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Black hole entropy

Identification of the microstates contributing to the entropy of
black holes is a long standing problem since the work of
Bekenstein and Hawking.

I String theory has had some success at computing the
entropy of supersymmetric black holes [Strominger and
Vafa (1996)].

I For black holes in AdS, the AdS/CFT correspondence
gives, in principle, a way of counting the microstates
using the dual conformal field theory.

I Attempts have been made to do this by counting
operators preserving some fraction of supersymmetry in
N = 4 super-Yang-Mills, but with only partial success
[Kinney, Maldacena, Minwalla, and Raju (2005), Grant,
Grassi, Kim, and Minwalla (2008)].
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Twisted partition functions vs black hole entropy

Benini, Hristov, and Zaffaroni matched the partition function
on twisted S2 × S1 to the entropy of a 4d black hole [Benini,
Hristov, and Zaffaroni (2015)]

I(s, ∆̂) ≡ logZ(s, ∆̂)− i
∑
I

qI∆̂I = SBH(s, q)

I The field theory model is ABJM [Aharony, Bergman,
Jafferis, Maldacena (2008)]: A Lagrangian, maximally
supersymmetric SCFT in 3d.

I The entropy is represented by the finite part of the
partition function, not an anomaly.

I The partition function is computable at large N using an
effective twisted superpotential and its Bethe Ansatz
Equations.

I The comparison is to an AdS4 supersymmetric black hole
[Cacciatori and Klemm (2010)].
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Aspects of the BHZ calculation

Several technical aspects of the BHZ calculation seem crucial
to its success relative to previous endeavors

I The index is topological and all of the states
contributing are regarded as ground states.

I The one loop contributions to the effective action for the
matrix model are simple.

I The flavor symmetries are manifest.
I The complex scalar modulus is integrated over a contour

given by the Jeffrey-Kirwan prescription.
I There are supersymmetric fluxes for dynamical and

background gauge fields.
I There is an equivariant deformation, which represents a

black hole with angular momentum, but it can be turned
off.
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A five dimensional analogue

We are using the same approach in 5d, by considering an
appropriate theory on a manifold of the typeM4 × S1 where
M4 is toric Kähler, which shares many of the features of BHZ

I There is a twisted topological partition function amenable
to localization.

I There are gravity solutions with which to compare.
I The theory lives in an odd dimension and the finite part

of the partition function is expected to be universal.
I There is an equivariant deformation which can be turned

off [Nekrasov (2002)].
I There are fluxes and a contour prescription for the

evaluation of the matrix model [Nekrasov (2006),
Bawani,Bonelli,Ronzani,Tanzini (2014), Bershtein,
Bonelli, Ronzani, Tanzini (2015)].

Many of the necessary calculations have already been done
[citations on this slide + Källén and Zabzine (2012), Jafferis
and Pufu (2012)].
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Toward an entropy formula in five dimensions

There are a number of differences from the three dimensional
case

I We can consider more complicated topologies.
I There is a Lagrangian theory with N = 2 supersymmetry,

but it is not conformal. The strong coupling limit is
believed to represent a 6d (2, 0) SCFT.

I Instanton contributions are present, but presumably go
away at leading order at large N .

There are also some technical challenges
I The integration contour and sum over fluxes is not well

understood.
I The correct analogue of the Bethe Ansatz Equations is

not clear.
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Donaldson - Witten theory

A 4d N = 2 theory can be twisted: coupled to curvature on
M4 using a diagonal combination of the spin group
SU (2)l × SU (2)r and the R-symmetry group SU (2)R
[Witten (1988)]

I A scalar supercharge Q is preserved on an arbitrary
manifold.

I The energy-momentum tensor is Q exact.
For G = SU (2), the theory of Q closed observables is the
cohomological Donaldson-Witten TQFT

I Computes the intersection theory on the moduli space of
G-instantons onM4: Donaldson invariants.

I The Seiberg-Witten solution is an effective computational
tool.

