DE LA RECHERCHE À L'INDUSTRIE

Radiation damages in vitreous wasteforms

www.cea.fr

C. Jegou

Joint ICTP-IAEA Workshop – Trieste

1

Glassy state

cea

A glass (or vitreous solid) is a solid formed by rapid melt quenching.

A glass is an amorphous solid that exhibits a glass transition phenomena at ${\rm T}_{\rm g.}$

Shear Modulus

Glass properties depend on:

- Chemical composition
- Thermal history during elaboration process

Glassy state

• Short Range Order, SRO : Yes

cea

- Medium Range Order, MRO : Yes
- Long Range Order, LRO : No

Polyhedra Angle, Ring statistic

Complex oxides glasses : French Nuclear Glass

Oxide glass with around 30 oxides Sodium alumino-borosilicate glass

L. Cormier, J.M. Delaye, D. Ghaleb, G. Calas, PRB 61 (2001) 14495

ightarrow	Si
	0

cea

Fission product / Actinide in an octahedric site

CEA/DEN/MAR/DE2D/SEVT

• B

C. Jegou

Domaine de composition chimique des verres R7T7 produits dans les ateliers industriels par AREVA laque

Oxydes	Interva spécifi l'indus (% mas	lle é pour triel ssique)	Composition moyenne des verres industriels (% massique)
	min	max	
SiO ₂	42,4	51,7	45,6
B ₂ O ₃	12,4	16,5	14,1
Al ₂ O ₃	3,6	6,6	4,7
Na ₂ O	8,1	11,0	9,9
CaO	3,5	4,8	4,0
Fe ₂ O ₃		< 4,5	1,1
NiO		< 0,5	0,1
Cr ₂ O ₃		< 0,6	0,1
P ₂ O5		< 1,0	0,2
Li ₂ O	1,6	2,4	2.0
ZnO	2,2	2,8	2,5
Ox (PF+Zr+ actinides)+ Suspension de fines	7,5	18,5	17,0
Oxydes d'actinides			0,6
SiO ₂ +B ₂ O ₃ +Al ₂ O ₃	>60		64,4

Monographie DEN : Le conditionnement des déchets nucléaires

Nuclear Glass or GCM: What type of radiation?

Decay Type	Radiation Emitted	Generic Equation	Model	
Alpha decay	4 2 α	$ \overset{A}{Z} X \longrightarrow \overset{A-4}{Z-2} X' + \overset{4}{2} \alpha $	Parent Daughter Alpha Particle	
Beta decay	1 ⁰ β	${}^{A}_{Z} X \longrightarrow {}^{A}_{Z+1} X' + {}^{0}_{-1} \beta$	Parent Daughter Beta Particle	F
Positron emission	0 +1β	$A_{Z}^{A} \xrightarrow{A}_{Z-1} X' + {}^{0}_{+1} \beta$	Parent Daughter Positron	
Electron capture	X rays A Z	$X + {0 \atop -1} e \longrightarrow_{Z-1}^A X' + X ray$	Parent Electron Daughter X ray	
Gamma emission	0 0 7	$\stackrel{A}{Z} X^* \xrightarrow{\text{Relaxation}} \stackrel{A}{Z} X^* + \stackrel{0}{_{0}} \gamma$	Parent (excited nuclear state)	1
Spontaneous fission	Neutrons A	$\stackrel{+\beta+C}{Z+Y} \xrightarrow{A} X' + \stackrel{\beta}{Y} X' + C_0^1$	n Parent (unstable)	5

Actinides: mainly α decays

Fission products: mainly β decays

Most of alpha and beta decays

cea

Due to the various decays: Emission of particles with high amount of energy

 $Se = (dE/dx)_{elec} = Electronic energy loss due to collisions with electrons$

 $Sn = (dE/dx)_{nucl} =$ Nuclear energy loss due to collisions with atoms

Interaction with matter

Important parameters to consider:

Dose rate : absorbed energy per unit of mass of material per unit of time (Gy/s)

Dose : absorbed energy per unit of mass of material (Gy = J/kg)

Number of displaced atoms in volume from NRT equation

Nuclear collisions, dpa = displacements per atom

C. Jegou

CEA/DEN/MAR/DE2D/SEVT

Glass Long Term Behavior – complex ageing scenario

Glass Long Term Behavior: main past studies?

