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Nuclear Waste Glasses



Nuclear Waste Glasses Worldwide

Vitrification is the reference technology to immobilize highly radioactive nuclear wastes worldwide

Examples of sites producing alkali-borosilicate glasses for waste immobilization are listed 
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Site Operated Melter Tech Produced 
Glass Mass, t

Disposal 
Glass Mass, t

Planned 
Disposal

Pamela, Belgium 1985-1989 JHCM 650 650 Clay

AVM, France 1978-2012 HWIM 1,220 1,220 Clay

LaHague, France 1989-Present HWIM,CCIM 7,032* NR Clay

Karlsruhe, Germany 2010-2012 JHCM 208 6,450* Salt or Clay

Tokai, Japan 1995-Present JHCM 700 NR TBD

Rokkasho, Japan TBD JHCM 0 NR* TBD

Sellafield, UK 1990-Present HWIM 2,500* 2,700 TBD

WVDP, US 1996-2002 JHCM 574 574 TBD

DWPF, US 1996-Present JHCM 7,200 13,867 TBD

WTP HLW, US TBD JHCM 0 32,000 TBD

WTP LAW, US TBD JHCM 0 527,838 Sand

Based on Gin 
et al. 2013

JHCM- Joule-heated 
ceramic melter

HWIM- Hot-walled 
induction melter

CCIM- Cold-crucible 
induction melter



Silicate Glass Structure

Glass: an amorphous, metastable, solid

Structure dependent on composition and temperature history

5

Example Crystal Example Glass



Silicate Glass Structure, cont.

[SiO4]
4- tetrahedra form the primary “network”

Additives and waste components 

chemically bound within solid

Network formers (e.g., Si4+, B3+, P5+)
linking or “polymerizing” the anion complexes 
(e.g., SiO4

4-) leads to a 3D network

coordination number of 3 or 4 (generally)

Network modifiers (e.g., Na+, Ca2+)
breakup or “depolymerize” the network

coordination number 6 to 8 (generally)

Intermediates (e.g., Al3+, Fe3+)
can either reinforce the network (coordination number 
of 4) or depolymerize the network (typically for 
coordination number of 6 to 8)
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Modeled structure of ISG

Du and Rimsza 2017



Glass Structure, cont.

Rings and Cages
SiO4

4-, BO4
5- and AlO4

5- form three-dimensional network 

structure with ring size centered at around 6. 
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Composition Effects on Properties Important 

to U.S. Waste Glasses

Oxide Al2O3 B2O3 CaO Cr2O3 Fe2O3 K2O Li2O MgO Na2O SiO2 ZnO ZrO2 Other

Viscosity            

EC            

TL, CT (spinel)             NiO, MnO

PCT            

VHT            

Nepheline            

Salt             SO3, Cl , V2O5

TCLP             MnO

Corrosion             NiO

8

 - Increase property
 - Decrease property
 - Small effect on property
multiple arrows are for non-linear effects, first is for lower concentrations



Glass Composition Design

A range of glass compositions are generated

Glasses are designed to meet specific physical, 
chemical, and regulatory compliance constraints

Glasses are designed specifically for waste 
compositions to be immobilized, examples:

US tank waste primarily composed of cold chemicals 
with high composition variability and low radioactivity

French UOx HLW is primarily fission products and 
high radioactivity

Performance related properties used in glass 
formulation are typically responses to one or 
more standardized durability test, examples:

100°C Soxhlet

7-day, 90°C, Product Consistency Test (PCT)

28-day, 90°C, Materials Char. Center test 1 (MCC1)

200°C Vapor Hydration Test (VHT)
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Regulatory
Compliance

Phase
Stability

Loading
and Cost

Melter
Corrosion

Radiation
Stability

Conductivity
Viscosity

Chemical
Durability

Vienna 2014 & The Simpsons



Glass Compositions, wt%
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Oxide France Japan UK Belgium DWPF WTP HLW WTP LAW
R7/T7 AVM P0798 Magnox AGR Blend Pamela WVDP Min Max Min Max Min Max

