
Hands-On Exercise: Implementing a Basic 

Recommender 
In this Hands-On Exercise, you will build a movie recommendation engine. You will use both the 

Content-based Filtering approach and the Collaborative Filtering approach to build a basic movie 

recommendation engine. 

The Dataset 
The dataset used was from MovieLens, and is publicly available here 

(http://grouplens.org/datasets/movielens/). 

In a bid to keep the recommender simple, we will use the smallest dataset available (ml-latest-small.zip)  

Prerequisites: 

1. Install RStudio 

2. Open RStudio and install the following packages (if you don’t already have them) 

> install.packages(“data.table”) 

> install.packages(“ggplot2”) 

> install.packages(“recommenderlab”) 

 

Exercise #1: 

1. Download, save and extract files 
2. Note the location of where the files are. You will need the path shortly 
3. Examine the files (movies & ratings) in Excel or spreadsheet program to get a sense of the file 

structures 
4. You can delete the timestamp column in the ratings csv file  
5. Open your R console 
6. Explore the structure of the files 

 

> movies = read.csv(“path-to-your-movies.csv file”) //load movies.csv file 

> str(movies)//list the structure of movies 

 

'data.frame':   9125 obs. of  3 variables: 

 $ movieId: int  1 2 3 4 5 6 7 8 9 10 ... 

 $ title  : Factor w/ 9123 levels "'burbs, The (1989)",..: 8301 4319 3421 8648 2762 3592 6860 8253 7673 3288 ... 

 $ genres : Factor w/ 902 levels "(no genres listed)",..: 329 394 687 646 596 242 687 377 2 124 ... 

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/


> head(movies, n=10) //show first 10 rows of movie dataset 

 

> ratings = read.csv(“path-to-your-ratings.csv file”) //load ratings.csv file 

> str(ratings)//list the structure of movies 

'data.frame':   100004 obs. of  4 variables: 

 $ userId   : int  1 1 1 1 1 1 1 1 1 1 ... 

 $ movieId  : int  31 1029 1061 1129 1172 1263 1287 1293 1339 1343 ... 

 $ rating   : num  2.5 3 3 2 4 2 2 2 3.5 2 ... 

 $ timestamp: int  1260759144 1260759179 1260759182 1260759185 1260759205 1260759151 1260759187 1260759148 

1260759125 1260759131 ... 

 

> head(ratings, n=10) //show first 10 rows of ratings dataset 

 

Exercise #2: 

Yesterday, you did visualizations in R using ggplot2. Now is your time to brag about your awesome 
visualization skills. Let us see which group creates some innovative visualizations from the ratings dataset. 

7. Create a basic histogram with count on the y-axis and unique ratings on the x-axis 
8. Now, wow us! – Do your thing, create an amazing visualization  

 

 

 

 

 



 

Content-based Filtering Approach 

Like the name suggests, the Content-based Filtering approach involves analyzing an item a user 

interacted with, and giving recommendations that are similar in content to that item. Content, in this 

case, refers to a set of attributes/features that describes your item. For a movie recommendation 

engine, a content-based approach would be to recommend movies that are of highest similarity based 

on its features, such as genres, actors, directors, year of production, etc. The assumption here is that 

users have preferences for a certain type of product, so we try to recommend a similar product to what 

the user has expressed liking for. Also, the goal here is to provide alternatives or substitutes to the item 

that was viewed. 

We will be building a basic content-based recommender engine based on movie genres only. 

Exercise #3: 

1. Obtain the movie features matrix by using the tstrsplit() function from the data.table 
package to split the pipe-separated genres available in the movies dataset. You may use the 
following steps: 

a. Create a data frame of movies$genres (each genre is separated into columns) called 
“movgen” 

b. Leverage the tstrsplit() function to split pipe-separated genres and create a 
resulting data frame called “movgen2”. tstrsplit() is a convenient wrapper 

function to split a column using strsplit() and assign the transposed result to 

individual columns. 
c. Column names should be labeled, 1 through 7  

2. Your result should look like the table extract below 

 

Before split: (movgen) 

 

After Split: (movgen2) 

 

 



Exercise #4: 

1. Create a matrix with columns representing every unique genre, and indicate whether a genre was 
present or not in each movie. 

2. Use the following 18 unique genres 
movgen_list <- c ("Action", "Adventure", "Animation", 

"Children", "Comedy", "Crime", "Documentary", "Drama", 

"Fantasy", "Film-Noir", "Horror", "Musical", "Mystery", 

"Romance", "Sci-Fi", "Thriller", "War", "Western") 

3. You may use the following steps: 
a. Create an empty matrix “movgen_matrix” with 18 columns and (n+1) rows, where 

n=number of rows in the data set 
b. Set first row to genre list 
c. Set column names to genre list 
d. Iterate through movgen_matrix and populate with value 1, corresponding to 

associated genres in movgen2 
e. Convert to a data frame movgen_matrix2. 
f. Ensure you convert the characters to integers as you will perform some computations in 

the following exercises with the values in the matrix  
4. Your result should look like the table extract below 

 

 

 

We have now obtained the movie genres matrix. Each column represents a unique movie genre, and 

each row is a unique movie. We have 18 unique genres and n unique movies. 

Exercise #5: Create a User Matrix 

1. Convert the ratings dataset into a binary format “binary_ratings” to keep things simple. 
Ratings of 4 and 5 are mapped to 1, representing likes, and ratings of 3 and below are mapped to 
-1, representing dislikes. 