I The low energy effective field theory approach includes a
sum over SW monopoles and an integral over a moduli
space: the u-plane [Moore and Witten (1997)].
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The toric Kähler manifoldM4

~n1, D1

~n2, D2

~n3, D3

~nd, Dd

~m1

~m2σ1σ2

σd

Canonical construction for a metric [Guillemin (1994) and
Abreu (2003)]

ds2 = Gijdx
idxj +

(
G−1

)
ij
dyidyj , i, j ∈ {1, 2}

I xi, yi coordinates on the Delzant polytope and torus.
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Nekrasov’s equivariant extension I

WhenM4 admits a metric with an isometry, there is a
refinement due to Nekrasov, using the Ω-deformation

I Introduce a supercharge which squares to the isometry
with vector v.

I On R4 this is the setting for the Nekrasov partition
function. Recall the relationship to the effective
prepotential [Nekrasov (2002)]

log Zinst (~a, ε1, ε2; q) ≈ 1

ε1ε2
F0 (~a,Λ) ,

q → Λ2h∨(G)−k(R).

On a toric Kahler manifold we use the torus isometry to
localize to the vertices of the polytope. We will have to use
the 5d version of the Nekrasov partition function.
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Nekrasov’s equivariant extension II

The Nekrasov partition function contains much more
information than just the effective prepotential. We can
expand in ε1, ε2

logZinst (~a, ε1, ε2; q) =
1

ε1ε2
F0 +

ε1 + ε2
ε1ε2

H 1
2

+ F1 +
(ε1 + ε2)2

ε1ε2
G1 + . . .

I The extra terms show up in calculations on curved
manifolds.

I The expansion has been worked out for the 5d version of
the Nekrasov partition function [Göttsche, Nakajima,
Yoshioka (2006)].
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Nekrasov’s equivariant extension III

On a compact toric Kähler manifoldM4 [Nekrasov (2006)]

ZM4 =
∑

{~ka∈ZN}


da

∏
i∈vertices

Zinst

(
~a+ εai

~ka ; q
)

−−−−−→
ε1,ε2→0

∑
{~ka∈ZN}


da exp

ˆ
M4

F0

(
~a+

∑
a

~kac1 (La)

)

+c1 (M4)H 1
2

(
~a+

∑
a

~kac1 (La)

)
+χ (M4)F1 (~a) + σ (M4)F1 (~a)

I I have omitted the insertion of observables. The contour
for a and the exact sum are unknown.

I ~ka is an integer flux vector and εi is the action on the
fixed point i.
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Geometry ofMΩ
4 × S1

We let e be a vielbein for the canonical metric onM4,
parameterize the Euclidean time direction as

x5 ∈ [0, 2πβ) ,

and define

ṽ =
√
βεi∂yi ,

x3 ≡ y1, x4 = y2.

We define the metric on X by augmenting eaµ with

e5
µ = ṽµ, e5

5 = 1.

I This metric is the one which implements the 5d Ω
background.

I Preserving supersymmetry requires additional work.
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Rigid supergravity in 5D N = 1

The modern approach is to couple to “rigid” supergravity
[Festuccia and Seiberg (2011)]

I An appropriate choice of supergravity needs to be made.
I An alternative is Superconformal Tensor Calculus which

seems to capture all flavors.
We start with the 5d Weyl multiplet [Fujita and Ohashi
(2001)] {

eµ
a, vab, A

(R)
µ , bµ, D bosons

ψµ, χ fermions

and find a bosonic fixed point of

δψµ = Dµζ +
1

2
vabΓabµζ − Γµη,

δχ = D ζ + ΓµνF (V )µν ζ + vab dependent terms
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Twisted supersymmetry onM4 × S1

Twisted supersymmetry, including the Ω-background, is a
special case

Tµν = bµ = 0.

The variation is simply

δψµ = Dµζ − γµη,

Dµζ ≡ ∂µζ −
1

4
ωµ

abγabζ + ζ
(
A(R)
µ

)T
.

We can now choose

A(R)
µ ∝ ωabµ σab,

and preserve a spinor

ζ =

(
0

iσ2

)
, η = 0.
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Supersymmetry algebra

The supersymmetry algebra is similar to the usual one for the
Ω-background in 4d, and is the same as in the 5d contact case
[Källén and Zabzine (2012)]

δA = Ψ

δΨ = ivF + idAσ

δσ = −iivΨ

δχ = H

δH = LAv χ− i [σ, χ]

Similar expressions exist for the hypermultiplet
I Scalars in the hypermultiplet become spinors after

twisting.
I WhenM4 is not spin, one has to work with sections of a

SpinC bundle.
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The basics of localization

Deformation
I Identify an appropriate conserved fermionic charge: Q.
I Choose V such that {Q,V } is a positive semi-definite

functional (Q should square to 0 on V).
I Deform the action by a total Q variation
S → S + t{Q,V }. The resulting path integral is
independent of t!

