iab Y I
ij = Y̊ I

ij + y I
ij

The localizing equations constrain the fluctuations (x I±, f
I
ab, y

I
ij).
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Imposing b.c.’s, we find for each vector multiplet

X± = X̊± +
∞∑
k=1

C±k (θ, ϕ)

rk

and fab, yij are given in terms of C±k .

Two real functional parameters for each vector multiplet.

There is however an additional constraint: a specific linear combination of
the fluctuation parameters is independent of the angular coordinates

Mvec
loc =

{
C+
k (θ, ϕ)I ,C−k (θ, ϕ)I

}
∀ k ≥ 1, ∀ I = 0 . . . nv

=
{
φI+, φ

I
⊥(θ, ϕ)

}
Here we assumed smoothness of the BPS solutions. Additional singular
configurations may contribute, similar to the orbifolded geometries AdS2/Zc

in the asymptotically flat case. Set aside for now.
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Imposing b.c.’s, we find for each vector multiplet

X± = X̊± +
∞∑
k=1

C±k (θ, ϕ)

rk

and fab, yij are given in terms of C±k .

Two real functional parameters for each vector multiplet.

There is however an additional constraint: a specific linear combination of
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For the compensating hypermultiplet, need to put it off-shell with respect to
the localizing supercharge Q loc.

Do so by introducing auxiliary scalar fields and constrained parameters
[Berkovits‘93],[Hama,Hosomichi‘12]

Q locζ
i
± = /DAj

i ξj∓ − 2 ξI X
I
∓ t i j Ak

j ξk± + Hj
i ξ̌ j

Impose the vanishing of the hyperino variation

Q loc ζ
i
±

!
= 0

The gauging relates the off-shell BPS fluctuations in the hyper sector to
those in the vector multiplet sector.

Fluctuations of Aj
i and Hj

i controlled by the parameters C+
k and C−k .

In addition, constraint on the constant linear combination

ξI φ
I
+ = 2π
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We have characterized the localizing manifold in the gauge/matter sector

The localizing manifold in gSUGRA

Mloc =
{
φI+, φ

I
⊥(θ, ϕ) s.t. ξI φ

I
+ = 2π

}

Now evaluate the gSUGRA action on Mloc. In the Euclidean formalism, this
action is specified by two prepotentials (not related by complex conjugation)

F+(X+) and F−(X−)

Important observation: Sbulk only depends on the constant parameter φI+.

Add the Wilson line contribution and appropriate boundary terms to
renormalize (according to the ‘finite’ prescription).

Final form:
Sren(φ+) = pI F+

I (φ+)− qI φ
I
+
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Because φI⊥(θ, ϕ) are zero-modes of the renormalized action, they can only
enter via the one-loop determinants and not via the classical action.

We split the one-loop det. into a contribution from the φ+-modes and one
from the φ⊥-modes. The latter still contains a functional integration since
φI⊥(θ, ϕ) are functions on the 2-sphere of the near-horizon geometry.

The reason is of course the gauging, and the resulting twist.

Putting everything together,

Quantum entropy for 1/4-BPS BHs in N = 2 gSUGRA

Ŵ (p, q) =

∫ +∞

−∞

∏
I

dφI+ δ(ξIφ
I
+ − 2π) exp

[
qIφ

I
+ − pIF+

I

]
Z1-loop(φI+)Z⊥(φI⊥)

One-loop determinants currently being investigated.
[Hristov,Lodato,VR - WIP]
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Setting aside the unknown factors, we can analyze the saddle-point.

Define the familiar combinations

Z(φ) = qIφ
I
+ − pIF+

I , L(φ) = ξIφ
I
+

The delta function imposes L = 2π and the saddle-point equations coincide
with the standard attractor equations in gSUGRA,

[Cacciatori,Klemm‘09],[Dall’Agata,Gnecchi‘10],[Hristov,Vandoren‘10]

∂

∂φI+

Z
L

= 0

The value of Z/L at the extremum is the Bekenstein-Hawking entropy.

Strong hint that the product of one-loop and perp. factors does not
contribute at the level of the saddle-point.
Otherwise, would spoil the leading order agreement.

At least for one-loop, reminiscent of the flat BH case where Z1-loop

contributes at order logAH and beyond.
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Another check: M-theory on AdS4 × S7 has dual holographic description as
ABJM theory (with k = 1).

For 3d N = 2 gauge theory on S1 × S2 with a topological twist on S2, the
partition function is given by the topologically twisted index.

This index can be computed using (rigid) localization. [Benini,Zaffaroni‘15]

The degeneracies of supersymmetric ground states as a function of the
charges are obtained after a Fourier transform of the index:

dCFT(p, q) =

∫ 2π

0

d∆a δ(
∑
a

∆a − 2π)Z (p,∆) exp[−qa ∆a]

At large N, the index Z (p,∆) = Tr (−1)F e−βH+∆aJa can be evaluated in a
variety of examples, including ABJM.

Again setting aside the one-loop and perp. factors, integrand of Ŵ matches
the one of dCFT at large N upon identifying φI+ with the chemical potentials
∆a and using the holographic dictionary.
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An observation: we obtained, in gauged SUGRA,

ŴAdS(p, q) ∼
∫ +∞

−∞

∏
I

dφI δ(ξIφ
I − 1) exp

[
qIφ

I − pIFI

]
Z1-loop(φI )Z⊥

Compare with the ungauged SUGRA result [Dabholkar,Gomes,Murthy‘10]

Ŵflat(p, q) ∼
∫ +∞

−∞

∏
I

dφI exp
[
qIφ

I − ImF(φI + ipI )
]
Z1-loop(φI )

with (see talk by I. Jeon) [Murthy,VR‘15],[Gupta,Ito,Jeon‘15],[Jeon,Murthy‘18]

Z1-loop(φI ) = exp
[
−
(

2− nv + 1− nh
12

)
K(φI )

]
For specific models (IIB@T 6), Ŵflat can be computed exactly.
Precise non-perturbative match with exact string theory results.
Beautiful connection to number theory (Rademacher expansion).
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Conclusions and future directions

We presented the first step towards the computation of the quantum entropy
for BPS BHs in gSUGRA with near-horizon AdS2 × S2.

Unsurprisingly, the saddle-point of the quantum entropy reproduces the
(semi-)classical Bekenstein-Hawking entropy via the attractor mechanism.

The answer takes a very similar form to the computation of the topologically
twisted index in the dual field theory. Encouraging...

Main priority: completing the one-loop determinant computation in gSUGRA.
Should lead to a better understanding of the role of the zero-modes φI⊥.
Concrete goal that could teach us about the dual matrix model at finite N.

Thorough investigation of our assumption that W = W̊.

Generalization to AdS2 × Σg geometries and more general gaugings (ξI 6= 0).
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Thank you for your attention
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