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Phases of Matter in Equilibrium
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Equilibrium statistical mechanics

Two pillars of statistical mechanics: (i) Thermalization and
(i) Phase Structure

Lt N System exchanges energy/
N particles with the bath and
i System < e

. reaches thermal equilibrium

i N .

Bath at late times
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What can we we say about isolated
many-body quantum systems?

DIV Dynamics of
p(t + dt) =

Up(t)UT
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* Strongly interacting
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* Many-body systems (spins, atoms, qubits..)

Topic at the junction of:

- Fundamentals of quantum statistical mechanics
- Condensed Matter

- Quantum Information/Quantum Gravity
- AMO



Well-isolated building blocks

Ultracold atoms NV Centers
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Cold atomic gas
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p(t 4 ot) =
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* Strongly interacting

* Highly excited
* Many-body systems (spins, atoms, qubits..)

Standard assumption of statistical mechanics is that this
system goes to thermal equilibrium at late times.

Must this always be true!

What does “thermal equilibrium”
even mean in this context!?

How is thermal equilibrium reached!?



Anderson |958: First example of a system which could be
many-body “localized” and fail to go to thermal equilibrium

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the ‘“‘impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

I. INTRODUCTION

NUMBER of physical phenomena seem to involve

quantum-mechanical motion, without any par-
ticular thermal activation, among sites at which the
mobile entities (spins or electrons, for example) may be
localized. The clearest case is that of spin diffusion!-?;
another might be the so-called impurity band conduc-
tion at low concentrations of impurities. In such
situations we suspect that transport occurs not by
motion of free carriers (or spin waves), scattered as
they move through a medium, but in some sense by
quantum-mechanical jumps of the mobile entities from
site to site. A second common feature of these phe-
nomena is randomness: random spacings of impurities,
random interactions with the ‘“‘atmosphere’ of other
impurities, random arrangements of electronic or
nuclear spins, etc.

Our eventual purpose in this work will be to lay the
foundation for a quantum-mechanical theory of trans-
port problems of this type. Therefore, we must start
with simple theoretical models rather than with the
complicated experimental situations on spin diffusion
or impurity conduction. In this paper, in fact, we
attempt only to construct, for such a system, the
simplest model we can think of which still has some
expectation of representing a real physical situation

reasonably well, and to prove a theorem about the
model. The theorem is that at sufficiently low densities,
transport does not take place; the exact wave functions
are localized in a small region of space. We also obtain
a fairly good estimate of the critical density at which the
theorem fails. An additional criterion is that the forces
be of sufficiently short range—actually, falling off as
7 — oo faster than 1/»*—and we derive a rough estimate
of the rate of transport in the V « 1/#® case.

Such a theorem is of interest for a number of reasons:
first, because it may apply directly to spin diffusion
among donor electrons in Si, a situation in which Feher?
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ligible; second, and probably more important, as an
example of a real physical system with an infinite
number of degrees of freedom, having no obvious
oversimplification, in which the approach to equilibrium
is simply impossible; and third, as the irreducible
minimum from which a theory of this kind of transport,
if it exists, must start. In particular, it re-emphasizes
the caution with which we must treat ideas such as
“the thermodynamic system of spin interactions’ when
there is no obvious contact with a real external heat
bath.

I'he simplified theoretical model we use 1s meant to
represent reasonably well one kind of experimental
situation: namely, spin diffusion under conditions of




Thermalization vs. Localization

Question (Anderson 1958) : Can an isolated, strongly
interacting MB system act as it's own “bath” and bring
its subsystems to thermal equilibrium?

Two “generic”’ possibilities with a sharp dynamical
distinction at late times and for large sizes

Yes: Thermalizing

A

New kind of quantum
phase transition

\4

No: Many-Body Localized



Thermalization vs. Localization

Question (Anderson 1958) : Can an isolated, strongly
interacting MB system act as it's own “bath” and bring
its subsystems to thermal equilibrium?

Two “generic”’ possibilities with a sharp dynamical
distinction at late times and for large sizes

Yes: Thermalizing

4 . Full range of dynamical
New kind of quantum “universality classes”?

phase transition

\4

NO: Man)’-BOd)’ LOC&“ZGC' Opens up brand new
possibilities for what’s “allowed”



Thermalization In Isolation

Q: Can unitary time evolution bring a system to thermal
equilibrium at late times!?

Full system remembers all details

¥(t)) = U(t)[ho)

p(t) = UT(t)p(0)U(t)




Thermalization In Isolation

Q: Can unitary time evolution bring a system to thermal
equilibrium at late times!?