I Add some Q closed operators (Wilson loops, defect
operators).

Localization
I Take the limit t→∞.
I The measure exp(−S) is very small for {Q,V } 6= 0.
I The semi-classical approximation becomes exact, but

there may be many saddle points to sum over: the moduli
space.

I Integrate over the moduli space + small fluctuations
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The moduli

Non-trivial saddle points in this setup come only from vector
multipets: fixed points of the equation

δΨ = ivF + idAσ

These come in three classes [Bawani,Bonelli,Ronzani,Tanzini
(2014), Bershtein, Bonelli, Ronzani, Tanzini (2015)]
1. Bulk modulus: basically a flat connection in the original

6d theory - here it is a constant profile for σ and a
(commuting) holonomy around S1 which combine into a
complex modulus a.

2. Instanton contributions: along the circles where the
equivariant action onM4 degenerates.

3. Fluxes: one flux for every equivariant divisor subject to
topological and stability conditions.
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The partition function

The final result for the partition function is a simple lift of
Nekrasov’s calculation and those of Bershtein, Bonelli,
Ronzani, and Tanzini. Denote the 5d Nekrasov partition
function as

ZC2×S1

full (a,∆R; ε1, ε2, β) = ZC2×S1

cl ZC2×S1

1-loop Z
C2×S1

inst

Then

ZM4×S1 =
∑

{k(`)}|semi-stable

˛
JK

da

χ(M4)∏
`=1

ZC2×S1

full (a(`); ε
(`)
1 , ε

(`)
2 , β)

where I shortened

a(`) = ~a+ ε
(`)
1
~k1 + ε

(`)
2
~k2.

We can write the sum down explicitly only is some cases. A
direct large N computation is hard.
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The Nekrasov-Shatashvilli approach

The vacua of a massive 2d gauge theory correspond to
solutions of the equation

exp

(
∂W̃ (a)

∂ai

)
= 1,

where W̃ is the effective twisted superpotential of the theory
and a is the vev of the scalar in the vector multiplet. Nekrasov
and Shatashvili identified this equation with the Bethe Ansatz
Equations arising in integrable systems [Nekrasov and
Shatashvili (2009)], and showed how to produce interesting
systems from higher dimensions.

I Partition functions of the theory on a twisted compact
2-manifold can be calculated by solving the equations.

I The large N limit becomes tractable for specific cases.



Black Hole
Entropy from
5D Twisted

Indices

Itamar Yaakov
University of
Tokyo - Kavli

IPMU

Introduction

Calculation in
the CFT
SWDN theory
on toric Kähler
manifolds
Supergravity
background
Localization
Partition
function and
large N limit

An example

Conclusion

The Nekrasov-Shatashvilli approach

It seems reasonable to think that the effective prepotential
F (a, τ) plays a role analogous to that of W̃ on a compact
twisted four manifold. Indeed [Nekrasov and Shatashvili
(2009)]

I In the Nekrasov-Shatashvili limit on R4 (ε1 → 0, ε2 = ~):

W̃~ (a, τ) =
1

~
F (a, τ) + . . .

leading to an equation for the vacua of the form

exp

(
1

~
∂F (a, τ)

∂a

)
= 1.

I In a twisted compactification of U (N) , N = 2∗

(i ∈ {1 . . . N})

W̃eff (a,m, τ) = 2
∂F (a,m, τ)

∂m
+ mi∂F (a,m, τ)

∂ai
+ nia

i

leading to an equation with a second derivative.
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A black string solution

The gravity dual of the 6d (2, 0) AN theory compactified on
Σg1 × Σg2 × T 2 is known [Benini and Bobev 2013]

I A truncation of SO (5) maximal gauged supergravity in
7d (N = 4)

I Contains two U (1) gauge fields and 2 real scalars.
I The solution interpolates between AdS7 and

AdS3 × Σg1 × Σg2 .
I We identify fluxes for the U (1)2 gauge fields with flavor

fluxes in the SCFT.
There is a compactification yielding an AdS6 black hole
[Hristov (2014)]

I Supersymmetric compactification with momentum.
I Black hole entropy related by the Cardy formula to the

central charge.
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Paritition function for the U (N) N = 2 theory

The perturbative part of the partition function for the 5d
U (N) N = 2 theory in the non-equivariant limit is

Zpert(y, s, t) =
1

N !