Main laboratory studies of alpha decay impact

USA (NLs)	70's-90's	<3 x 10 ¹⁸ α/g
UK (AERE)	70's-80's	<3 x 10 ¹⁸ α/g
France (CEA)	70's-80's	<3 x 10 ¹⁸ α/g
EU (ITU)	70's-90's	<5 x 10 ¹⁸ α/g
JAPAN (JAERI)	90's	<10 ¹⁹ α/g

Macrosocpic behavior in a limited level of dose

but no data on the glass structure!

Need to improve the understanding of alpha decays effects

- To predict long term behavior
- To explore nuclear glass limits
- To optimize the future glass or glass ceramics composition

Focus on the results of the research program started in 2001 at CEA

CEA/DEN/MAR/DE2D/SEVT

cea

C. Jegou

Methodology to simulate alpha decays effects

Atalante DHA, CEA

Accelerate the time scale

cea

- Dissociate the effects of self-irradiation (<u>electronic / nuclear</u>) and <u>helium generation</u>
- Evaluate the effects on the confinement properties
- Evaluate the effects on the glass structure

Propose some models to explain the glass behavior under alpha self-irradiation

1. Curium doped glasses

2. External irradiation with light and heavy ions

- 3. In pile irradiation : ${}^{10}B(n,\alpha)^{7}Li$
- 4. Molecular dynamic modeling of ballistic effects

IPN Orsay Lyon, Ganil

OSIRIS, CEA

DM, CEA

Methodology: Cm doping

- SON68 glasses doped with 0.04, 0.4, 1.2, 3.25wt% of ²⁴⁴CmO₂
- International Standard Glass (ISG) doped with 0.7wt% of ²⁴⁴CmO₂

Mol%	SiO ₂	Na ₂ O	B_2O_3	Al_2O_3	CaO	ZrO ₂	Other oxides
ISG/CJ4	60.1	12.6	16.0	3.8	5.7	1.7	
R7T7	52.8	11.3	14.1	3.4	5.0	1.6	11.8

CEA/DEN/MAR/DE2D/SEVT

cea

C. Jegou

• Initial characterizations of the glasses (homogeneity, chemical composition)

• Periodical characterizations of the glass properties

Methodology: Ion beam irradiation experiment

Jannus Saclay, Orsay, Ganil

Methodology: In pile irradiation : ${}^{10}B(n,\alpha)^{7}Li$

D1

OSIRIS reactor, CEA SACLAY

Glass samples : polished disks thickness 0.5 mm

Aluminum sample holder in contact with cooling water

CEA/DEN/MAR/DE2D/SEVT

C.	Jedou
\sim .	oogoa

E (MeV)			He(1.47) + Li(0.84)						
Flu	ence (neut	$(ron \ cm^{-2})$		5	9×10^{18}	1.2×10^{19}	3.5 ×	10 ¹⁹	5.2×10 ¹⁹	9
Nu	mber of ev	vents (ion	cm ⁻³)	3	$.5 \times 10^{19}$	7.0×10^{19}	2.1 ×	10 ²⁰	3.1×10 ²⁰	0
dE/dx_{nucl} (keV nm ⁻¹)				dE/dx(He) <0.03 dE/dx(Li) <0.06						
dE/dx_{elec} (keV nm ⁻¹)						dE/d dE/d	x(He) <0 x(Li) <0.5	33 66		
E _{nucl} (GGy)			0.06 0.13		0.39	0.39				
Eele	ec (GGy)			5.	.16	10.45	30.69)	45.71	
Dp	a			0.	.27	0.54	1.6		2.38	
									********	_
	Mol%	SiO ₂	Na ₂ C)	B_2O_3	Al ₂ O ₃	CaO	ZrO ₂	Other oxides	
	CJ1	67.7	14.2		18.1					
	SON68	52.8	11.3		14.1	3.4	5.0	1.6	11.8	