Full system remembers all details

¥(t)) = U(t)[ho)

System can act as its “own bath” and bring
subsystems to thermal equilibrium

A is “observable”

Maximum entropy ensemble
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lim pa(t) = Trp peg(T e P
lm pa(t) = Trppeq(Top, ) =TrB( Z )
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Strong form holds for:

- All local subsystems A
= All “reasonable” initial states

Need states with sub-extensive uncertainty in all

conserved quantities like energy, number so T, J can be
defined for the state



Eigenstate Thermalization Hypothesis
Berry 1987, Jensen Shankar 1985, Deutsch 1991, Srednicki 1994

Precursors form “quantum chaos” literature

If all “reasonable” initial states reach thermal equilibrium,
then eigenstates of H must be thermal:

Hin) = En|n)

Trg|n)(n| = Trp 7

Single-eigenstate microcanonical ensemble.
Each eigenstate is thermal!

Local properties of eigenstates vary smoothly with
energy density



Eigenstate Thermalization Hypothesis

Berry 1987, Jensen Shankar 1985, Deutsch 1991, Srednicki 1994

Numerically verified for many MB quantum systems
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Volume law entanglement for thermal eigenstates

von-Neumann entropy of
subsystems agrees with
thermodynamic entropy

Sa=—Tr|palogpa]

Scales extensively with

B volume of A for finite T -
“volume law”
B 1s bath for all spins in A B acts as a reservoir — i.e
Sa=snVa+... something to get entangled
Thermal entropy with. Conserved quantities
Scales as volume of A not essentlal!

Figure from A. Chandran



ocalization

Only “generic” exception to thermalization (that we're
aware of)

Occurs in systems that are not translationally invariant

Systems retain local memory of initial conditions to
infinitely late times! Act as “‘quantum memories’.

New kind of phase transition between MBL to
thermalizing phases

MBL can stabilize new kinds of order disallowed in
equilibrium. Example: time crystals!



Local memory persists!

Figure from:
Choi et. al. Science (2016)

Screiber et.al. (2015)
Bordia et. al. (2015),

Smith et.al. (2015),
Single image  Averaged image Single image  Averaged image Kondov et. al. (2() | 5)
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Can be random/quasiperiodic/...
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ocalization

“Detuned’ onsite fields
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hopping interactions

mapping to spinless fermions:
up = occupied

down = empty
Vew

Basko Aleiner Altshuler (2006)
Gyorni Mirlin Polyakov (2006)
Znidaric Prelovsek Prosen (2007)
Oganesyan Huse (2007)

Pal Huse (2010)




Single-Particle Anderson Localization

H = Z hiCzCi -+ J(CI@;H -+ hC) hi € [_W7 W]

/\ o Locator expansion
f_ — /\ J<W
- p!

Potential

>
Site

Off-resonant hopping fails to hybridize sites at long-distances

Localized |¢(r)|2 ~ e /€

P.W.Anderson, Phys. Rev. (1958)



Many-body localization (MBL)

H = Zea Lo Z Vam(ga a7a5
afBvyo

Weak interactions fail to hybridize localized many-particle states
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Basko, Aleiner, Altshuler (2006)



MBL: Simplest example

HZhiaf+JW1)

J=0:
n) = |t )
Not thermal - violates ETH

Extensively many constants of motion, {07} }
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Emergent Integrability

) )

J< W Finite depth

local unitary

Exponentially decaying

\

E :~ z E :~ z _z E : - z_zZ =z
H = hiTz’ —+ JijT@‘ Tj -+ KijkTi Tj T —+ ...

ijk
Extensively many local integrals of motion “I-bits”

Oganesyan, Huse, Nandkishore (2014); Serbyn, Papic, Abanin (2013); Imbrie (2014)



Emergent Integrability

1z T __z_=z - Z_zZ_Zz
H = E hiT, + E Jig T TS + E Kk, ;T + ...

ijk
Extensively many local integrals of motion “I-bits” [H,7;] =0

[TZTZ, TJZ] p— O

TZ = UTJ,L-ZU

(/
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“Dressed operators”
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Oganesyan, Huse, Nandkishore (2014); Serbyn, Papic, Abanin (2013); Imbrie (2014)



What do we know about the MBL phase transition?

Existence of the MBL phase (I-bits):

All orders in perturbation theory including higher dimensions
(Basko, Aleiner, Altshuler)

Almost proof including non-perturbative effects in one
dimensional lattice models with exponentially decaying
interactions (Imbrie)

_ots of open questions (possible non-perturbative instabilities in
higher dimensions, with longer ranged interactions...) (de Roeck,
-uveneers). Intermediate phases between MBL and Thermal?

Lots of numerical evidence for existence of the thermal phase (but
no proof!) — Dynamical phase transition to a thermalizing phase as
function of disorder strength/ interaction strength...



