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(or)



Phases of Matter in Equilibrium

Crystalline Solids



Equilibrium statistical mechanics

System

Bath

System exchanges energy/
particles with the bath and 
reaches thermal equilibrium 

at late times

⇢eq(T, µ, ..)

hOi = Tr [⇢eqO]

Two pillars of statistical mechanics: (i) Thermalization and 
(ii) Phase Structure



What can we we say about isolated 
many-body quantum systems? 

Dynamics of 

• Isolated

• Strongly interacting

• Many-body systems (spins, atoms, qubits..)

⇢(t+ �t) =

U⇢(t)U†

Topic at the junction of:

- Fundamentals of quantum statistical mechanics

- Condensed Matter

- Quantum Information/Quantum Gravity

- AMO



Well-isolated building blocks

Trapped Ions

Ultracold atoms NV Centers

Rydberg atoms



Dynamics of 

• Isolated

• Strongly interacting

• Highly excited

• Many-body systems (spins, atoms, qubits..)

⇢(t+ �t) =

U⇢(t)U†

Standard assumption of statistical mechanics is that this 
system goes to thermal equilibrium at late times.

Must this always be true? 

What does “thermal equilibrium” 
even mean in this context?

How is thermal equilibrium reached?



Anderson 1958: First example of a system which could be 
many-body “localized” and fail to go to thermal equilibrium



Thermalization vs. Localization

Yes:     Thermalizing

No:     Many-Body Localized 

New kind of quantum 
phase transition 

Two “generic” possibilities with a sharp dynamical 
distinction at late times and for large sizes

Question (Anderson 1958) : Can an isolated, strongly 
interacting MB system act as it’s own “bath” and bring 

its subsystems to thermal equilibrium?  



Thermalization vs. Localization
Question (Anderson 1958) : Can an isolated, strongly 
interacting MB system act as it’s own “bath” and bring 

its subsystems to thermal equilibrium?  

Yes:     Thermalizing

No:     Many-Body Localized 

New kind of quantum 
phase transition 

Two “generic” possibilities with a sharp dynamical 
distinction at late times and for large sizes

Opens up brand new 
possibilities for what’s “allowed”

Full range of dynamical 
“universality classes”?



Thermalization in Isolation

Full system remembers all details 

| (t)i = U(t)| 0i

⇢(t) = U †(t)⇢(0)U(t)
System

 Q:  Can unitary time evolution bring a system to thermal 
equilibrium at late times? 



Thermalization in Isolation

A B

Full system remembers all details 

lim
t!1

⇢A(t) = TrB⇢eq(T, µ, · · · )

 Q:  Can unitary time evolution bring a system to thermal 
equilibrium at late times? 

| (t)i = U(t)| 0i

System can act as its “own bath” and bring 
subsystems to thermal equilibrium

B ! 1

A is “observable”

= TrB

✓
e��(H�µN�··· )

Z

◆

Maximum entropy ensemble



lim
t!1

⇢A(t) = TrB⇢eq(T, µ, · · · )
B ! 1

= TrB

✓
e��(H�µN�··· )

Z

◆

Strong form holds for:

- All local subsystems A
- All “reasonable” initial states 

Need states with sub-extensive uncertainty in all 
conserved quantities like energy, number so T, μ can be 

defined for the state



Eigenstate Thermalization Hypothesis

If all “reasonable” initial states reach thermal equilibrium,  
then eigenstates of H must be thermal:

TrB |nihn| = TrB
e��nH

Z

H|ni = En|ni

Single-eigenstate microcanonical ensemble. 
Each eigenstate is thermal!

