Majorana fermions and the topological Kondo effect

Benjamin Béri

University of Cambridge

Summer School on Collective Behaviour in Quantum Matter Trieste, September 2018

- Intro to Majorana fermions
 - what are they?
 - how do they emerge?
 - key features & potential uses
 - some of the experimental signatures

• Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

Further reading

Reviews on Majorana fermions:

J. Alicea, Rep. Prog. Phys. **75**, 076501 (2012)
M. Leijnse, K. Flensberg, Semicond. Sci. Technol. **27**, 124003 (2012)
C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. **4**, 113 (2013)
R. M. Lutchyn *et al.* Nat. Rev. Mater. **3**, 52 (2018)

Background on the Kondo effect:

A. C. Hewson, *The Kondo Problem to Heavy Fermions* (CUP 1997)
L. P. Kouwenhoven and L. I. Glazman, Physics World 14, 33 (2001)
M. Pustilnik and L. I. Glazman, J. Phys. Condens. Matter 16, R513 (2004)

Background on field theory/CFT approaches:

I. Affleck, Acta Phys. Polon. B26, 1869 (1995)

I. Affleck et al. Phys. Rev. B 45, 7918 (1992)

M. Oshikawa, C. Chamon, and I. Affleck, J. Stat. Mech. P02008 (2006)

Superconductors & E-H symmetry

E-H symmetry & negative energy "modes"

$$\begin{split} H &= \frac{1}{2} (\mathbf{c}^{\dagger} \ \mathbf{c}) H_{\text{BdG}} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{pmatrix} \\ \mathcal{C}H_{\text{BdG}} \mathcal{C}^{-1} &= -H_{\text{BdG}} \Rightarrow H_{\text{BdG}} \psi = E\psi, \ H_{\text{BdG}} (\mathcal{C}\psi) = -E(\mathcal{C}\psi), \ \mathcal{C} = K\Sigma_1 \\ \\ H_{\text{BdG}} &= U \begin{pmatrix} E_1 & & & \\ & \ddots & \\ & & -E_1 \\ & & \ddots \end{pmatrix} U^{\dagger}, \quad U = \begin{pmatrix} \psi_{E_1} & & & | & & | \\ \psi_{E_1} & & & & | \\ & & & | & & | \\ & & & | & & | \end{pmatrix} \\ \\ H &= \frac{1}{2} (\mathbf{c}^{\dagger} \ \mathbf{c}) U \operatorname{diag}(E_j \dots, -E_j, \dots) U^{\dagger} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{pmatrix} \\ (\boldsymbol{\alpha}_{E>0}^{\dagger} \ \boldsymbol{\alpha}_{E<0}^{\dagger}) = (\mathbf{c}^{\dagger} \ \mathbf{c}) U \end{split}$$

Leads to an apparently unusual form (note the 1/2, negative energies):

$$H = \frac{1}{2} (\boldsymbol{\alpha}_{E>0}^{\dagger} \ \boldsymbol{\alpha}_{E<0}^{\dagger}) \begin{pmatrix} E_1 & & \\ & \ddots & \\ & & -E_1 \\ & & \ddots \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha}_{E>0} \\ \boldsymbol{\alpha}_{E<0} \end{pmatrix} = \frac{1}{2} \sum_j E_j \alpha_j^{\dagger} \alpha_j$$

