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Unitary Quantum Dynamics
Dynamics of isolated, MB systems undergoing 
unitary time evolution: 

spins/cold atom molecules/ black holes/… 

strongly interacting, excited (no quasiparticles)

⇢(t+ �t) =

U⇢(t)U†

U(t) = e�iHtTime-independent 
Hamiltonian:

Floquet:

Random 
unitary circuit:

U(t) =

U(nT ) = [U(T )]n



Can reversible unitary time evolution bring a system to 
thermal equilibrium at late times? 

If so, how does the system reach thermal equilibrium? For 
local operators A, how does the system “hide” ⟨A⟩t=0 ?

What are the dynamics of quantum entanglement?

How does hydrodynamics emerge from reversible 
reversible unitary dynamics?



Many-Body “Quantum Chaos” vs. 
Thermalization

What is a precise formulation for many-body 
quantum chaos? 

Is there a useful definition for chaos that is distinct 
from thermalization? 

Are there distinct (universal) signatures of chaos at 
early/intermediate/late times? What are the most 

appropriate observables for probing these regimes?



For local operators A, how does the system “hide” ⟨A⟩t=0 ?

Look at the dynamics of “operator spreading” i.e. time 
evolution of operators in the Heisenberg picture 

A0(t) = U †(t)A0U(t)

x

t

vLRt

A0

Operator generically 
spreads ballistically within 
a “Lieb-Robinson” cone 

— getting highly entangled 
within the cone — for 
clean, thermalizing local 

quantum systems. 



For local operators A, how does the system “hide” ⟨A⟩t=0 ?

x

t

vLRt

A0

• Spreading can be sub-
ballistic ~ta,  a<1 for 
disordered thermalizing 
systems due to Griffiths 
effects

• Spreading is logarithmic for 
MBL systems.

• Spreading is also ballistic for 
integrable systems with 
quasiparticles

A0(t) = U †(t)A0U(t)



Setup

Local Hilbert space dimension: 2 (can also consider qudits with q)

spin 1/2 qubit

4  operators per site:

L

µ 2 {0, 1, 2, 3}

Orthonormal basis of operators:
(4)L       “Pauli strings” 

�µ
i

S =
Y

i

⌦�µi
i

Tr[S†S0]/(2L) = �SS0

VK Vishwanath Huse (2017)

xIyz, IzII, xxxx · · ·



Operator Spreading

O(t) = U †(t)O0U(t)

O(t) =
X

S
aS(t)S

x

t

sum over (4)L 
Pauli strings



Operator Spreading: unitarity 

Unitarity preserves operator norm 

X

S
|aS(t)|2 = 1

=)

Tr[O†
0(t)O0(t)] = Tr[O†

0O0] = (2q)L

O(t) =
X

S
aS(t)S

Tr[S†S0]/(2L) = �SS0

2L



Operator shape: Right weight

Right-Weight:  “emergent” density following from unitarity 

x

⇢R(x, t)⇢L(x, t)Each string has right/left edges beyond 
which it is purely identity. 

ρ looks at the density distribution of the 
“right front” of the operator. 

As operator spreads, weight moves to 
longer Pauli strings. 



Dynamics with Random circuits

t = 0

t = 1

t = 2

t = 3

t = 4

2i 2i+ 1

Nahum et. al., (2016, 2017), 
von Keyserlingk et. al (2017). 

• Unitary gates independent and 
random in space and time. 

• Allows us to derive exact 
results about operator 
spreading, building in only the 
requirements of unitarity and 
locality.

• Hope (and numerically verify) 
that results generalize to more 
realistic setting like time-
independent Hamiltonians 



Operator shape: random circuit

x

t Front dynamics: biased diffusion

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 

U†(�t)SU(�t)

has amplitudes for 

making S 
shorter

leaving it same 
length

making S 
longer

But, biased towards making S longer.
 

Example, only 3/15 non-identity 
two-site spin 1/2 operators have 

identity on the right site.  