D2

D3

D4

Thermal modeling and fuses observations after irradiation:

T<70°C

million years of disposal

1

Methodology: Molecular dynamic modeling

- Simplified borosilicate glasses (CJ1, CJ7)

Cez

$$\phi(r_{ij}) = \frac{q_i q_j}{r_{ij}} + B_{ij} \exp\left(-\frac{r_{ij}}{\rho_{ij}}\right) - \frac{C_{ij}}{r_{ij}^6}$$

- Accumulation of displacement cascades caused by uranium atoms of energies from 700ev to 70keV

- Characterization of the structural modifications induced by displacement cascades (SRO and MRO)

Mol%	SiO ₂	Na ₂ O	B ₂ O ₃	Al ₂ O ₃	CaO	ZrO ₂	Other oxides
CJ1	67.7	14.2	18.1				
CJ7	63.8	13.4	17.0	4.1		1.8	
SON68	52.8	11.3	14.1	3.4	5.0	1.6	11.8

Joint ICTP

Methodology: Materials and irradiation conditions

CEA/DEN/MAR/DE2D/SEVT

Stability of the metastable glassy state? Effect on the glass microstructure

²⁴⁴Cm SON 68 glass : SEM (CEA Marcoule), alpha decay dose $2x10^{19}\alpha/g$

(Around 100000 years of storage)

S. Peuget et al. JNM 44 (2014)

 ^{244}Cm SON 68 glass : TEM (ITU Karlsruhe), alpha decay dose $8x10^{18}\alpha/g$

cea

Homogeneous microstructure, without bubbles, phase

separation or crystallization

Stability of the glassy state

CEA/DEN/MAR/DE2D/SEVT

Stability of the metastable glassy state? Effect on the macroscopic properties?

Slight decrease of the glass density (0.5%)

No effect of the dose rate

Stabilization of the evolution at around $4x10^{18} \alpha/g$

Evolution according to an exponential law (direct impact model)

✓ Variations correctly simulated by external irradiations with heavy ions and MD simulation

 \checkmark Swelling level is lower under α decays irradiation (0,5% compared to 1,2% Au irradiation)

S. Peuget et al. J. Nucl. Mat. 354 (2006) 1

CEA/DEN/MAR/DE2D/SEVT

C. Jegou

S. Peuget et al. J. Nucl. Mat. 354 (2014) 1

Stability of the metastable glassy state? Effect on the macroscopic properties?

Mechanical properties: example of hardness

Decrease of hardness on curium doped glasses and ions irradiated glasses He induced lower changes

Stability of the metastable glassy state ? Effect on the macroscopic properties ?

Mechanical properties: example of hardness

Decrease of hardness on curium doped glasses and heavy ions irradiated glasses He induced lower changes

Stability of the metastable glassy state ? Effect on glass structure : SRO around B

Cea Stability of the metastable glassy state ? Effect on glass structure : SRO around Si and MRO

• New D2 band on ISG Cm doped glass: 3 members silica rings

Effects on the glass structure? Summary

Modification of the Short Range Order

cea

Increase of trigonal boron, increase of NBO

Modification of the Medium Range Order

Ring statistic modification, increase of glass disorder and Si/B mixing

Understanding of glass behavior under alpha decays

Effects on the glass structure? Ballistic damage

What happen in the displacement cascade induced by a recoil nuclei?

cea

- 1. Balistic phase
- 2. Thermal phase

Golden = Si Green = B Blue = Na Red = O

Very high quenching rate of the disordered state induced by the displacement cascade

Supervitrification

Main effects observed under <u>alpha decay irradiation</u>:

- ✓ A saturation effect with dose, a new glass structure is reached after around $4x10^{18} \alpha/g$ (Nuclear dose ~30 MGy)
- ✓ No effect of the dose rate in the relevant range
- Changes at both Short Range Order and Medium Range Order

 $\checkmark\,$ Changes in boron coordination number and glass polymerization index

- ✓ Changes in ring statistic, angle distribution
- ✓ A higher fictive temperature after irradiation
- ✓ Stored energy of ~100J/g

Cez

✓ Complex glasses are less modified than simple glasses

Waste mechanical degradation?