Al2O3 4.9 9.7 5.0 5.1 <0.1 1.9 20.2 6.0 4.3 9.8 2.0 18.9 6.1 6.1
B2O3 14.0 17.0 14.2 16.8 18.0 18.3 25.6 12.9 4.3 8.3 4.0 20.0 10.0 10.0
BaO 0.6 0.3 0.5 0.5 0.6 1.2 - 0.2 - - - - 0 0
CaO 4.0 0.2 3.0 - - - 5.0 0.5 0.5 1.4 0 3.1 2.0 7.0
Cs2O 1.4 0.7 0.8 1.1 1.1 1.6 0 - - - - - 0 0
Fe2O3 2.9 1.9 2.0 1.7 0.7 1.9 0.5 12.0 8.2 12.6 1.9 17.4 5.5 5.5
K2O - - - - - - - 5.0 - - 0 2.6 0.01 3.4
Li2O 2.0 0.4 3.0 4.0 4 4.8 3.5 3.7 3.5 5.6 0 6.0 0 4.3
MgO - 3.6 0 5.6 <0.1 1.3 - 0.9 0.3 2.2 - - 1.5 2.8
MoO3 1.7 0.8 1.5 1.6 1.9 2.0 0 - - - - - - -
Na2O 9.9 17.7 10.0 8.3 8.9 8.1 8.8 8 11.3 13.6 4.1 21.4 5.4 21.0
P2O5 - 1.2 - 0.2 0.1 - - 1.2 0.2 0.6 0 2.5 0.0 1.4
SiO2 45.5 41.4 46.6 46.0 49.2 46.3 35.3 41.0 44.8 54.6 31.0 53.0 43.3 50.1
TiO2 - - - - - - - 0.8 0.0 0.7 0 0.1 1.4 1.4
ZnO 2.5 - 3.0 - - - 0 - - - 0 4.0 3.5 3.5
ZrO2 2.7 1.0 1.5 1.6 1.8 2.4 0.1 1.3 0.1 0.2 0 13.5 3.0 3.0
[Ln,An]2O3 4.9 3.1 6.1 4.2 10.1 8.4 0 4.6 1.0 3.5 0 8.5 - -
Minors 3.0 1.1 2.9 3.3 3.6 1.7 1.6 1.9 1.7 10.0 3 11.6 0 0.2
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General Aspects of Silicate 

Glass Corrosion



General Observations

12
Vienna et al. 2013



General Observations, cont.

Solution + Dissolved 

Species

Passivating Film

Altered Glass

Base Glass

2nd phase

TransportReactions

Reactive Behaviors

• Selective dissolution of 

glass network

• Restructuring of glass to 

form gel (dissolution 

reprecipitation under 

some conditions)

• Evolution of gel structure

• Dissolution of gel

• Precipitation of 2nd phases

Transport Behaviors

• Reactive transport of 

water and dissolved 

species through tortuous 

passivating film

• Ion exchange in altered 

material



General Observations, Cont.
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Vienna et al. 2001

Porous 
Gel 

Layer

Pristine 
Glass

Interdiffusion Zone 
(Ion Exchange Layer)

Secondary 
Alteration 
Products

Solution

Often multi-
layered

Gin et al. 2017



Research Challenges
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Amorphous solid 

converting to 

amorphous solid

Processes 

occurring at a 

buried interface

Transport through 

porous network that 

evolves over time

Interface at small 

length-scale, often 

showing roughness

Transition 

between water 

as solvent to 

water as solute

Very slow process 

(compared to 

laboratory time frames)

Multicomponent glasses 

(most of the periodic table)

Unknown radiolysis 

and radiation damage 

effects on alteration 

layer properties
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Focus on Reaction Rates



Example Chemical Reactions

17

Rieke et al. 2014

Ion Exchange

Hydrolysis

Condensation



Example Reaction Rate Model (without transport)

Forward dissolution rate, rf = the rate at which glass dissolves into solution at 

specific values of the T and pH in the absence of back reactions

Dissolution rate most likely to be directly impacted by structure and 

composition of glass
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ri = normalized glass dissolution rate 

(based on element i), g m-2 d-1

rf = forward glass dissolution rate, g m-2 d-1

vi = stoichiometric coefficient for element i in glass

k0 = intrinsic rate constant, g m-2 d-1

aH+ = hydrogen ion activity

η = pH power law coefficient (dependent on pH regime)