E-H symmetry & negative energy "modes" $H = \frac{1}{2} (\mathbf{c}^{\dagger} \ \mathbf{c}) H_{BdG} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{pmatrix}$ $CH_{BdG}C^{-1} = -H_{BdG} \Rightarrow H_{BdG}\psi = E\psi, H_{BdG}(C\psi) = -E(C\psi), C = K\Sigma_{1}$ $H_{BdG} = U \begin{pmatrix} E_{1} & & & \\ & \ddots & \\ & & -E_{1} \end{pmatrix} U^{\dagger}, \quad U = \begin{pmatrix} \psi_{E_{1}} & & & |C\psi_{E_{1}}| & & \\ & & & |C\psi_{E_{1}}| & & \\ & & & | \end{pmatrix}$ $(\alpha_{E>0}^{\dagger} \alpha_{E<0}^{\dagger}) = (\mathbf{c}^{\dagger} \ \mathbf{c}) U$ $\Rightarrow \alpha_{E_{1}}^{\dagger} = (\mathbf{c}^{\dagger} \ \mathbf{c}) \cdot \psi_{E_{1}}, \quad \alpha_{-E_{1}}^{\dagger} = (\mathbf{c}^{\dagger} \ \mathbf{c}) \cdot \sum_{C\psi_{E_{1}}} e(\mathbf{c}^{\dagger} \ \mathbf{c}) \cdot \psi_{E_{1}}^{*}$ Redundancy relation: $\frac{\alpha_{-E_{1}}^{\dagger} = \alpha_{E_{1}}}{Hamiltonian diagonalises to the usual form:}$ $H = \frac{1}{2} \sum_{j} E_{j} \alpha_{E_{j}}^{\dagger} \alpha_{E_{j}} = \frac{1}{2} \sum_{E_{i} > 0} E_{j} \left(\alpha_{E_{j}}^{\dagger} \alpha_{E_{j}} - \alpha_{-E_{j}}^{\dagger} \alpha_{-E_{j}} \right)$

 $= \frac{1}{2} \sum_{E_j > 0} E_j \left(\alpha_{E_j}^{\dagger} \alpha_{E_j} - \alpha_{E_j} \alpha_{E_j}^{\dagger} \right) = \sum_{E_j > 0} E_j \alpha_{E_j}^{\dagger} \alpha_{E_j} + \text{const}$

E-H symmetry & zero modes

 $H = \frac{1}{2} (\mathbf{c}^{\dagger} \ \mathbf{c}) H_{BdG} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{pmatrix}$ $CH_{BdG} \mathcal{C}^{-1} = -H_{BdG} \Rightarrow H_{BdG} \psi = E\psi, \ H_{BdG} (\mathcal{C}\psi) = -E(\mathcal{C}\psi), \ \mathcal{C} = K\Sigma_{1}$ (Locally) nondegenerate zero mode: $\mathcal{C}\psi_{0} = e^{i\chi}\psi_{0} \Rightarrow e^{-i\chi/2}\mathcal{C}\psi_{0} = \mathcal{C}e^{i\chi/2}\psi_{0} = e^{i\chi/2}\psi_{0}$ Can choose: $\boxed{\mathcal{C}\psi_{0} = \psi_{0}}$ $\gamma = (\mathbf{c}^{\dagger} \ \mathbf{c}) \cdot \psi_{0} = (\mathbf{c}^{\dagger} \ \mathbf{c}) \cdot \underbrace{\sum_{1}\psi_{0}^{*}}_{\mathcal{C}\psi_{0}} = (\mathbf{c} \ \mathbf{c}^{\dagger}) \cdot \psi_{0}^{*} = \gamma^{\dagger}$ $\boxed{\gamma = \gamma^{\dagger}}$

$$\begin{array}{l} \textbf{E-H symmetry \& zero modes} \\ \mathcal{H} = \frac{1}{2}(\mathbf{c}^{\dagger} \ \mathbf{c})\mathcal{H}_{BdG}\left(\begin{array}{c} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{array}\right) \\ \mathcal{C}\mathcal{H}_{BdG}\mathcal{C}^{-1} = -\mathcal{H}_{BdG} \Rightarrow \mathcal{H}_{BdG}\psi = E\psi, \ \mathcal{H}_{BdG}(\mathcal{C}\psi) = -E(\mathcal{C}\psi), \ \mathcal{C} = K\Sigma_{1} \\ \text{(Locally) nondegenerate zero mode:} \\ \mathcal{C}\psi_{0} = e^{i\chi}\psi_{0} \Rightarrow e^{-i\chi/2}\mathcal{C}\psi_{0} = \mathcal{C}e^{i\chi/2}\psi_{0} = e^{i\chi/2}\psi_{0} \\ \text{Can choose:} \quad \boxed{\mathcal{C}\psi_{0} = \psi_{0}} \\ \gamma = (\mathbf{c}^{\dagger} \ \mathbf{c}) \cdot \psi_{0} = (\mathbf{c}^{\dagger} \ \mathbf{c}) \cdot \sum_{1}\psi_{0}^{*} = (\mathbf{c} \ \mathbf{c}^{\dagger}) \cdot \psi_{0}^{*} = \gamma^{\dagger} \\ \underbrace{\gamma = \gamma^{\dagger}}_{\mathcal{C}\psi_{0}} \\ \text{With more spatially separated zero modes:} \\ \psi_{0}^{(j)} \rightarrow \gamma_{j}, \ \langle \psi_{0}^{(j)}, \psi_{0}^{(k)} \rangle = \delta_{jk} \Rightarrow \underbrace{\{\gamma_{j}, \gamma_{k}\} = 2\delta_{jk}}_{E = 0} \\ \textbf{Locally) nondegenerate zero mode in superconductor:} \\ \textbf{guaranteed to be Majorana mode} \end{array}$$