Can irradiation induce a cracking of the material?

- Due to important swelling under irradiation?
- Degradation of the mechanical properties?
- Due to bubble formation (He bubbles generated by alpha decays)

Waste mechanical degradation?

Can irradiation induce a cracking of the material?

- Due to important swelling under irradiation?
- Degradation of the mechanical properties?
- Due to bubble formation (He bubbles generated by alpha decays)

0.1

Important swelling of Homogeneous glass?

1 mm

Verre

Creuset Pt

Slight variation of the glass density

Low swelling level, no microcraking

CEA/DEN/MAR/DE2D/SEVT

Waste form degradation ? GCM?

Microcracking observed on some GCM

Amorphization of the crystalline phases: high swelling level of crystalline phase

To go further in GCM development:

Need to understand and master the origin of radiation induced cracking

Evaluation of the impact of type of phase, density and size of crystalline phases

0.02 X 1024 ALPHA DECAY/m3

100 µm

0.8 X 1024 ALPHA DECAY/m3

W. J. Weber and F. P. Roberts, Nuclear Technology, vol. 60.,178-198.

CEA/DEN/MAR/DE2D/SEVT

C. Jegou

Waste mechanical degradation?

Can irradiation induce a cracking of the material?

- Due to important swelling under irradiation?
- Degradation of the mechanical properties?
- Due to bubble formation (He bubbles generated by alpha decays)

Degradation of the mechanical properties?

Decrease of Hardness, Young Modulus, increase of fracture toughness

CEA/DEN/MAR/DE2D/SEVT

Waste mechanical degradation?

Can irradiation induce a cracking of the material?

- Due to important swelling under irradiation?
- Degradation of the mechanical properties?
- Due to bubble formation (He bubbles generated by alpha decays)

Is there any risk of formation of pressurized He bubbles in a nuclear class?

- Helium incorporation mechanism in the glassy network?
- Solubility limit? Helium bubble formation?
- Helium diffusion mechanism?
- Impact of radiation damage on these mechanisms?

CEA/DEN/MAR/DE2D/SEVT

WASTE MECHANICAL DEGRADATION?

[He]_{max}: 2,2 × 10²⁰ at./cm³ dpa: ~ 1-2

He - METHODOLOGY

He Infusion (P, T)

Equilibium gas/solid [He]_{max}: $3,5 \times 10^{18}$ at./cm³ dpa: 0 <u>³He⁺ implantation :</u>

 $[He]_{max}: 4,3 \times 10^{21} \text{ at./cm}^3 (local)$ dpa: 11 (local)

> CEMHTI Orléans, LEEL Saclay NRA d(³He,p)α)

Cm doped glass (alpha decays) [He]_{max}: $4,4 \times 10^{19}$ at./cm³ dpa: 1

CEA/DEN/MAR/DE2D/SEVT

CEA Marcoule

C. Jegou

Jannus Orsay, MIAMI Huddersfield in-situ TEM

Glass LTB: He incorporation in nuclear glass

Incorporation of He in the glass free volume

He infusion experiments

Shackelford J. Appl. Phys. 43 (1972)

T. Fares, J. Am. Cer. Soc. 95 (2012) 3854

Density of solubility sites accessible to helium in R7T7 glass: Ns~3x10²¹ sites.cm⁻³

Ns~3 at% to confirm by high pressure infusion experiments at JRC-ITU

CEA/DEN/MAR/DE2D/SEVT C. Jegou

Glass LTB: He incorporation in nuclear glass

S (Ns=3 at%)

Physical state of He ?

cea

Homogeneous generation with equilibrium gas/solide

In-situ ESEM during thermal treatment on He infused nuclear glass ([He]=0.001at%)

Glass LTB: He incorporation in nuclear glass (Ns=3 at%)

R. Bes et al J. Nucl. Mater. 443 (2013) 544-554

cea

CEA/DEN/MAR/DE2D/SEVT

Gutierrez et al., J. Nucl. Mater. 452 (2014) 565-568

Glass LTB: He incorporation in nuclear glass

(Ns=3 at%)

Physical state of He ?

