A. Legros ${ }^{1,2}$, S. Benhabib ${ }^{\mathbf{3}}$, W. Tabis ${ }^{\mathbf{3}}$, F. Laliberté ${ }^{\mathbf{1}}$, M. Dion ${ }^{1}$, M. Lizaire ${ }^{\mathbf{1}}$, B. Vignolle ${ }^{3}$, D. Vignolles ${ }^{3}$, H. Raffy ${ }^{4}$, Z. Z. Li ${ }^{4}$, P. Auban-Senzier ${ }^{4}$, N. Doiron-Leyraud ${ }^{1}$, P. Fournier ${ }^{1}$, D. Colson ${ }^{2}$, L. Taillefer ${ }^{1}$, and C. Proust ${ }^{3}$
${ }^{1}$ Institut quantique, Département de physique \& RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada
${ }^{2}$ SPEC, CEA Saclay, Gif-sur-Yvette, France
${ }^{3}$ Laboratoire National des Champs Magnétiques Intenses, Toulouse, France
${ }^{4}$ Laboratoire de Physique des Solides, Orsay, France

Universal T-linear Resistivity and Planckian Limit in Overdoped Cuprates

The perfectly linear temperature dependence of the electrical resistivity observed as $T \rightarrow$ 0 in a variety of metals close to a quantum critical point (QCP) is a major puzzle of condensed matter physics [1-3]. In cuprates, a T-linear resistivity as $T \rightarrow 0$ has been observed in few families once superconductivity is suppressed by a magnetic field. On the electron-doped side, T linear resistivity is seen just above the QCP where AF order ends [4]. On the hole-doped side, however, the doping values where T-linear is observed are very far from the QCP where longrange AF order ends. Instead, these values are close to the critical doping where the pseudogap phase ends [5]. Several questions must be answered. Is T-linear resistivity generic in cuprates? Is there a common mechanism linking cuprates to the other metals where $\rho \sim T$ as $T \rightarrow 0$? We measured the low-temperature resistivity of the bi-layer cuprate $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}+$ ä and found that it exhibits a T-linear dependence with the same slope as in the other hole-doped cuprates. It has been proposed that T-linear resistivity may be associated with the scattering rate $1 / \tau$ reaching the Planckian limit, i.e. $\hbar / \tau=k \mathrm{~B} T[6,7]$. We show that the Planckian limit is obeyed in all cuprates where a pure T-linear resistivity has so far been observed.

References [1] H.v. Löhneysen et al. Rev. Mod. Phys. 79, 1015 (2007). [2] L. Taillefer. Annu. Rev. Condens. Matter Phys. 1, 51 (2010). [3] N. Hussey et al. Rep. Prog. Phys. 81, 052501 (2018) [4] K. Jin et al. Nature 476, 73 (2011). [5] R. A. Cooper. Science 323, 603 (2009). [6] J. Zaanen. Nature 430, 512 (2004). [7] J. A. N. Bruin et al. Science 339, 804 (2013).