∑
{m,n}∈ZN

˛
JK

N∏
i=1

dxi
2πixi

e
8π2β

g2YM
(mi−mj)(ni−nj)

×
N∏
i 6=j

(
1− xi/xj√

xi/xj

)(mi−mj+1)(ni−nj+1)

×
N∏

i,j=1

( √
xiy/xj

1− xiy/xj

)(mi−mj+s−1)(ni−nj+t−1)

I x = exp (iβa) and y = exp (iβ∆). ∆ is the flavor
fugacity.

I m, n and s, t are gauge and flavor fluxes.
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The effective prepotential

Concentrate on the first equation ∂F(a)
∂ai

= 0

F(a,∆) =
2πiβ

g2
YM

N∑
i=1

a2
i +

i

2πβ2

N∑
i 6=j

Li3(eiβ(ai−aj))

− i

2πβ2

N∑
i,j=1

Li3(eiβ(ai−aj+∆)) + polynomial

At strong ’t Hooft coupling eigenvalues are pushed apart
[Minahan, Nedelin, and Zabzine (2013)]

N � 1, λ =
g2
YMN

β
� 1,

ak =
iλ

16π2N
[∆(2π − β∆)(2k −N − 1)]

If we plug this back into the prepotential we recover the S5

free energy!
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Summing up one flux

We sum over one of the fluxes to produce the partition
function in the form where solutions of the BAEs can be
plugged in

ZS2×(S2×S1) =
(−1)rk(G)

|W|
∑
n

∑
a=a(i)

Zfull
∣∣
m=0

(a, n)

(
det
ij

∂2W̃(a, n)

∂ai∂aj

)−1

I There are still an infinite number of solutions! (one for
each flux sector)

I Thankfully, the second equation, resulting from

W̃ ∝ ∂2F ,

yields a constraint on the flux!
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The result

We can now plug both solutions back in to the partition
function and recover

logZpert =
λβ2(N2 − 1)

96π2

[
∆1∆2(t1s2 + t2s1)

+ (∆1s2 + ∆2s1)(∆1t2 + ∆2t1)
]

This matches the trial right moving central charge computed
by Benini and Bobev

logZpert(s, t,∆) =
g2
YM

48β
cr(s, t,∆),

hence the calculation matches the black string. The
relationship to the modular parameter is

τ =
4πiβ

g2
YM

=
β

2πR6
.
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Microstates

To recover the microstate counting of the black hole, we need
to move to the micro-canonical ensemble

dmicro(s, t, n) = const
ˆ

dβ̃d∆Z(s, t,∆) eβ̃n

with β̃ = −2πiτ . Define

ISCFT(β̃,∆) ≡ logZ(s, t,∆) + β̃n,

log dmicro(s, t, n) = I
∣∣
crit(s, t, n)

which should be evaluated using a saddle point approximation

∂I(β̃,∆)

∂∆
= 0 ,

∂I(β̃,∆)

∂β̃
= 0.

then the approximation yields the expected Cardy formula
result for the number of d.o.f.

I
∣∣
crit(s, t, n) = 2π

√
n cCFT (s, t)

6
.
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Summary

To summarize
I 5d twisted indices are a direct analogue of the BHZ

computation.
I We can compute these indices using localization on a

toric Kähler manifold.
I A matching to black hold entropy can be shown in a

simple case.
There remain a few points to sort out before this can be done
on a generalM4

I Stability conditions for the fluxes are known, in principle,
for this class of manifolds [Kool (2009)], but are hard to
decode.

I The identification of the contour of integration for a with
the JK contour needs to be understood in a more
rigorous fashion.

I The appropriate BAEs in terms of the effective
prepotential F are a conjecture at this point.
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Thank you

Thank you!
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