Homogeneous generation at room temperature

²⁴⁴Cm and OSIRIS irradiated glass ¹⁰B(n, α)⁷Li : ~2x10²⁰ He/cm³ (0.2 at%, ~1dpa) $(\sim 10^6 \text{ ans de stockage})$

TEM (ITU Karlsruhe)

cea

40

[He] < Ns

Glass LTB: He incorporation in nuclear glass, summary

- Helium solubilized in the glass free volume
- Bubble formation for T>Tg (~550°C)

CEA/DEN/MAR/DE2D/SEVT

N_s: density of solubility sites

- [He] < Ns
- He solubilized in the free volume
- Weak probability for He bubble formation

Solubility Site

Incorporation (desintegration,

implantation)

out of equilibri

- Importance of temperature and damage? **Disposal conditions: in progress**
- 2. [He] > Ns
- **Bubble formation**
- Stress state?

C. Jegou

Glass LTB: He diffusion in nuclear glass

Helium release experiment: determination of D_{He}

T. Fares, J. Nucl. Mater. 416 (2011) 236

cea

$$\frac{\partial C(x, y, z, t)}{\partial t} = A(x, y, z, t) + D\Delta C(x, y, z, t)$$
$$A(x, y, z, t) = -\frac{dN_{(2^{44}Cm)}}{dt} = A_0(x, y, z) \exp\left(-\lambda_{(2^{44}Cm)}t\right)$$

Only a solubilized helium population is needed to fit the data

No need to introduce helium bubbles in the model ...

DHA, Atalante MAR/DE2D/SEVT

C. Jegou

Glass LTB: He diffusion in nuclear glass

CEA/DEN/MAR/DE2D/SEVT

cea

Glass LTB: modeling of He migration in a canister

EFFECTS OF RADIATION ON THE LEACHING BEHAVIOR?

EFFECTS OF RADIATION ON THE LEACHING BEHAVIOR?

Two parameters to study:

- 1. Dose rate
- 2. Dose

ALPHA CUMULATIVE DOSE on initial rate R0?

Soxhlet-mode dynamic leach tests (100°C, 1 month) on¹:

- ²⁴⁴Cm-doped glasses
- non radioactive glasses previously irradiated by Au ions
- R₀ determined from solution analysis

CEA/DEN/MAR/DE2D/SEVT

C. Jegou

48

EFFECTS OF RADIATION ON THE LEACHING BEHAVIOR?

2.Impact on residual rate, r_r

Two parameters to study:

- 1. Dose rate
- 2. Dose

- ✓ Glass characteristics:
 - 2 SON68 doped glasses

α -doped glasses	Dose rate (Gy/h)	Dose cumulated before leach exp
0.85 wt% of ²³⁹ PuO ₂	150	~ 3.7x10 ¹⁶ α/g
0.4 wt% of $^{244}CmO_2$	23,500	~ 3x10 ¹⁸ α/g

EXPERIMENTAL

- Glass samples ground & sieved \rightarrow 63 125 µm fraction powder \checkmark
- \checkmark SON68 reference glass powder \rightarrow reference experiment
- \checkmark **Glass** alteration
 - ~10 g of glass powder S/V = 20-25 cm⁻¹
 - ~ 300 mL of pure water
 - 4 Bar Ar overpressure
 - 90°C
 - > 3 years ٠
- Analyses: \checkmark

• Regular leachate samples (ICP-AES, ionic chromatography, pH, Eh, radiochemistry)

 Solid analyses after leach test (SEM, TEM, EDX)

CEA/DEN/MAR/DE2D/SEVT

Alteration layer formed under radiation for ²³⁹Pu-doped glass:

- Similar to non radioactive one
- Thickness : similar to those calculated from solution releases (300 nm)

CEA/DEN/MAR/DE2D/SEVT

C. Jegou

Simple glass composition

ISG (International Simple Glass)