Operator shape: unconstrained circuit

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 

t

S

· · ·



Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 

t

S

· · ·

t+ 1

Probability: 12/15

Operator shape: unconstrained circuit



Operator shape: unconstrained circuit

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 
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· · ·

t+ 1

Probability: 3/15



Operator shape: unconstrained circuit

x

t Front dynamics: biased random-walk

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 
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Operator shape: unconstrained circuit

Figure from: 
von Keyserlingk et. al (2017) 



Thermalization + Conservation Law

Chaotic many-body system (ballistic information spreading)
+ 

locally conserved diffusive densities (energy/charge/..)  

VK Vishwanath Huse (2017)



Unitarity vs. Dissipation

Q: How does unitary quantum dynamics, which is 
reversible, give rise to diffusive hydrodynamics, which is 

dissipative (increases entropy)? 

Unitary Dynamics:    Reversible

Diffusion:    Irreversible/Dissipation 

Chaotic many-body system (ballistic information spreading)
+ 

locally conserved diffusive densities (energy/charge/..)  

VK Vishwanath Huse (2017)



Setup

spin 1/2
qubit

L

z component of spin 1/2 qubits conserved

[U(t), Stot

z ] = 0

Stot

z =
LX

i

zi

VK Vishwanath Huse (2017)



Setup: Random Conserving Circuit Model

t = 0

t = 1

t = 2

t = 3

t = 4

2i 2i+ 1

U(q2)

##

"#, #"

""

VK Vishwanath Huse (2017)

Builds on: Nahum et. al., (2016, 2017), 
von Keyserlingk et. al (2017). 



Spreading 
constrained by:

Operator Spreading

O(t) = U †(t)O0U(t)

• Unitarity

• Conservation Law(s)

O(t) =
X

S
aS(t)S

x

t

sum over (4)L 
strings



Operator Spreading: conservation law 

O0(t) = Oc
0(t) +Onc

0 (t)

Separate operator into conserved and non-conserved pieces  

O(t) =
X

S
aS(t)S

Tr[S†S0]/(2L) = �SS0

Oc
0(t) =

X

i

aci (t)zi



Operator Spreading: conservation law 

O0(t) = Oc
0(t) +Onc

0 (t)

Separate operator into conserved and non-conserved pieces  

L local operator “strings”, 
conserved densities

O(t) =
X

S
aS(t)S

exp(L) mostly non-local 
strings, thus “hidden”

Tr[S†S0]/(2L) = �SS0

Oc
0(t) =

X

i

aci (t)zi



Operator Spreading: conservation law 

O0(t) = Oc
0(t) +Onc

0 (t)

Separate operator into conserved and non-conserved pieces  

Tr[O
0

(t)Stot

z ] = constant

L local operator “strings”, 
conserved densities

LX

i=1

aci (t) = constant

=)

O(t) =
X

S
aS(t)S

exp(L) mostly non-local 
strings, thus “hidden”

Tr[S†S0]/(2L) = �SS0

Oc
0(t) =

X

i

aci (t)zi



Operator Spreading

Operator dynamics governed by the interplay between:

X

S
|aS(t)|2 = 1Unitarity:

Conservation law:

LX

i=1

aci (t) = constant

VK Vishwanath Huse (2017)



Spreading of conserved charges

First, consider spreading of conserved density

aci (t = 0) = �i0

X

i

aci (t) = 1

O0 = z0

VK Vishwanath Huse (2017)



Diffusion & conserved amplitudes: intuition

Initial state:  Infinite temperature equilibrium 
+ local charge perturbation

x

ac
x

1

t = 0

O0 = z0

⇢0 =
1

2L
[I+ ✏O0]



Diffusion & conserved amplitudes: intuition

Initial state:  Infinite temperature equilibrium 
+ local charge perturbation

x

ac
x

Diffusive charge spreading (coarse grained): 

x

ac
x t > 0

1

t = 0

p
t

1/
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t

O0 = z0

hzi(x, t) = Tr[⇢(t)z
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Diffusion & conserved amplitudes

Random conserving circuit model

coarse grain+
scaling limit

Dc =
1

2
independent of q

a

c(x, t) ⇡
r

1

2⇡t
e

� x

2

2t

X

i

aci (t) = 1

O0 = z0

VK Vishwanath Huse (2017)



Diffusive Lump

Total operator weight in the diffusive lump of  conserved 
charges decreases as a power-law in time. 