0

potential
exp 1 +

other terms

a
i i H

g

E Q
r v k a

RT K




+


  −   = −          

Ea = apparent activation energy, J mol-1

R = gas constant, J mol-1 K-1

T = absolute temperature, K

Q = ion-activity product of rate controlling species

Kg = pseudo-equilibrium constant for glass

σ = reaction order (Temkin coefficient)

1

rf



Isolation of Individual Effects

Single-pass flow-through test (SPFT, ASTM C1662) can 

be used to measure effects of individual parameters

Measure impacts of pH, T, [H4SiO4] and [Al(OH)4
-] 

Avoid feed-back effects by high flow rate/surface area 

(q/s)

19Neeway et al. 2017

Abraitis et al. 
2000



pH Impacts

Hydrolysis rate depends on:

Bond length and bond angle (stretched 

O-Si-O bonds favors hydrolysis)

Site protonation (high or low pH)

20Knauss et al. 1990



Temperature Impacts

21

Inagaki et al. 2012

Jollivet et al. 2012



H4SiO4 Concentration Impacts

22

Ferrand et al. 2006



Aluminate Effects

23Abraitis et al. 2000ab
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What is New?



Glass Composition Effects on Forward Rate

25

19 glasses all measured by SPFT with systematic variation in pH (7 to 13) and T (23° to 90°C)

Include broad range of compositions (US HLW glasses, US LAW glasses, International glasses)



Modeling the Data for Individual Glass

Measure rf of glass with systematic variation in pH and T

Fit data to linear equation: 
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0

log[ ]
log[ ] log[ ]f a

e
r k pH E

RT
= +  − 

Log[k0] = 8.37 ± 0.92 gm-2d-1

η = 0.396 ± 0.060

Ea = 81.6 ± 6.1 kJmol-1

R2 = 0.983

RMSE = 0.141



Simultaneously Fit rf to pH, T, and Composition

Model explaining 90% of variation in log[rf] data 

obtained with no composition effects 

(R2
fit = 0.896, R2

val = 0.894, RMSE = 0.323)

Three glasses have noticeably higher log[rf]

Composition effects only found in log[k0] term

Composition effects model shows most 

significant composition effect is estimated 

fraction tetrahedra from [4]B (f[4]B)

Effect non-linear, best modeled 

by step-function change

27



Summary of Modeling Results

Composition effects on rf in caustic solution are relatively small over a broad 

composition space

They are best modeled using a f[4]B = 0.22 threshold with rate being composition 

independent above and below the threshold

The exact location of the threshold and any 

composition effects outside of the regions 

tested here are uncertain

28



End Result
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Residual Rate



How Do We Measure Long-Term Rates

Product Consistency Test (PCT) (ASTM C1285)
Ground glass soaked in DIW at temperature

Glass component concentrations measured in solution after test

31

304 SS
Vessel

Solution

Glass
Powder

150 m

Solution

monolith

MCC-1 (ASTM C1220)
Glass soaked in DIW at temperature

Glass component concentrations measured in solution after test

Different solution compositions (e.g., pH, [H4SiO4], 

counter ions, etc.), temperatures, times, and isotopic 

tracers are also used



Residual Rate

Corrosion rate is observed to slow to a 

nearly linear, residual, rate

What causes rate to drop (and ultimately 

determines rr)?

32

Gin et al. 2012



Residual Rate, cont.

1. Thermodynamic driving force drops

[H4SiO4] (and other glass components) increase 

in concentration in solution

Basis of Grambow 1987 model:

33

, 1 expi j j

j j i

j

A
r k a

RT





−
  −

= −   
   



Residual Rate, cont.

2. Formation of a passivating reactive interface (PRI)

A high-density hydrated silicate layer close to the altering glass slows transport

Basis of GRAAL model:

34

Frugier et al. 2008 



Residual Rate, cont.

3. Pour “clogging”

A high-density silica layer far from 

reacting interface

High Zr limits Si reorganization 

35

Cailleteau et al. 2008 

6 hours

500 nm 100 nm500 nm 100 nma b c500 nm 100 nm500 nm 100 nma b c



Residual Rate, cont.