Alteration protocol

Savillex, 200 cm⁻¹, 90°C

ToF-SIMS

Glass monoliths sampled regularly

Multiple-energy gold ion irradiation

- $0.5 3.5 \text{ MeV} \rightarrow \approx \text{constant ballistic damage}$
- Energy deposition < ion track formation
- Wide range of fluences:

Cez

Ballistic dose: $0.7 \rightarrow 215 \text{ MGy}$

Altered layer characterization

T = 90°C

Alteration layer thickness determination from boron profile

Alteration layer thickness determination from boron profile

Altered thickness vs fluence

a) ISG glass samples, altered for 13 days

- All non-irradiated zones in agreement
- Increase of alteration layer thickness vs nuclear dose
- « plateau » observed after \approx 2-4.10²⁰ keV_{bal}/cm³

On ²⁴⁴Cm-doped glass \rightarrow higher Rr probably due to alpha cumulative dose

CEA/DEN/MAR/DE2D/SEVT

SEM & TEM CHARACTERIZATIONS

SEM: ISG monolith altered 13 days (fluence = 3.34×10^{21} keV/cm³)

CEA/DEN/MAR/DE2D/SEVT

C. Jegou

TOF-SIMS PROFILES

Alteration kinetics: 1 dose, thickness evolution versus time

a) ISG glass (fluence 9)

DISCUSSION

Comparison with modifications of glass structure and properties

Vickers hardness reduction & altered thickness: same tendency

 \rightarrow Structural / properties & chemical durability similarly affected by the same cause

CEA/DEN/MAR/DE2D/SEVT

C. Jegou

DISCUSSION

Comparison with modifications of glass structure and properties

 \rightarrow Increase of free volumes \rightarrow increase of water or alkali migration?

 \rightarrow Increase of intern energy \rightarrow increase of glass reactivity?

Higher increase of alterability on glasses submitted to gold irradiation (x4.5) than on Cm-doped glass (x2.7)

→ Glass composition effect: complex compositions less sensitive to irradiation than simple glasses

 \rightarrow Recovery effect of α particles in real alpha decay

Initial alteration rate: no significant effect of alpha irradiation on complex glasses

Residual alteration rate: increase of altered thickness on damaged glasses (x 4.5 max) and plateau reached for doses > 2-4.10²⁰ keV_{bal}/cm³ (few 10¹⁸ α /g)

Chemical durability & glass structure / properties similarly affected by irradiation

- Mechanisms: water access and/or increase of local reactivity
- Long term chemical durability of glass sensitive to its initial structure

« simplifed » system vs ²⁴⁴Cm-doped glass, also taking into account:

- Glass composition: simple glass more sensitive than complex glasses
- Recovery effect of α particles in real alpha decay \rightarrow « Dual Beam » irradiations

To increase mechanistic undertansding :

- To explore very initial steps of alteration (water penetration in damaged glasses)
- Atomistic modeling: create a damaged glass, explore water diffusion...
- To study properties of alteration layer formed from damaged glasses

THANKS TO

DE LA RECHERCHE À L'INDUSTRIE

J.M. Delaye, M. Tribet, A.H Mir, E.A. Maugeri, C. Mendoza, R. Caraballo, O Bouty, C. Jégou DEN/DTCD/SECM, CEA Marcoule, France

🚛 I. Monnet, M. Toulemonde, S. Bouffard, Ganil, Caen, France

T. Charpentier, M. Moksura DSM/IRAMIS, CEA Saclay, France

D J. DeBonfils, G. Panczer, D. DeLigny

G. Calas, L. Galoisy

LPCML – University Claude Bernard, Lyon

IMPMC - University Pierre et Marie Curie, France

Funded by CEA and AREVA NC

With the support of

G. Henderson University of Toronto, Department of Geology, Toronto, Canada

T. Wiss, A. Jenssen, J.Y Colle, J. Somers, L. Martel, C. Selfslag, D. Staicu, A. Zappia EC JRC-ITU, Karlsruhe, Germany

C. Jegou