• Intro to Majorana fermions

- what are they?
- how do they emerge?
- key features & potential uses
- some of the experimental signatures

•Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

• Intro to Majorana fermions

- what are they?
- how do they emerge?

- key features & potential uses

- some of the experimental signatures

• Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

Envisioned applications: some underlying principles

Preliminary considerations:

 \bullet Groundstate degeneracy for N Majoranas:

N Majoranas; 1 fermion per pair \Rightarrow N/2 zero energy fermions

However, overall parity is conserved (in a closed system)

 $\Rightarrow 2^{N/2-1}$ - fold degenerate space to operate on

• Fermion parity in terms of Majoranas: parity of the pair *i*, *j*:

$$c_{ij} = \frac{1}{2}(\gamma_i + i\gamma_j) \Rightarrow \pi_{ij} = 1 - 2c_{ij}^{\dagger}c_{ij} = i\gamma_j\gamma_i$$

• Overall fermion parity:

$$\Pi_{\rm tot} = \pi_{12}\pi_{34}\dots\pi_{N-1,N}$$

NB: even (odd) products of Majoranas preserve (flip) overall parity

Non-Abelian statistics

Exchanging Majorana *i* and *j* implements

 $|GS\rangle \rightarrow \frac{1}{\sqrt{2}}(1\pm \gamma_i\gamma_j)|GS\rangle$

How does his come about and what is non-Abelian about it?

• Exchanging γ_i and γ_j :

$$U_{ij}^{\dagger}\gamma_i U_{ij} = \eta_j \gamma_j, \quad U_{ij}^{\dagger}\gamma_j U_{ij} = \eta_i \gamma_i$$
(1)

Most general unitary involving only γ_i and γ_j :

$$U_{ij} = a + b \gamma_i \gamma_j, \ |a|^2 + |b|^2 = 1, \ a^*b = b^*a$$
 (2)

(1) & (2) $\implies U_{ij}^{\pm} = \frac{e^{i\alpha_{ij}}}{\sqrt{2}} (1 \pm \gamma_i \gamma_j), \qquad \eta_j = -\eta_i = \pm 1$

• Non-Abelian because successive exchanges do not commute:

 $U_{12}^{\pm}U_{23}^{\pm} \neq U_{23}^{\pm}U_{12}^{\pm}$

• Intro to Majorana fermions

- what are they?
- how do they emerge?
- key features & potential uses
- some of the experimental signatures

• Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

Majorana fermions in nanodevices: first signatures: zero energy nature

Majorana fermions in nanodevices: some of the confirmed features

Zero energy nature via $2e^2/h$ conductance peak in hard gap [H. Zhang et al., Nature 2018 (Kouwenhoven group); F. Nichele et al. PRL 2018 (Marcus group)]

Majorana fermions in nanodevices: some of the confirmed features Zero energy nature via $2e^2/h$ conductance peak in hard gap [H. Zhang et al., Nature 2018 (Kouwenhoven group); F. Nichele et al. PRL 2018 (Marcus group)] Localised end-mode nature of state [S. Nadj-Perge et al., Science, 2014] Exponential protection against level splitting [S. M. Albrecht et al. Nature 2016] d E_(B=0 Majoranas? 10 nm ~10<u>0 nm</u> VSD * g (e²/h) 500 nm -550 -575 V_G (mV)