Local properties of eigenstates vary smoothly with 
energy density

Berry 1987, Jensen Shankar 1985,  Deutsch 1991,  Srednicki 1994

Precursors form “quantum chaos” literature



Eigenstate Thermalization Hypothesis
Berry 1987, Jensen Shankar 1985,  Deutsch 1991,  Srednicki 1994

Numerically verified for many MB quantum systems

Figure from Buegeling, Moessner, Haque

L=11 L=15 L=19

Fluctuations narrow as 1/D ~ exp(-sL)



Volume law entanglement for thermal eigenstates

von-Neumann entropy of 
subsystems agrees with 
thermodynamic entropy

Scales extensively with 
volume of A for finite T - 

“volume law”

B acts as a reservoir — i.e. 
something to get entangled 
with. Conserved quantities 

not essential!

SA = �Tr [⇢A log ⇢A]

Figure from A. Chandran



Localization

Only “generic” exception to thermalization (that we’re 
aware of)

Occurs in systems that are not translationally invariant 

Systems retain local memory of initial conditions to 
infinitely late times! Act as “quantum memories”.

New kind of phase transition between MBL to 
thermalizing phases

MBL can stabilize new kinds of order disallowed in 
equilibrium. Example: time crystals!



Local memory persists!

Figure from: 
Choi et. al. Science (2016)

Screiber et. al. (2015), 
Bordia et. al. (2015), 
Smith et. al. (2015), 
Kondov et. al. (2015)



Localization
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X
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“Detuned” onsite fields
Can be random/quasiperiodic/…

interactionshopping

⇠ W

Basko Aleiner Altshuler (2006)
Gyorni Mirlin Polyakov (2006)

Znidaric Prelovsek Prosen (2007)
Oganesyan Huse (2007)

Pal Huse (2010)

mapping to spinless fermions:
up = occupied
down = empty



Single-Particle Anderson Localization 

Site

P. W. Anderson, Phys. Rev. (1958)

Off-resonant hopping fails to hybridize sites at long-distances

|�(r)|2 � e�r/�Localized

P
ot
en
tia
l Locator expansion

H =
X

i

hic
†
i ci + J(c†i ci+1 + h.c.) hi 2 [�W,W ]

J ⌧ W



Many-body localization (MBL)

H =
X

↵

e↵a
†
↵a↵ +

X
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†
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†
�a�a�

Weak interactions fail to hybridize localized many-particle states

Basko,  Aleiner,  Altshuler (2006)



MBL: Simplest example

H =
X
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J = 0 :

|ni = | "#"" · · · #i

Not thermal - violates ETH

Extensively many constants of motion, {�z
i }

[H,�z
i ] = 0, [�z

i ,�
z
j ] = 0



Emergent Integrability
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Finite depth 
local unitary

Extensively many local integrals of motion “l-bits”

Oganesyan, Huse, Nandkishore (2014); Serbyn, Papic, Abanin (2013); Imbrie (2014)

J ⌧ W

Exponentially decaying



Emergent Integrability

H =
X

i
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k + ...

Extensively many local integrals of motion “l-bits”

⌧zi = U†�z
i U

[H, ⌧zi ] = 0

[⌧zi , ⌧
z
j ] = 0

“Dressed operators”

Oganesyan, Huse, Nandkishore (2014); Serbyn, Papic, Abanin (2013); Imbrie (2014)



What do we know about the MBL phase transition?

• Existence of the MBL phase (l-bits):

• All orders in perturbation theory including higher dimensions 
(Basko, Aleiner, Altshuler)

• Almost proof including non-perturbative effects in one 
dimensional lattice models with exponentially decaying 
interactions (Imbrie) 

• Lots of open questions (possible non-perturbative instabilities in 
higher dimensions, with longer ranged interactions…) (de Roeck, 
Huveneers). Intermediate phases between MBL and Thermal?