Properties: Local Memory

» Generic local operator have finite overlap with I-
bits. This part doesn’t decay

 Approach to equilibrium is a slow power law
because of slow “dephasing” dynamics. serbyn, Papic, Abanin (2014);

— 1.0 __10 ‘
\d)Lzzo =
B )
\b/ \
': - Oog G gi - .‘"'\\__ ~
N Py §'\\ vvvvvvvv
v e S S L=10 R
I e (T , — \\‘:."\f ~~~~~~~~~ T
’! ge — 08 —~ ———O'Z,L:12 \.\'\.
§! . N T~
3 S s |zHi
s = ---0% L =12 |
¥ ¥ '—'—ﬁt 1/t0'2
=3 -5
Lo o] v vwd 3 vvd 3 0.7 10 0 '5 110
10-110° 10 10% 10® 10% 10 0 N
t
t

Luitz Laflorencie Alet (2017);



Properties: Log growth of entanglement

* No transport, but slow logarithmic growth due to
dephasing dynamics

0.4 "'I Ll Ll Ll 'i"'l Ll L B B l"i'l Ll L] LI} 'U'Il Ll Ll LA ll'il’

03k == 001 = 0.1,L =20 . "
— 0.1 |

0.2 I
p ' ” 0.14
0.1k .07 _
0 \
0 0.1 1 10 100 -

Jt

FRET M AL LAl e aaaaaal daaaaaal daaaasal "
Bardarson Pollmann Moore (2012)
0.1 . 11](_)Lt 100 1000 Znidaric Prelovsek Prosen 2007

Serbian Panic Abanin (201 3)
Oganesyan Huse Nandkishore (201 3)




Area law entanglement for MBL eigenstates

Sa = —Tr[palog pa]

[Localized

Product states have zero
entanglement

B
“dressed” |-bits only have

local correlations
Only boundary spins correlated

Sa=c0A+...

Scales as perimeter of A
Figure from A. Chandran



Low entanglement = efficient representations

<. L=14 FF w=5
B L=18 & & w=s
b N\ UL e e
(1) DMRG-X: Obtains MPS R
representations of individual v | YR
highly excited MBL eigenstates " ol ,.
VK, Pollmann, Sondhi L .
0 10 20 X 30 40
= E= =]
e = = =
. EEsEeEEss = — —
(2) VUMPO: Obtains MPO == =
) [ 3 —— —= — — —1
representation of finite-depth 4 °%jj-* .
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diagonalizing unitary N | F i
, , e N Y
Pollmann,VK, Cirac, Sondhi o r o

See also: Pekker Clark;Yu, Pekker Clark



Entanglement Entropy as an order parameter

Thermal

B 1s bath for all spins in A

SA ISthVA-|—...
Thermal entropy

Scales as volume of A

Slide from A. Chandran

Localized

£3

B
Only boundary spins correlated

SA=cO0A+...

Scales as perimeter of A

Pal, Huse (2010); Bauer, Nayak (201 3)



energy

A

The Efficient-Inefficient Transition

AN

rearrangement in the entanglement structure of individual

Thermal

MBL

® (Quantum statistical
mechanics (ETH) holds

—H/T

A

Trp i) (] = Trp -

° Highly excited
eigenstates have “volume
law”” entanglement.

® Ground states have

area law (gapped) or

logarithmic (gapless)
entanglement

® Lies outside the
framework of quantum
statistical mechanics and

the ETH breaks down

° Highly excited
eigenstates have “area
law”” entanglement even
at infinite “temperature”|

MPS techniques.

® Ground states have
area law entanglement

Dynamical phase transition involving a singular

highly excited MB eigenstates




Localization Protected Quantum Order

How do we think of phase structure out-of-equilibrium!?

Eneray - Highly excited MBL eigenstates only have

! area law entanglement

» Individual highly excited eigenstates can
display “frozen” orders that may be
forbidden in equilibrium

- Experimentally measurably dynamical
sighatures

AEAA

2V

Equilibrium Phases => Eigenstate Phases

Huse et. al. (2013); Bauer Nayak (2013); Chandran,VK, Laumann, Sondhi (2014); Bahri, Altman,Vishwanath (2014)



Eigenstate Order: Ising example

1D transverse field Ising model T_ JZ oioi, + hz o
P = Haf i i
A
lim (070%), =0 lim (070%). £ 0
12— j|— 00 |2—j|—00

Po) = | =————) Po) = | M) £ | L)

Paramagnet ® Ferromagnet N




Eigenstate Order: Ising example

1D transverse field Ising model — Z J;070%, | + hio?
P = H O',:L-I3 i

i
Energy
Density

Paramagnet Spin Glass
Z 2\ ___
(oi05) =0 (o70%) # 0

fOI' ‘Z—]|%OO fOI' ‘Z—]‘%OO

) P)e = | Tﬂ%ﬂ@ + | QTTM@

D. Fisher(1995); Huse et. al. (2013); Pekker et. al. (2013) J —h
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Periodically Driven + MBL

/» Floquet SPT

T\
Time crystal

0

N3

VK Lazarides Moessner Sondhi 2015



The MBL Phase Transition

Thermalizing MBL
Transport and entanglement We Entanglement
dynamics governed by rare . dynamics logarithmic
“Griffiths” effects. Dynamlc.a! phase
transition.
Entanglement and - .
. . Visible to single
relaxation dynamics power .
L eigenstate
laws in time
ensemble.
DC transport zero
DC conductivity could be
Lots of

ZEro

uncertainty about
Agarwal, Gopalakrishnan, Knap,

properties.
Mueller, Demler; Bar Lev, Cohen,
Reichman;Vosk Huse Altman;
Potter,Vasseur, Parameswaran...