2. Your result should look like the table extract below 

 

 

3. Use the dcast() function in the reshape2 package to transform the data from a long format to a 
wide format.  



4. This also creates many NA values because not every user rated every movie. Substitute the NA 
values with 0. Use the code segment below accordingly 

 

> binary_ratings2 <- dcast(binary_ratings, movieId~userId, value.var = "ratin

g", na.rm=FALSE) 

for (i in 1:ncol(binary_ratings2)){ 

  binary_ratings2[which(is.na(binary_ratings2[,i]) == TRUE),i] <- 0 

} 

binary_ratings2 = binary_ratings2[,-1] #remove movieIds col. Rows are movieId

s, cols are userIds 

 

5. The matrix has 9066 rows, representing the movieIds, and 671 columns, representing the userIds. 
The matrix should look like that below  

 

 

6. You might notice that the movies dataset has 9125 movies, but the ratings dataset only has 9066 
movies. To deal with this, remove the movies that have never been rated from the genres matrix. 
Use the code below: 

 

> #Remove rows that are not rated from movies dataset 

unique_movieIds <- length(unique(movies$movieId)) #9125 

unique_ratings <- length(unique(ratings$movieId)) #9066 

movies2 <- movies[-which((unique_movieIds %in% unique_ratings) == FALSE),] 

rownames(movies2) <- NULL 

#Remove rows that are not rated from movgen_matrix2 

movgen_matrix3 <- movgen_matrix2[-which((unique_movieIds %in% unique_ratings) 

== FALSE),] 

rownames(movgen_matrix3) <- NULL 

 

7. Now we can calculate the dot product of the genre matrix (movgen_matrix3) and the ratings 
matrix (binary_ratings2) and obtain the user profiles. Ensure you convert to binary scale 

8. The resulting User Profile should look like below 
 



 

 

 

This user profiles shows the aggregated inclination of each user towards movie genres. Each column 

represents a unique userId, and positive values shows a preference towards a certain genre. The values 

were again simplified into a binary matrix — positive values were mapped to 1 to represent likes, 

negative values were mapped to 0 to represent dislikes. 

Now that we have the user profiles, we can go 2 ways from here. 

1. Predict if a user likes an item based on the item descriptions (movie genres). This can be done by 

predicting user movie ratings. 

2. Assume that users like similar items, and retrieve movies that are closest in similarity to a user’s 

profile, which represents a user’s preference for an item’s feature. 

 

Exercise #6: Create the Recommendation 

1. Choose the second approach 
2. Use Jaccard Distance to measure the similarity between user profiles, and the movie genre 

matrix. Consider only the ONE user in the dataset. 
HINT: Use the “proxy” package 

3. What are your recommendation? 

 

 

 

 

 

 

 

 

 



User-Based Collaborative Filtering Approach 

The User-Based Collaborative Filtering approach groups users according to prior usage behavior or 

according to their preferences, and then recommends an item that a similar user in the same group 

viewed or liked. To put this in layman terms, if user 1 liked movie A, B and C, and if user 2 liked movie A 

and B, then movie C might make a good recommendation to user 2. The User-Based Collaborative 

Filtering approach mimics how word-of-mouth recommendations work in real life. 

You will use User-Based Collaborative Filtering to generate a top-10 recommendation list for users using 

the recommenderlab package available in R. The recommenderlab package makes it easy to implement 

some of the popular collaborative filtering algorithms. 

 

Exercise #7: Recommendation Models. 

• Display the model applicable to the objects of type realRatingMatrix using 

recommenderRegistry$get_entries: 

> library(recommenderlab) 

> recommender_models <- recommenderRegistry$get_entries(dataType = "realRatin

gMatrix")  

> names(recommender_models) 

[1] "IBCF_realRatingMatrix"        "POPULAR_realRatingMatrix"     "RANDOM_realRatingMatrix"      

"RERECOMMEND_realRatingMatrix" "SVD_realRatingMatrix"         

[6] "SVDF_realRatingMatrix"        "UBCF_realRatingMatrix" 

 

• Describe these models 

> lapply(recommender_models, "[[", "description") 

 

• We plan to use UBCF. Check the parameters of this model. 

> recommender_models$UBCF_realRatingMatrix$parameters 

 

• List the parameters of the model. What do they mean? 

Exercise #8: Create Recommender Model. 



Data Preprocessing 

We need a ratings matrix to build a recommender model with recommenderlab. This can, again, be 

easily done with the dcast() function in the reshape2 package. 

> library(reshape2) 

> #Create ratings matrix. Rows = userId, Columns = movieId 

rating_matrix <- dcast(ratings, userId~movieId, value.var = "rating", na.rm=F

ALSE) 

> rating_matrix <- as.matrix(ratingmat[,-1]) #remove userIds 

 

Creation of the Recommender Model 

The User-based Collaborative Filtering recommender model was created with recommenderlab with the 

below parameters and the ratings matrix: 

• Method: UBCF 

• Similarity Calculation Method: Cosine Similarity 

• Nearest Neighbors: 30 

The predicted item ratings of the user will be derived from the 5 nearest neighbors in its neighborhood. 

When the predicted item ratings are obtained, the top 10 most highly predicted ratings will be returned 

as the recommendations. 

1. Use the dcast() function in the reshape2 package to create ratings matrix 

“ubcf_ratingmatrix” with rows = userId, columns = movieId 
2. Use the parameters listed above for the UBCF recommender 
3. Convert rating matrix (rating_matrix) into a recommenderlab sparse matrix 
4. Normalize the data 
5. Create Recommender Model. "UBCF" stands for User-Based Collaborative Filtering 
6. Obtain recommendations 
7. Your result for the first user should look like this below: 

 

 