• Lots of numerical evidence for existence of the thermal phase (but 
no proof!) — Dynamical phase transition to a thermalizing phase as 
function of disorder strength/ interaction strength…



Properties: Local Memory
• Generic local operator have finite overlap with l-

bits. This part doesn’t decay

• Approach to equilibrium is a slow power law 
because of slow “dephasing” dynamics. Serbyn, Papic, Abanin (2014);

Luitz Laflorencie Alet (2017);



Properties: Log growth of entanglement

• No transport, but slow logarithmic growth due to 
dephasing dynamics

Bardarson Pollmann Moore (2012)
Znidaric Prelovsek Prosen 2007

Serbian Panic Abanin (2013)
Oganesyan Huse Nandkishore (2013)



Area law entanglement for MBL eigenstates

Product states have zero 
entanglement 

“dressed” l-bits only have 
local correlations

SA = �Tr [⇢A log ⇢A]

Figure from A. Chandran



Low entanglement = efficient representations

(1) DMRG-X: Obtains MPS 
representations of individual 

highly excited MBL eigenstates

(2) VUMPO: Obtains MPO 
representation of finite-depth 

diagonalizing unitary

VK, Pollmann, Sondhi 

Pollmann, VK, Cirac, Sondhi

See also: Pekker Clark; Yu, Pekker Clark



Entanglement Entropy as an order parameter

Pal, Huse (2010); Bauer, Nayak (2013)Slide from A. Chandran



The Efficient-Inefficient Transition

energy
MBLThermal

• Quantum statistical 
mechanics (ETH) holds

• Highly excited 
eigenstates have “volume 

law” entanglement.

• Ground states have 
area law (gapped) or 
logarithmic (gapless) 

entanglement

• Lies outside the 
framework of quantum 
statistical mechanics and 
the ETH breaks down

• Highly excited 
eigenstates have “area 

law” entanglement even 
at infinite “temperature”. 

MPS techniques.

• Ground states have 
area law entanglement

Dynamical phase transition involving a singular 
rearrangement in the entanglement structure of individual 

highly excited MB eigenstates 

TrB | ih | = TrB
e�H/T

Z



Localization Protected Quantum Order

• Highly excited MBL eigenstates only have 
area law entanglement

• Individual highly excited eigenstates can 
display “frozen” orders that may be 
forbidden in equilibrium 

• Experimentally measurably dynamical 
signatures

Huse et. al. (2013);  Bauer Nayak (2013); Chandran, VK, Laumann, Sondhi (2014);  Bahri, Altman, Vishwanath (2014)

�

Energy

How do we think of phase structure out-of-equilibrium?

Equilibrium Phases ➔ Eigenstate Phases



Eigenstate Order: Ising example
1D transverse field Ising model
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Eigenstate Order: Ising example

| i✏ = | !! !i
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Paramagnet Spin Glass
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1D transverse field Ising model
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D. Fisher(1995); Huse et. al. (2013); Pekker et. al. (2013)

Energy
Density

J � h



Periodically Driven + MBL

hT2

JT1

Floquet SPT

Time crystal

VK Lazarides Moessner Sondhi 2015



The MBL Phase Transition

WWc

Thermalizing MBL

Transport and entanglement 
dynamics governed by rare 

“Griffiths” effects. 
Entanglement and 

relaxation dynamics power  
laws in time

DC conductivity could be 
zero

Entanglement 
dynamics logarithmic

DC transport zero

Dynamical phase 
transition. 

Visible to single 
eigenstate 
ensemble.

Lots of 
uncertainty about 

properties. Agarwal, Gopalakrishnan, Knap, 
Mueller, Demler; Bar Lev, Cohen, 
Reichman; Vosk Huse Altman; 
Potter, Vasseur, Parameswaran…



Finite-Size Critical Scaling

⇠ ⇠ (W �Wc)
�⌫



Critical Entanglement

• Grover (2014) showed that if the entanglement entropy of small 
subsystems varies continuously at a direct MBL-Thermal transition, 
then from the strong sub-additivity of entanglement, the 
entanglement entropy of these subsystems looks thermal in the 
quantum critical regime. 

• Very natural picture where one imagines there exists a diverging 
length scale ξ such that: 

• Properties probed on length scales < ξ look critical. 

