

V.G. Khlopin Radium Institute

Leach behavior of ceramics and glass doped with actinides

Bella ZUBEKHINA, Boris BURAKOV

ICTP, Trieste, 2018

HLW management in Russia

• More than 500 million m³ of radioactive waste accumulated in Russian Federation (according the data of National Operator of Radioactive Waste, 2017)

LLW - 99,3% ILW - 0,67% **HLW - 0,03%**

- "Mayak" vitrification facility (Chelyabinsk region)
- 28560 m³ of HLW were converted into glass (1987-2010)
- 6188 tones of nuclear glass with total activity 643 000 000 Ci *

* П.В. Козлов, М.Б. Ремизов. Сборник тезисов конференции «Зарождение радиоэкологии, её развитие и роль в обеспечении радиационной безопасности природной среды и человека», Озерск, 10-12 октября 2017. (in Russian)

how to study chemical durability

Leaching tests

Static

Dynamic

MCC1, PCT-A, PCT-B,...

SPFT, Soxlet test,...

Alteration tests

• Vapor hydration test (VHT) – to accelerate formation of secondary phases

Full scale and small scale experiments

• Sample interaction with groundwater, buffer and hostrock

radiation effects in solidified HLW

Confirmation chemical and mechanical durability

 Samples of ceramic and glass synthesized 30-40 years ago should be available for research

Prediction of future behavior

- Computer modelling
- Irradiation by heavy ions
- Accelerated radiation damage by ²³⁸Pu or ²⁴⁴Cm

synthesis of ²³⁸Pu doped samples

- Only small samples 0.1 10 g
- Pu content up to 1 wt.% for glass up to 10 wt.% for ceramic
- All operations including high temperature sintering should be carry out in shielded conditions

Heavy box

Glow box

Right after synthesis

Checking contamination on the floor

synthesis and study of Pu-doped B-Si-glass

9/06/2016

• B-Si-glass (France)

✓ Well known material for HLW immobilization.

✓ Commercial technology based on SON68 glass composition.

• Sintering in air, 1400°C, 1 hour

- 0,45 wt.% ²³⁸Pu for acceleration of radiation damages and nonradioactive (referent) sample with almost the same composition
- 3 wt.% Eu for trivalent lantanides simulation

small high temperature furnace developed at KRI

Patent Nº14714, Vol. Nº29, 20.10.2014

Sample of SON-68 glass doped with 0,4 масс.% ²³⁸Pu right after synthesis

Self glowing in darkness

leaching test

Static leach test, 90°C

 $SA : V = 1 \text{ cm}^2 : 80 \text{ cm}^3$

Accumulated dose (on 11.11.2017)

 $2,5 \cdot 10^{23} \alpha$ -decays/m³

 $1,7 \cdot 10^{16} \alpha$ -decays/sample

Days	7	14	28	56	108
Pu leach rate,					
g/(m² day)	0.08	0.04	0.34	0.58	0.13

²³⁸Pu normalized mass loss (90C, static, distilled water)

alteration at saturated conditions (1)

Sample doped with 0,4 wt. % ²³⁸Pu (left) and non-radioactive sample with the same composition (right) after contact with water at saturated conditions *static conditions, 4 month, 90°C,* SA : V = 1 cm² : 4 cm³

Self-destroying of the gel was observed in a week after gel formation!

alteration at saturated conditions (2)

left - optical image of the alteration xerogel detached from the bulk glass. Values of axes are in microns;

right – BSE images of carbon-coated xerogel detached from the glass. Whitish regions correspond to Pu-rich domains.

what kind of vessel material can be used for leaching test?

Stainess steel

Leaching of ceramics and single crystals doped with Pu based on cubic zirconia, monazite, zircon and plutonium oxide

MRS Advances © 2017 Materials Research Society DOI: 10.1557/adv.2017.216

 $\label{eq:Leaching of Plutonium from "Old" Samples of Single Phase Ceramics Based on $Zr_{0.79}Gd_{0.14}Pu_{0.04}O_{1.93}$ and $La_{0.5}Pu_{0.1}PO_4$ Doped with $^{238}Pu$$

Bella Yu. Zubekhina and Boris E. Burakov V.G. Khlopin Radium Institute, 28, 2-nd Murinskiy Ave., St. Petersburg, 194021, Russia

ABSTRACT

Samples of ²³⁸Pu-doped single-phase ceramics based on cubic zirconia, $Zr_{0.79}Gd_{0.14}Pu_{0.07}O_{1.93}$, and monazite, $La_{0.9}Pu_{0.1}PO_4$, have been studied by static leach test in distilled water. Before leach test accumulated doses were (in alpha-decays/m³ x 10^{26}): from 1.6 to 1.7 – for cubic zirconia; and 1.0 – for monazite. Despite high radiation damage both phases remained crystalline according to XRD analysis. The results of static leach tests demonstrate the following Pu normalized mass loss (in g/m², 90°C, 28 days): from 0.3 to 0.7 – for cubic zirconia; and 1.6 – for monazite. These data are discussed in comparison with results of previous leach tests carried out at lower accumulated doses.

