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Unitary Quantum Dynamics

st ccre,, Dynamics of isolated, MB systems undergoing
p(t + 0t) = [ unitary time evolution:

Up(t)UT

7777 strongly interacting, excited (no quasiparticles)
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spins/cold atom molecules/ black holes/...

Time-independent

Hamiltonian: U(t) =e

Floquet: U(TLT) — [U(T)]n
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Random U(t) __ X

unitary circuit: ' t
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Can reversible unitary time evolution bring a system to
thermal equilibrium at late times!?

If so, how does the system reach thermal equilibrium? For
local operators A, how does the system “hide” (A)t=0

What are the dynamics of quantum entanglement?

How does hydrodynamics emerge from reversible
reversible unitary dynamics!?



Many-Body “Quantum Chaos” vs.
Thermalization

What is a precise formulation for many-body
quantum chaos!

Is there a useful definition for chaos that is distinct
from thermalization?

Are there distinct (universal) sighatures of chaos at
early/intermediate/late times? VWhat are the most
appropriate observables for probing these regimes!?



For local operators A, how does the system “hide” (A)=0

Look at the dynamics of “operator spreading’” i.e. time
evolution of operators in the Heisenberg picture

Ao(t) = UT(t) AU (1)
Operator generically

t spreads ballistically within
I a “Lieb-Robinson” cone
< - — getting highly entangled
ULRt

within the cone — for
clean, thermalizing local
quantum systems.
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For local operators A, how does the system “hide” (A)=0

* Spreading can be sub-
ballistic ~t?, a<[ for
disordered thermalizing
systems due to Griffiths
effects

* Spreading is logarithmic for
MBL systems.

* Spreading is also ballistic for
integrable systems with

quasiparticles



Setup

000000000090
t L

spin |/2 qubit
Local Hilbert space dimension: 2 (can also consider qudits with q)

4 operators per site: o' ue{0,1,2,3)

Orthonormal basis of operators: s
(4)-  “Pauli strings” S = H 90

xlyz, Iz11, xxxx - - - TT[STS/]/(QL) = 055/

VK Vishwanath Huse (2017)



Operator Spreading

It

O(t) = UT(t)OoU (t)

O(t) =) as(t)S smee @
S



Operator Spreading: unitarity
Unitarity preserves operator norm

Tr[O} (£)Op(t)] = Tr[0LOg] = 2F

u
> las(t)? =1
S



Operator shape: Right weight

Right-Weight: “emergent” density following from unitarity

pR(iat) — Z Ias‘za ZpR(iat) =1

strings & with
rightmost non-
identity on site %

.

Each string has right/left edges beyond pL(2,1) pr(z,t)
which it is purely identity. /\
p looks at the density distribution of the

6 » ”) NN
right front” of the operator. N

As operator spreads, weight moves to
longer Pauli strings.




Dynamics with Random circuits

* Unitary gates independent and
random in space and time.

t =0
* Allows us to derive exact
t=1 results about operator
spreading, building in only the
=2 requirements of unitarity and
locality.
t =3 4
. * Hope (and numerically verify)

that results generalize to more
realistic setting like time-
independent Hamiltonians

Nahum et.al, (2016, 2017),
von Keyserlingk et.al (2017).



Operator shape: random circuit

t Front dynamics: biased diffusion

UT(6t)SU(6t)

has amplitudes for

i

making S leaving it same making S

shorter length longer

But, biased towards making S longer.

Example, only 3/15 non-identity
two-site spin |/2 operators have
identity on the right site.

Nahum et.al., (2017)
von Keyserlingk et. al (2017)



Operator shape: unconstrained circuit

\H\

Nahum et.al., (2017)
von Keyserlingk et. al (2017)



Operator shape: unconstrained circuit

Probability: 12/15

Nahum et.al,, (2017)
von Keyserlingk et. al (2017)



Operator shape: unconstrained circuit

Probability: 3/15

Nahum et.al,, (2017)
von Keyserlingk et. al (2017)



Operator shape: unconstrained circuit

t Front dynamics: biased random-walk

Emergent hydrodynamics:

8tIOR($7 t) — UBaCEIOR(xa t) T D,OaipR(ma t)

== > x
(0,1) ~ — ™ T
T, 1) ~ e Pt
PR \/47TDpt
2 2
vp~1l— 2Dy~ =
¢ " ¢

Nahum et.al., (2017)
von Keyserlingk et. al (2017)



Operator shape: unconstrained circuit

100 —50 0 50 100
Position s

Figure from:
von Keyserlingk et. al (2017)



Thermalization + Conservation Law

Chaotic many-body system (ballistic information spreading)
+

locally conserved diffusive densities (energy/chargel/..)

