A. Legros^{1,2}, S. Benhabib³, W. Tabis³, F. Laliberté¹, M. Dion¹, M. Lizaire¹, B. Vignolle³, D. Vignolles³, H. Raffy⁴, Z. Z. Li⁴, P. Auban-Senzier⁴, N. Doiron-Leyraud¹, P. Fournier¹, D. Colson², L. Taillefer¹, and C. Proust³

¹ Institut quantique, Département de physique & RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada

² SPEC, CEA Saclay, Gif-sur-Yvette, France
 ³ Laboratoire National des Champs Magnétiques Intenses, Toulouse, France
 ⁴ Laboratoire de Physique des Solides, Orsay, France

Universal *T*-linear Resistivity and Planckian Limit in Overdoped Cuprates

The perfectly linear temperature dependence of the electrical resistivity observed as $T \rightarrow 0$ in a variety of metals close to a quantum critical point (QCP) is a major puzzle of condensed matter physics [1-3]. In cuprates, a *T*-linear resistivity as $T \rightarrow 0$ has been observed in few families once superconductivity is suppressed by a magnetic field. On the electron-doped side, *T*-linear resistivity is seen just above the QCP where AF order ends [4]. On the hole-doped side, however, the doping values where *T*-linear is observed are very far from the QCP where long-range AF order ends. Instead, these values are close to the critical doping where the pseudogap phase ends [5]. Several questions must be answered. Is *T*-linear resistivity generic in cuprates? Is there a common mechanism linking cuprates to the other metals where $\rho \sim T$ as $T \rightarrow 0$? We measured the low-temperature resistivity of the bi-layer cuprate Bi₂Sr₂CaCu₂O₈+ä and found that it exhibits a *T*-linear resistivity may be associated with the scattering rate 1 / τ reaching the Planckian limit, i.e. $\hbar / \tau = k_{\rm B} T$ [6, 7]. We show that the Planckian limit is obeyed in all cuprates where a pure *T*-linear resistivity has so far been observed.

References [1] H.v. Löhneysen et al. Rev. Mod. Phys. **79**, 1015 (2007). [2] L. Taillefer. Annu. Rev. Condens. Matter Phys. **1**, 51 (2010). [3] N. Hussey et al. Rep. Prog. Phys. **81**, 052501 (2018) [4] K. Jin et al. Nature **476**, 73 (2011). [5] R. A. Cooper. Science **323**, 603 (2009). [6] J. Zaanen. Nature **430**, 512 (2004). [7] J. A. N. Bruin et al. Science **339**, 804 (2013).