4. Dissolution/reprecipitation

A high-density silica layer forms, 

glass corrodes forming a local 

chemical gradient, and silica 

deposits on this layer on the 

other side of the chemical 

gradient

Explains layer formation seen in 

alteration products

36

Lenting et al. 2018 

6 hours
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What is New?



Complex Glass Structures

Developed set of potentials for modeling multi-component waste 
glasses and validated the models with structural data from 
EXAFS and NMR:

First ever structural models of the ISG (international simple glass, a six 
component glass representing composition of waste glasses)

Answered questions of distribution of modifiers around [BO4]
-, [AlO4]

-, 
& [ZrO6]

2-

Precisely describes how silicate network is fragmented by the borate 
groups → crucial for structure of altered layers

Modeled structure of ISG

Du and Rimsza 2017

Comparison of Zr MD structure 

calculated (not fit) using FEFF 

with measured EXAFS data for 

ISG, Lu et al. 2018



Alteration Layer Structure/Chemistry

Reactive potentials (MGFF) used to accurately 
represent interactions between water and glass surface

Two approaches to form amorphous gel:

Insert porosity in predetermined pattern →
allow water to interact and relax

Replace soluble components with OH →
allow water to interact and relax

Interconnected network of 1-4 nm pores with 
composition fluctuations.

Ren et al. 2017



Alteration Layer Structure/Chemistry

Developed method to flash-freeze, cryogenically prepare, and image surface layers using APT

Schreiber et al. 2018

Dan to update

Frozen Water + Corroded 
Glass Particles

FIB Cross-Section of 
Corroded Glass + Water

Cryo-Prepared APT Specimen

3D APT Reconstruction 
at Water/Gel Interface

Ca

OHx

Li+Na

10 nm

alkali-rich water

alkali-poor
water

Ca-rich
glass gel



Alteration Layer Structure/Chemistry

Interconnected network of 1-4 nm pores with composition fluctuations.

Perea et al. 2018

MD simulated

Experimental 

From the hydrated 
glass region (HG)



Alteration Layer Structure/Chemistry

Porosity and pore size distribution in alteration layer of 1625 day-corroded ISG from spectroscopic 

ellipsometry (SE) to provide statistics not possible with cryo-APT → results are consistent between the 

two techniques

Ngo, et al. 2018



Alteration Layer Structure/Chemistry

Water speciation within nano-pores and pore characteristics identified by NMR/TGA.

H of –X-OH HB H of H2O mol H of "free" –X-OH 

23.5 70.7 5.8 

 
Collin et al. 2018



Alteration Layer Structure/Chemistry

Spectroscopic analysis identified distinct surface structures and multiple layers → help to 

determine passive layer and validate models

Ngo, et al. 2018



Properties of Alteration Layer

Water transport in silica nanopores of diameters from 0.5-4 nm investigated using MD

Transport is restricted by 1-2 orders of magnitude in confined spaces due to atomic scale roughness 

and reaction with pore walls.

Gin et al. 2018



Properties of Alteration Layer

Water mobility in gel recorded by time-dependent 
isotopic and elemental ToF-SIMS profiles

3D porous structure in which small fraction of water 
molecules diffuse quickly through micro-pores, while 
most are trapped in closed nano-pores.

Gel reorganization is thus key mechanism accounting 
for extremely low water diffusivity (~10-21 m2·s-1), which 
is rate-limiting for overall reaction. 

Gin et al. 2018
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Acceleration (Stage III)



Empirically Measured Results Very Significantly

Broad range of long-term corrosion rates observed in 

nearly static conditions.

Stage III (accelerated corrosion) is particularly challenging

For certain glasses tested under static conditions an abrupt 

increase in corrosion rate is observed

Not all glasses and not all conditions show this rate increase

The rate increase is often observed coincidental with zeolite 

precipitation

Some glasses that do not display stage III in static tests can 

be induced to accelerate by changing conditions: e.g., pH 

Ribet et al. 2004



Example Disposal Environment Predictions 
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Stage III Observations

50pH 11.5pH 9

Increasing pH of ISG glass corroding in 

static conditions initiates Stage III

Stage III is often associated with higher pH 

conditions, but, not always

Si, B, Na concentrations increase while Al 

concentration decreases

In unperturbed static tests, [Al]  always 

precedes rate acceleration

Generally, linear rate

It’s not yet clear how the rate may vary with 

temperature and under what conditions it 

will occur 

Not clear if it can occur in disposal 

environments

Gin et al. 2015



Stage III Observations, cont.