VK Vishwanath Huse (2017)



Unitarity vs. Dissipation

Chaotic many-body system (ballistic information spreading)
+

locally conserved diffusive densities (energy/chargel/..)

Q: How does unitary quantum dynamics, which is
reversible, give rise to diffusive hydrodynamics, which is
dissipative (increases entropy)!?

Unitary Dynamics: Reversible

Diffusion: lrreversible/Dissipation

VK Vishwanath Huse (2017)



Setup

t L

spin 1/2
qubit

z component of spin |/2 qubits conserved

L

tot
Sz — E <4

1

U(t), S:"] =0

VK Vishwanath Huse (2017)



Setup: Random Conserving Circuit Model

2 21+1
= r
"
t=1 l l + /TT \
t=2 ¢ £
t =3 + \
=4 e o H /

VK Vishwanath Huse (2017)

Builds on: Nahum et. al., (2016, 2017),
von Keyserlingk et.al (2017).



Operator Spreading

It

Spreading
constrained by:

® Unitarity

® Conservation Law(s)

O(t) = >_as(®)S =g



Operator Spreading: conservation law

Separate operator into conserved and non-conserved pieces
Oo(t) = Op(t) + Op" ()
O5(t) = Y ai(t)x

()



Operator Spreading: conservation law

Separate operator into conserved and non-conserved pieces

— exp(L) mostly non-local

OO (t) — O(C) (t) + O(I)IC (t) strings, thus “hidden”
O5(t) =) a5(t)z
i AN
L local operator “strings”,
conserved densities



Operator Spreading: conservation law

Separate operator into conserved and non-conserved pieces

— exp(L) mostly non-local

OO (t) — O(C) (t) + O(I)IC (t) strings, thus “hidden”

C L C .
O5(t) =) a5(t)z
L local operator “strings”,
conserved densities

Tr[Og(t)S:°"] = constant —>

Z a;(t) = constant s



Operator Spreading

Operator dynamics governed by the interplay between:

Unitarity: Z as (t)‘Q =1
S
L
Conservation law: Z CL,(; (t) — constant

VK Vishwanath Huse (2017)



Spreading of conserved charges

First, consider spreading of conserved density

VK Vishwanath Huse (2017)



Diffusion & conserved amplitudes: intuition

Initial state: Infinite temperature equilibrium

+ local charge perturbation at 4 t=20
1
PO — oL I+ €Oy 1

O() = 20 > L



Diffusion & conserved amplitudes: intuition

Initial state: Infinite temperature equilibrium

+ local charge perturbation at 4 t=20
1
PO — oL I+ €Oy 1
O() — Z() > U

Diffusive charge spreading (coarse grained):

(2)(z,t) = Tr[p(t)z,] ! t>0
= 2 Trlp()2
= € aS(t) ~ e T "

~ —e 4
Vit



Diffusion & conserved amplitudes

OQ:ZQ

Random conserving circuit model

2;(t) = %(Lf.;ll J) ) ai(t) =1

1 z2 i
e RV B i
Vot scaling limit
-
D. = 5 independent of g

VK Vishwanath Huse (2017)



Diffusive Lump
Zaf(t) =1

Total operator weight in the diffusive lump of conserved
charges decreases as a power-law in time.

Prot = Zi\ag(t)P

1 22 1
c . (T) & da:athZ/da:—e_T:
pn®) ~ [ dolaz(®) e

Significant weight in a “diffusive cone” near the origin, even
at late times.

VK Vishwanath Huse (2017)



Slow emission of non-conserved
operators

® No net loss in operator weight (unitarity).

® Conserved parts emit a steady flux of “non-conserved”
operators.

® The local production of non-conserved operators is
proportional to the square of the diffusion current, as
in Ohm’s law:

0pi€(t) ~ (af(t) — afp 1 (1)° ~ (9za°(x,1))’

VK Vishwanath Huse (2017)



Emergence of dissipation

The dissipative process is the conversion of
operator weight from locally observable conserved

parts to non-conserved, non-local (non-observable)
parts at a slow hydrodynamic rate.

Observable entropy increases, while total

von Neumann entropy of the full system is
conserved.



Increase In observable entropy

1
= oF T+ eOg(t)] Syn(t) = const

VK Vishwanath Huse (2017)



Putting it all together

¢ Diffusion of conserved densities: Local conserved densities
spread diffusively. The weight of O(t) on the conserved parts (which live
in a diffusive cone near the origin) slowly decreases as a power-law in
time. Thus significant weight near the origin even at late times.
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Putting it all together

Diffusion of conserved densities: Local conserved densities
spread diffusively. The weight of O(t) on the conserved parts (which live
in a diffusive cone near the origin) slowly decreases as a power-law in
time. Thus significant weight near the origin even at late times.