DE GRUYTER

Radiochim. Acta 2018; 106(2): 119-123

Bella Yu. Zubekhina* and Boris E. Burakov Plutonium leaching from polycrystalline and monocrystalline PuO₂

https://doi.org/10.1515/ract-2017-2790

Received March 14, 2017; accepted August 28, 2017; published online October 9, 2017

Abstract: Plutonium dioxide samples have been studied by static leach tests at a temperature of 25 and 90°C. A normalized Pu mass loss was observed from polycrystalline (without correction for matrix porosity) and monocrystalline ²⁰⁰PuO₂ samples occurring at a rate of 10⁻⁴-10⁻³ g/m² in distilled water. This is comparable with some ceramic waste forms proposed for Pu immobilization. In contrast,

structure of the durable host-phase. There is some uncertainty, however, related to the acceptable level of Pu release from the ceramic waste form during interaction with aqueous solutions. A typical approach of characterizing of Pu loss in waste forms is based on static leach tests in distilled or deionized water at different temperatures, ranging from 25 to 90°C [4–10]. It is noteworthy to mention that similar to PuO₄ a much higher leaching rate of Pu from the ceramic matrix is observed for doping with ²³⁶Pu compared to ²³⁶Pu-doped samples [6, 8, 9].

Cubic zirconia (Zr,Gd,Pu)O₂ doped with **9.9 wt. % Pu-238**. Synthesized in 2000.

Cumulative dose $1.2 \cdot 10^{26} \alpha$ -decay/m³

self destruction of monazite ceramic sample

Pellet of single-phase ²³⁸Pu-doped ceramic, at accumulated dose approximately 10²⁶ alpha-decays/m³:

La_{0.9}Pu_{0.1}PO_{4,}

- 1) right after extraction from XRD sealed holder
- 2) piece used for leach test
- 3) pellet after leach test at 90°C for 28 days

Normalized Pu mass loss from samples of single-phase Pu-doped ceramics after static leach tests in distilled water for 28 days. Correction for ceramic porosity was ignored

Sample	Cumulative dose, α-decay/m ³ x 10 ²⁴	NL, g/m², 28 days, 90 °C
Cubic zirconia	a Zr _{0.79} Gd _{0.14} Pu _{0.04} O _{1.93} doped wi	ith 9.9 wt.% ²³⁸ Pu
Previous data [1]	1	0.04
	6	0.4
	8	0.4
	13	0.2
Pellet #1	163	0.3
Pellet #2	170	0.7
Cubic zirconia	Zr _{0.75} Gd _{0.19} Pu _{0.06} O _{1.91} doped wi	ith 9.9 wt.% ²³⁹ Pu
Previous data [2,3]	insignificant	0.04
Pellet #1	0.6	0.1
Pellet #2	0.6	0.1
Monazi	te La _{0.9} Pu _{0.1} PO ₄ doped with 8.1	wt.% ²³⁸ Pu
Pellet #1	1	0.4
Pellet #2	100	1.6

Leaching of plutonium from polycrystalline and monocrystalline PuO₂

Sample of polycrystalline ²³⁹⁻ ²³⁸PuO₂ contained 11% ²³⁸Pu Cumulative dose 3 x 10²⁶ alphadecay/m³

Single crystals of ^{238,239}PuO₂

Results of PuO_2 static leach tests: \bigcirc and $\bullet -$ polycrystalline samples (the same pellet was used in different tests); $\Box -$ single crystals (only separate fresh samples for each test)

single crystalls to be studied

Single crystals of zircon doped with ²³⁷Np (1) and ²³⁹Pu (2). Single crystal of neptunium oxide (3).

synthesis and study of Ti-ceramic with HLW

MRS Advances © 2018 Materials Research Society DOI: 10.1557/adv.2018.208

New route for synthesis of Synroc-like ceramic using non-selective sorbent LHT-9

Zubekhina B.Yu.¹, Burakov B.E.¹, Petrov Yu.Yu.¹, Britvin S.N.²⁻³, Mararitsa V.F.⁴, Demidov Yu.T.⁴, Nickolsky M.S.⁵⁻⁶

¹ V.G. Khlopin Radium Institute (KRI), 28, 2-nd Murinskiy Ave., St-Petersburg, 194021, Russia
² Saint-Petersburg State University, 7/9, Universitetskaya Nab. St-Petersburg, 199034, Russia

³ Nanomaterials Research Center, Kola Science Center, RAS, 14, Fersman St., Apatity, 184200, Russia

⁴ Socium Ltd., St-Petersburg, Russia

⁵ Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry RAS, 35, Staromonetniy per., Moscow, 119017, Russia

⁶ A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31/4, Leninsky pr., Moscow, 119071, Russia

All operations with liquid HLW were carried out in heavy box

Sintering in air inside glow box at temperature 1200°C

Pellet of Synroc-like polyphase titanate ceramic

Leach rates* of ¹⁵⁴Eu, ²⁴¹Am, ²⁴⁴Cm (for 10 month, dist. water, 90°C)

*calculated for geometrical surface area

small scale experiment

with highly radioactive sample

Started in February 2018

Thanks for your attention!