Majorana fermions in nanodevices: some of the confirmed features

Zero energy nature via $2e^2/h$ conductance peak in hard gap [H. Zhang et al., Nature 2018 (Kouwenhoven group); F. Nichele et al. PRL 2018 (Marcus group)]

Localised end-mode nature of state [S. Nadj-Perge *et al.*, Science, 2014]

Exponential protection against level splitting [S. M. Albrecht *et al.* Nature 2016]

... all via various forms of conductance measurements

But yet untested: nonlocal topological qubit

... can one see this via conductance?

- Intro to Majorana fermions
 - what are they?
 - how do they emerge?
 - key features & potential uses
 - some of the experimental signatures

Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

$$\begin{aligned} & \operatorname{Recall:} \operatorname{BdG} \operatorname{vs} \operatorname{electron operators} \\ H &= \frac{1}{2} (\mathbf{c}^{\dagger} \ \mathbf{c}) H_{\mathrm{BdG}} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{pmatrix} \\ & H_{\mathrm{BdG}} &= U \begin{pmatrix} \overset{E_{1}}{\ddots} \\ & \ddots \end{pmatrix} U^{\dagger}, \quad U &= \begin{pmatrix} \psi_{E_{1}} & \cdots & |\mathcal{C}\psi_{E_{1}}| & \cdots \\ & | & | & | \end{pmatrix} \\ & \begin{pmatrix} \alpha_{E\geq0} \\ \alpha_{E<0} \end{pmatrix} = \begin{pmatrix} \alpha_{E>0} \\ \gamma \\ \alpha_{E>0}^{\dagger} \end{pmatrix} = U^{\dagger} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^{\dagger} \end{pmatrix} = U \begin{pmatrix} \alpha_{E>0} \\ \gamma \\ \alpha_{E>0}^{\dagger} \end{pmatrix} \\ & \psi_{E_{l}>0} &= \begin{pmatrix} \mathbf{u}_{E_{l}} \\ \mathbf{v}_{E_{l}} \end{pmatrix} \quad \psi_{E_{l}=0} &= \begin{pmatrix} \boldsymbol{\xi}_{l} \\ \boldsymbol{\xi}_{l}^{*} \end{pmatrix} \\ & c_{j} &= \sum_{l} U_{jl} \begin{pmatrix} \alpha_{E>0} \\ \gamma \\ \alpha_{E>0}^{\dagger} \end{pmatrix}_{l} &= \sum_{E_{l}=0} (\xi_{l})_{j} \gamma_{l} + \sum_{E_{l}>0} \left[(u_{E_{l}})_{j} \alpha_{E_{l}} + (v_{E_{l}}^{*})_{j} \alpha_{E_{l}}^{\dagger} \right] \\ & \rightarrow \sum_{l} \xi_{l}(x_{j}) \gamma_{l} + \sum_{E_{l}>0} \left[u_{E_{l}}(x_{j}) \alpha_{E_{l}} + v_{E_{l}}^{*}(x_{j}) \alpha_{E_{l}}^{\dagger} \right] &\equiv \sum_{l} \xi_{l}(x_{j}) \gamma_{l} + c_{>}(x_{j}) \end{aligned}$$

Topological Kondo effect: lead-island term

simplifies if $E_j - E_m = E_j - E_m$ here: $\sim E_c \gg \sim \delta \varepsilon_{\text{leads}} \sim T, V$

 E_c

- $S = \frac{1}{2}$ impurity coupled to
- $S = \tilde{1}$ conduction electrons.