>
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Finite-Size Critical Scaling

E~ (W =W, )"

Crossover
' Quantum 9
: Critical
Thermal % MBL

o
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Critical Entanglement

® Grover (2014) showed that if the entanglement entropy of small
subsystems varies continuously at a direct MBL-Thermal transition,
then from the strong sub-additivity of entanglement, the
entanglement entropy of these subsystems looks thermal in the
quantum critical regime.

® Very natural picture where one imagines there exists a diverging
length scale & such that:

® Properties probed on length scales < € look critical.

® [ook thermal/MBL on longer length scales.

$9p83098008%
e




Discontinuity in entanglement entropy

® Careful numerical analysis finds the critical regime actually looks
localized. Thus, either no direct transition, or entanglement is
discontinuous at the transition.

(VK, Lim, Sheng, Huse, PRX 2017)



Discontinuity in entanglement entropy

Careful numerical analysis finds the critical regime actually looks
localized. Thus, either no direct transition, or entanglement is
discontinuous at the transition.

Transition driven by the proliferation of a sparse resonant
backbone of entanglement. Just gains enough strength to thermalize
the system on the thermal side of the crossover in the infinite size
limit.

Global discontinuity in presence of fully functional bath implies local
discontinuity.

Discontinuity subsequently verified by phenomenological strong

disorder RG-like treatments (Dumitrescu,Vasseur Potter; Thierry, Huveneers,
Mueller, De Roeck)

N NN NS NN TN
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(VK, Lim, Sheng, Huse, PRX 2017)



Discontinuity in entanglement entropy

Entanglement at the transition can show a non-local dependence on
the system size since an infinite thermal system can act as a bath for
any finite subsystem.

Sa = Laf(LM"(W —W,),LY{" (W — W.))

1 A
Ll/v Quantum Critical

Sparse backbone
of entanglement

Becomes I Does not become

a fully functional bath |, a fully functional bath as
as L increases Vo5 v L increases
: & >
(VK, Lim, Sheng, Huse, Thermal W, MBL W

PRX 2017) Volume Law Area Law



Finite-size Scaling

1.0 5®

081 FL-10% For systems with quenched
o%' 0.69% | =1 % randomness, asymptotically at
~ _ 4% |arge L 1 2/d
ry 0.4 IL=16 ,

0.2 5 | = 18 (Harris 1974; Chayes, Chayes, Fisher,

0.0 | [ : roce-o Spencer 1986; Chandran, Laumann,

_80 _40 O 40 80 Oganesyan 201 5)
(W — W,)LY"

® RG treatments find v ~ 3 (Vosk Huse Altman; Potter Vasseur Parameswaran 20|4)

® Long standing mystery: all exact diagonalization numerics show scaling
collapse, but with exponent 1 ~ 1 in violation of Harris

® However, numerics show similar scaling for both random and
quasiperiodic models at small sizes. But random models are beginning
to show a crossover into the quenched-randomness-dominated

universality class.
VK, Sheng, Huse, PRL (2017)



Two Universality Classes for the MBL Transition

bixternal Infinite Randomness d=1
Randomness Fixed Point (v > 2/d)
oo GG Do P D D
Disorder is a “Harris

. ) relevant”

\\ Thermal MBL perturbation
s\\ 4 ",
0 |
Detuning

Non-Random
Fixed Point

VK, Sheng, Huse, PRL (2017)



Open questions

® Nature of the phase transition
® New types of out-of-equilibrium phases in the MBL setting

® Possible non-perturbative instabilities of the MBL phase in
higher dimensions, with longer ranged interactions, in
translationally invariant systems... Role of disorder (random
vs. quasiperiodic).

Question: Can an isolated MB system act as it's own “bath” and
bring its subsystems to thermal equilibrium!?

No: MBL Phase (localized even at infinite time)
Yes: Thermal Phase (thermalizes on accessible time scales)

Yes*™: Thermal™ (extremely long time scales for thermalization)



Some reviews

Nandkishore Huse 2014
Abanin, Altman, Bloch, Serbyn 2018

Parameswaran Vasseur 2018

... Rapidly evolving field!!