Significant weight in a “diffusive cone” near the origin, even 
at late times. 

X

i

aci (t) = 1

VK Vishwanath Huse (2017)



Slow emission of non-conserved 
operators

• No net loss in operator weight (unitarity). 

• Conserved parts emit a steady flux of “non-conserved” 
operators. 

• The local production of non-conserved operators is 
proportional to the square of the diffusion current, as 
in Ohm’s law:

�⇢nci (t) ⇠ (aci (t)� aci+1(t))
2

VK Vishwanath Huse (2017)

⇠ (@
x

a

c(x, t))2



Emergence of dissipation

The dissipative process is the conversion of 
operator weight from locally observable conserved 
parts to non-conserved, non-local (non-observable) 
parts at a slow hydrodynamic rate.

Observable entropy increases, while total 
von Neumann entropy of the full system is 
conserved.



Increase in observable entropy

⇢(t) =
1

2L
[I+ ✏O0(t)] Svn(t) = const

Oc
0(t) =

X

i

aci (t)zi

Sc
vn(t) = �Tr[⇢c(t) log ⇢c(t)]

= L log(2)� 1

2

X

i

|aci (t)|2 + · · ·

d

dt

S

c
vn(t) ⇠

1

2Dc

Z
dx|jc(x)|2

VK Vishwanath Huse (2017)



Putting it all together
• Diffusion of conserved densities: Local conserved densities 

spread diffusively.  The weight of O(t) on the conserved parts (which live 
in a diffusive cone near the origin) slowly decreases as a power-law in 
time. Thus significant weight near the origin even at late times. 

• Slow Emission of non-conserved operators: No net loss in 
operator weight (unitarity). Conserved parts emit a steady flux of “non-
conserved” operators. The emission happens at a slow hydrodynamic 
rate set by the local diffusive currents of the conserved densities. 

• Ballistic spreading of non-conserved operators: Once 
emitted, the non-conserved parts spread ballistically, quickly becoming 
non-local and hence non-observable.  The propagation of non-conserved 
fronts is described by biased diffusion in 1D for random circuit model. 

• Diffusive tails behind ballistic front: Finally, the slow diffusive 
modes lead to power-law “tails” behind the leading ballistic front, coming 
from ``lagging” fronts emitted at later times. 
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• Diffusion of conserved densities: Local conserved densities 
spread diffusively.  The weight of O(t) on the conserved parts (which live 
in a diffusive cone near the origin) slowly decreases as a power-law in 
time. Thus significant weight near the origin even at late times. 

• Slow Emission of non-conserved operators: No net loss in 
operator weight (unitarity). Conserved parts emit a steady flux of “non-
conserved” operators. The emission happens at a slow hydrodynamic 
rate set by the local diffusive currents of the conserved densities. 

• Ballistic spreading of non-conserved operators: Once 
emitted, the non-conserved parts spread ballistically, quickly becoming 
non-local and hence non-observable.  The propagation of non-
conservdescribed by biased diffusion in 1D for random circuit model. 

• Diffusive tails behind ballistic front: Slow diffusive modes lead 
to power-law “tails” behind the leading ballistic front, coming from 
``lagging” fronts emitted at later times. Show up in the OTOC.