• Look thermal/MBL on longer length scales. 

⇠



Discontinuity in entanglement entropy 

• Careful numerical analysis finds the critical regime actually looks 
localized. Thus, either no direct transition, or entanglement is 
discontinuous at the transition.

• Transition driven by the proliferation of a sparse resonant 
backbone of entanglement. Just gains enough strength to 
thermalize the system on the thermal side of the crossover in the 
infinite size limit. 

• Global discontinuity in presence of fully functional bath implies local 
discontinuity. 

• Discontinuity subsequently verified by phenomenological strong 
disorder RG-like treatments (Dumitrescu, Vasseur Potter; Thierry, Huveneers, 
Mueller, De Roeck)

(VK, Lim, Sheng, Huse, PRX 2017)



Discontinuity in entanglement entropy 

• Careful numerical analysis finds the critical regime actually looks 
localized. Thus, either no direct transition, or entanglement is 
discontinuous at the transition.

• Transition driven by the proliferation of a sparse resonant 
backbone of entanglement. Just gains enough strength to thermalize 
the system on the thermal side of the crossover in the infinite size 
limit. 

• Global discontinuity in presence of fully functional bath implies local 
discontinuity. 

• Discontinuity subsequently verified by phenomenological strong 
disorder RG-like treatments (Dumitrescu, Vasseur Potter; Thierry, Huveneers, 
Mueller, De Roeck)
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Discontinuity in entanglement entropy 
Entanglement at the transition can show a non-local dependence on 
the system size since an infinite thermal system can act as a bath for 
any finite subsystem. 

SA = LAf(L
1/⌫(W �Wc), L

1/⌫
A (W �Wc))

(VK, Lim, Sheng, Huse, 
PRX 2017)

1

L1/⌫

WWc

Volume Law

Thermal
Area Law

MBL

Quantum Critical

Sparse backbone
of entanglement

Does not become
a fully functional bath as 

L increases

Becomes
a fully functional bath 

as L increases



Finite-size Scaling

For systems with quenched 
randomness, asymptotically at 
large L,                                                 
(Harris 1974; Chayes, Chayes, Fisher, 
Spencer 1986; Chandran, Laumann, 
Oganesyan 2015)

⌫ � 2/d

• RG treatments find            (Vosk Huse Altman; Potter Vasseur Parameswaran 2014)     

• Long standing mystery: all exact diagonalization numerics show scaling 
collapse, but with exponent                  in violation of Harris

• However, numerics show similar scaling for both random and 
quasiperiodic models at small sizes. But random models are beginning 
to show a crossover into the quenched-randomness-dominated 
universality class.

VK, Sheng, Huse, PRL (2017)

⌫ ' 3

⌫ ' 1



Two Universality Classes for the MBL Transition

VK, Sheng, Huse, PRL (2017)

Infinite Randomness

Fixed Point (⌫ � 2/d)

Thermal

Detuning
Non-Random

Fixed Point

1

MBL

External

Randomness

0

d = 1

Disorder is a “Harris 
relevant” 

perturbation



Open questions

• Nature of the phase transition

• New types of out-of-equilibrium phases in the MBL setting

• Possible non-perturbative instabilities of the MBL phase in 
higher dimensions, with longer ranged interactions, in 
translationally invariant systems… Role of disorder (random 
vs. quasiperiodic). 

Yes:     Thermal Phase (thermalizes on accessible time scales) 

No:   MBL Phase (localized even at infinite time) 

Yes*:   Thermal* (extremely long time scales for thermalization) 

Question: Can an isolated MB system act as it’s own “bath” and 
bring its subsystems to thermal equilibrium?  



Some  reviews

• Nandkishore Huse 2014 

• Abanin, Altman, Bloch, Serbyn 2018 

• Parameswaran Vasseur 2018 

• … Rapidly evolving field!!