[Fabrizio&Gogolin PRB 1994, Sengupta&Kim, PRB 1996]

Overscreened Kondo

- "Spin" distributed nonlocally
 ⇒ curious transport features
 (e.g.,G_{ij} ⇔ Kondo anisotropy)
- 3 leads is minimal for Kondo:
- ➡ "smoking gun" for non-locality

- Intro to Majorana fermions
 - what are they?
 - how do they emerge?
 - key features & potential uses
 - some of the experimental signatures

• Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

Majorana-Klein hybridization

- Intro to Majorana fermions
 - what are they?
 - how do they emerge?
 - key features & potential uses
 - some of the experimental signatures

• Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

Majorana Klein & QBM connection

SO(M) Kondo problem ($H_{eff} =: H_{lead} + H'_{eff}$) M Majoranas/leads $H'_{eff} = \sum_{j \neq k} \lambda^+_{ij} \gamma_j \gamma_k \psi^{\dagger}_k \psi_j - \sum_j \lambda^-_{jj} \psi^{\dagger}_j \psi_j$ General features: $\gamma_j \psi_j \sim \gamma_j \Gamma_j e^{i\theta_j(0)}$ $H'_{eff} = -\sum_{j \neq k} \lambda^+_{jk} \frac{e^{i(\theta_j - \theta_k)}}{a} - \sum_j \frac{\lambda^-_{jj}}{2\pi} \partial_x \varphi_j$ Weak coupling RG gives: $\lambda^+(D) \sim \frac{1}{\ln(D/T_K)}$ $\lambda^+_{\alpha}/\lambda^+_{\beta} \rightarrow 1$ M=5 $T \gg T_K$: $G_{kl}(T) \sim \frac{1}{\ln^2(T/T_K)}$ $G_{kl}/G_{mn} \rightarrow 1$

Majorana Klein & QBM connection

SO(M) Kondo problem ($H_{\text{eff}} =: H_{\text{lead}} + H'_{\text{eff}}$) M Majoranas/leads $H'_{\text{eff}} = \sum_{i \neq k} \lambda_{ij}^+ \gamma_j \gamma_k \psi_k^\dagger \psi_j - \sum_i \lambda_{jj}^- \psi_j^\dagger \psi_j$ General features M=5 $\gamma_j \psi_j \sim \gamma_j \Gamma_j e^{i\theta_j(0)}$ $T \gg T_{\rm K}$: $H'_{\text{eff}} = -\sum_{i} \lambda_{jk}^{+} \frac{e^{i(\theta_{j} - \theta_{k})}}{a} - \sum_{i} \frac{\lambda_{jj}^{-}}{2\pi} \partial_{x} \varphi_{j}$ $G_{kl}(T) \sim \frac{1}{\ln^2(T/T_{\rm K})}$ $\begin{aligned} \theta_j &= \mathbf{w}_j \cdot \mathbf{r} + \frac{R_0}{\sqrt{M}} \\ \varphi_j &= \mathbf{w}_j \cdot \mathbf{k} + \frac{K_0}{\sqrt{M}} \end{aligned} \qquad \mathbf{w}_j \cdot \mathbf{w}_l = \delta_{jl} - \frac{1}{M} \end{aligned}$ $G_{kl}/G_{mn} \to 1$ $T \ll T_{\rm K}$: $H'_{\text{eff}} = -\sum_{i, \neq k} \lambda_{jk}^{+} \frac{e^{i(\mathbf{w}_{j} - \mathbf{w}_{k}) \cdot \mathbf{r}}}{a} - \sum_{i} \frac{\lambda_{jj}^{-}}{2\pi} \mathbf{w}_{j} \cdot \partial_{x} \mathbf{k}$ $G_{kl}(T) = \frac{2e^2}{Mh} + c_{kl}T^{2\Delta - 2}$ Tunneling between minima; dimension: $G_{ll}(T) = \Delta \frac{e^2}{h} + c_{ll} T^{2\Delta - 2}$ $\Delta = \frac{2(M-1)}{M}$ \implies robust NFL

- Intro to Majorana fermions
 - what are they?
 - how do they emerge?
 - key features & potential uses
 - some of the experimental signatures

Topological Kondo effect

- from Majoranas to Kondo the topological Kondo idea
- transport signatures, incl. NFL features
- topological Kondo beyond the minimal setup
- (exact) scaling functions for nonequilibrium transport

Conduction electrons + Majoranas 📫 "topological Kondo"

• Demonstrates q-dynamics of top. qubits

➡ Probes of the Majoranas' quantum computing potential

- Robust realisation of NFL Kondo physics
- "Smoking gun" signature