Putting it all together



Operator shape: conserving circuit



Coupled hydrodynamic description

Diffusion of conserved charges

Biased diffusion of non-conserved fronts emitted from 
local gradients in the conserved charges  



x

t

W0

W (t) = U†(t)W0U(t)

C(x, t) = 1

2
h|[W (t), V

x

]|2i

V
x

⇠ 2vBt

“Out-of-time-ordered-commutator”

semi-classical analog:

|i~{q(t), p}|2 = ~2
✓
@q(t)

@q(0)

◆2

⇠ ~2e�t

for classically chaotic systems 
with exponential sensitivity to 

initial conditions

 Operator Spreading & OTOC



Three aspects of dynamics

• Butterfly effect: ballistic operator growth with 
butterfly velocity vB 

• Diffusive hydrodynamics of conserved charges

• Lyapunov regime: exponential early-time 
sensitivity to perturbations



OTOC in the quantum setting

• Displays exponential growth in many large N/ holographic/  
semiclassical models

• Saturates to O(1) value at late times due to unitarity; No 
unbounded growth possible

• Defining a quantum Lyapunov exponent requires a small 
parameter epsilon such that                  at early times. Defines 
a long time for observing exponential growth ~

• OTOC is an “intermediate” time diagnostic of chaos. 

• t* can be parametrically smaller than other thermalization time 
scales associated (e.g. the Thouless time, or inverse level spacing)

C ⇠ ✏ e�t

t⇤ =

1

�
log

1

✏



Existence of a Lyapunov Regime

• What about “strongly quantum” systems away from large N/
weak coupling limits (like a thermalizing spin 1/2 chain)? 

• Spatially local systems potentially have a small parameter 
because it takes a large time                     for a large 
commutator to build up. Simple exponential regime may still 
not exist due to front broadening. But velocity dependent 
Lyapov exponents can still be defined.   

t⇤ ⇠ |x|/vB

C(x0, t) ⇠ exp


� (x0 � vBt)

2

2Dt

�



< 0

> 0

�(v)

t

x

vB�vB

C(x0, t) = h|[V (0, t),W (x0)]|2i

< 0

> 0

�(v)

t

x

vB�vB

OTOC at fixed vOTOC at fixed x0

VK, Huse Nahum 2018



Velocity dependent Lyapunov 

• Spatiotemporal structure of chaos organized along “rays”. 

• All local quantum systems show negative λ(v) outside the light-cone: 
exponential decay of correlations outside the light-cone. Follows from 
Lieb Robinson bounds. 

• Only large N/semi-classical systems display positive λ(v) inside the 
light-cone. No such exponentially growing regime for strongly 
interacting “fully” quantum systems with local Hilbert space ~ O(1).  

• Many qualitative similarities between integrable and non-integrable 
systems in growth of C(x0, t) outside the light cone. Thus, operator 
spreading dynamics, while illuminating for many purposes, may not be 
the best diagnostic for ``chaos” in strongly quantum systems.



Velocity dependent Lyapunov exponents

< 0

> 0

�(v)

�(v) < 0�(v) < 0

�(vB) = 0�(vB) = 0

t

x

�(v) > 0

(If it exists)



Classical chaos

x

t

Classically, C(x,t) grows or decays in time along 
rays with a velocity dependent Lyapunov exponent

�(v) > 0

�(v) < 0�(v) < 0

VK, Huse Nahum 2018
Lieb-Robinson 1972, Deissler, Kaneko 1986

C(x = vt, t) ⇠ e

�(v)t

Scrambled

�(vB) = 0�(vB) = 0



Quantum chaos: large N/ semiclassical

Large N/ semiclassical quantum 
models show exponential regime: 

C(x, t) ⇠ 1

N

2
e

�L(t�|x|/vB)

e.g. SYK chain (Gu, Qi, Stanford 2016), 
weakly interacting diffusive metals (Patel et. 

al. 2017,  Aleiner et. al 2016)

x

t

�(v) > 0

�(v) < 0�(v) < 0

�(vLR) = 0
�(vLR) = 0

Scrambled

VK, Huse Nahum 2018



“Strongly quantum chaos”

x

t

�(v) < 0�(v) < 0

�(vLR) = 0
�(vLR) = 0

No exponentially growing regime with positive Lyapunov 
exponents seems to exist (yet?) for  “strongly quantum” many-

body chaos.   

Scrambled, 
but no 

exponential 
growth

VK, Huse Nahum 2018



Lots of interesting open directions for understanding the 
dynamics of operator spreading, quantum entanglement, 
thermalization…!