Stage III can be 

induced (or initiated 

earlier) by seeding 

with certain zeolites

Na-P1 and Na-P2 

but not Analcime 

and Clinoptilolite 

(Crum 2017, unpub)
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Fournier et al. 2017
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Glass as a Barrier



Glass as One of the Many Barriers in a Disposal System

Radionuclides and hazardous components 

released “congruently” with glass matrix corrosion

Typically indicated by boron release in testing

Available for transport and solubility control

Near-field materials (those with chemical 

feedback to corroding glass) 

Steel and steel corrosion products

Clay backfill

Cements

53

Waste Forms

Waste Package Buffer or Other 
Near-field 

(interacting) 
Barriers

Host Rock and Far-field Natural Barriers

Biosphere

THMC
Coupling



Glass as One of the Many Barriers in a Disposal System

54JNC 2006, H17 Report

ANDRA 2005



Glass as One of the Many Barriers in a Disposal System

A continuum of reliance on glass performance 

Hanford LAW → glass performance is primary barrier

Belgium super-container → glass is minor barrier

55



Surface Area

Flux is proportional to 

reactive surface area of glass

Glass cracking due to rapid 

cooling increases surface 

area (4 to 50× Sgeom)

Not all cracks are accessible 

to corrosion 

algeredglass ( , )RNJ M r t s dsdt = 

Glass / NF materials interactions

Reactive 
surface area

Alteration rate

ASTM Standard C1174
Poinssot and Gin, 2012

Cross section of an inactive R7T7-type glass block

40 cm

Verney Carron et al. 2010

56
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Example Glass Corrosion Models



General Modeling Approach
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Mechanistic 

Models

❑ Aagaard-Helgeson

❑ Residual rate

❑ r(t)

❑ Grambow-Müller

❑ GRAAL

C concentration

D dispersion coef

v advective flow

Cs sorbed concentration

Ns number of sinks/sources

ρ density of EBS

ϴ porosity of EBS

t time

S surface area

V volume

x depth in glass

Fv flow

sol solution

gls glass

eff effluent
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Al(OH)3
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Rieke and Kerisit 2015



Predictive Models

59






















−= 

−
1

net 1,

K

Q
akr

i

v

i
ji

Silicate Mineral Solution

Aagaard-Helgeson (AH)

res

1

Hnet 1exp r
K

Q
a

RT

E
kr a +




















−








−= −

+





Pristine Glass Solution

Residual Rate (RR)

dx

dC
tr

dx

Cd
D

dt

dC
matrix )(

2

2

OH2
−=

Gel 

Layer

Pristine 

Glass

Hydr. 

Glass
Solution

Grambow-Müller (GM)

Pristine 

Glass
PRI

Dissolved 

PRI
Solution

GRAAL









−=

sat

Si
diss

C

)(
1

tC
r

dt

dE
dt

dE

D

rte

r

dt

de
−

+

=

PRI

hydr

hydr

)(
1

Rieke and Kerisit 2015

Aagaard and Helgeson 1982
Grambow 1987

Pierce et al. 2004

Grambow and Muller 2001

Frugier et al. 2008
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Radiation Effects



Radiation Damage to Glass

Ballistic damage due to alpha recoil is the 

most significant impact on glass structure 

and properties

61
Bill Weber, personal communications



Impact of Alpha Decay

62Weber 2014



Impact of Alpha Decay

Generally alpha decay impacts saturate at 

~1018 decay/g

The impacts include stored energy, volume, 

fictive temp, NBO concentration, etc.

Relatively small impacts have been 

measured on glass corrosion rates

63

Initial Rate

Peuget et al. 2014



Gamma Radiation Effect on Residual Rate

Generally no effects measured in rres for 

gamma radiation well in excess of those 

expected in disposal environments

64Roland et al. 2013
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