Slow Emission of hon-conserved operators: No net loss in
operator weight (unitarity). Conserved parts emit a steady flux of “non-
conserved” operators. The emission happens at a slow hydrodynamic
rate set by the local diffusive currents of the conserved densities.

Ballistic spreading of nhon-conserved operators: Once
emitted, the non-conserved parts spread ballistically, quickly becoming
non-local and hence non-observable.

Diffusive tails behind ballistic front: Slow diffusive modes lead
to power-law “tails” behind the leading ballistic front, coming from
"lagging” fronts emitted at later times. Show up in the OTOC.



Operator shape: conserving circuit

Tail




Coupled hydrodynamic description

Diffusion of conserved charges

0:a°(x,t) = D.V?a®(x,t)

Biased diffusion of hon-conserved fronts emitted from
local gradients in the conserved charges

0,0’ (x,t) = vOL Pl (z,t) + D,02p% (x,1t)
+ 2D, |0,a%(x, t)|?



Operator Spreading & OTOC

W (t) = U (t)WoU (t)

Cla.t) = SIW @), Vi)

“Out-of-time-ordered-commutator’

semi-classical analog:

ih{q(t), p}”* = I° (gjgg;)
N hgeAt

for classically chaotic systems
with exponential sensitivity to
initial conditions



Three aspects of dynamics

Butterfly effect: ballistic operator growth with
butterfly velocity vg

Diffusive hydrodynamics of conserved charges

Lyapunov regime: exponential early-time
sensitivity to perturbations



OTOC in the quantum setting

Displays exponential growth in many large N/ holographic/
semiclassical models

Saturates to O( 1) value at late times due to unitarity; No
unbounded growth possible

Defining a quantum Lyapunov exponent requires a small
parameter epsilon such that ¢ ~ ¢ ¢*  at early times. Defines

a long time for observing exponential growth ~
1 1
A 5 €

OTOC is an “intermediate” time diagnostic of chaos.

® t* can be parametrically smaller than other thermalization time
scales associated (e.g. the Thouless time, or inverse level spacing)



Existence of a Lyapunov Regime

® What about “strongly quantum” systems away from large N/
weak coupling limits (like a thermalizing spin |/2 chain)?

® Spatially local systems potentially have a small parameter
because it takes a large time t, ~ |x|/vp for a large
commutator to build up. Simple exponential regime may still
not exist due to front broadening. But velocity dependent
Lyapov exponents can still be defined.

To — vpt)?
C(xo,t)wexp{ ( OQDf) }



100

100

80 80

60 60

40 40

20 20

100 50 0 =0 100 ~100 -50 0 50 100

C(xo.1) = (|[V(0, ), W (xo)]|) C(x,t) ~ M for x = vt

OTOC at fixed Xo ——lp  OTOC at fixed v

VK, Huse Nahum 2018



Velocity dependent Lyapunov

C(x,t) ~ eVt for x = vt

® Spatiotemporal structure of chaos organized along “rays”.

® All local quantum systems show negative A(v) outside the light-cone:
exponential decay of correlations outside the light-cone. Follows from
Lieb Robinson bounds.

® Only large N/semi-classical systems display positive A(v) inside the
light-cone. No such exponentially growing regime for strongly
interacting “fully” quantum systems with local Hilbert space ~ O(1).

® Many qualitative similarities between integrable and non-integrable
systems in growth of C(xo, t) outside the light cone.Thus, operator
spreading dynamics, while illuminating for many purposes, may not be
the best diagnostic for “chaos” in strongly quantum systemes.



Velocity dependent Lyapunov exponents

100

80

A(v) >0

60 (If it exists)

40

20

—100 -50 0 50 100

C(x,t) ~ e V)t for x=vt



Classical chaos

)\(”UB) — )\(UB) —

Scrambled

A(v) >0

Classically, C(x,t) grows or decays in time along
rays with a velocity dependent Lyapunov exponent

C(z = vt, t) ~ MVt

VK, Huse Nahum 2018
Lieb-Robinson 1972, Deissler, Kaneko 1986



Quantum chaos: large N/ semiclassical
t,

MNvLr) = MuLgr) =

Scrambled

A(v) >0

Large N/ semiclassical quantum

models show exponential regime:  e.g 57K chain (Gu, Qi, Stanford 2016),
weakly interacting diffusive metals (Patel et.

al. 2017, Aleiner et.al 2016)

VK, Huse Nahum 2018



“Strongly quantum chaos”

t,
A(ULR) — )\(ULR) =0

Scrambled,
but no

exponential
growth

Av) <0 Av) <0
"

No exponentially growing regime with positive Lyapunov
exponents seems to exist (yet?) for “strongly quantum” many-
body chaos.

VK, Huse Nahum 2018



Lots of interesting open directions for understanding the
dynamics of operator spreading, quantum entanglement,
thermalization...!



