

Understanding the Effectiveness of Plutonium Surrogates for Waste and Stockpile Immobilisation

Lewis R Blackburn Immobilisation Science Laboratory University of Sheffield

Supervisors:

- Neil Hyatt (UoS)
- Martin Stennett (UoS)
- Ewan Maddrell (NNL)

Joint ICTP-IAEA International School on Nuclear Waste Actinide Immobilization Trieste 2018

Nuclear Decommissioning Authority

Radioactive Waste in the United Kingdom

🥖 @ISL_Sheff

United Kingdom Plutonium Stocks

@ISL_Sheffiel

- The United Kingdom reprocesses spent nuclear fuel into reusable components *via* PUREX separations, this takes place at ThORP (Thermal Oxide Reprocessing Plant), Sellafield.
- Reprocessing will cease in 2018; UK plutonium stocks are predicted to reach **140 teHM** (largest non-military stockpile worldwide.
- The Nuclear Decommissioning Authority (NDA) is liable for the stockpile and is in the process of refining several credible options for long term management.

Dual Track Strategy

ØISL_Sheffie

Plutonium management policy in the United Kingdom: The need for a dual track strategy

Neil C. Hyatt

Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK

- \$4,000,000,000 and 50% complete
- Cost and schedule overruns
- Inadequate assumptions of labour and equipment
- Projected to cost around \$30,000,000,000
- 'Stranded Plutonium'

- Almost 40 t of separated plutonium left without disposition route
- Comparisons between UK and US positions
- Indicates MOX based strategy might not be sustainable or achievable

Dual Track Strategy:

- Immobilisation and disposal to spearhead policy
- Regressions to MOX programme would not strand the Pu without disposition route
- "any remaining plutonium which is not converted to MOX, or otherwise reused, will be immobilised and treated as waste for disposal."

Α

Т

Т

Ε

Ν

Τ

0

Ν

The use of surrogates/simulants is common:

			Ве	Тох	cicity												
Н			Pų	Тох	cicity	+ rac	lioac	tivity	,								Не
Li	Be		Ru	Cos	st							В	С	N	0	F	Ne
Na	Mg		_	_	~			-	-	-		Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Xe	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	131	Pa	X	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Some elements are costly and radioactive ٠
- Stringent requirements for Pu manipulation •
- Specialist equipment and risk to workers ٠

SURROGATE HEIRARCHY

Handling requirements

90 Thorium 232.04

238.03

58

92

Ce

- Actinide
- Least studied
- Gap in knowledge? •

No element can successfully provide a full suite of behaviours from which true mimicking can occur

CaZrTi₂O₇ Zirconolite

- Candidate phase for plutonium retention: Synroc-C
- Demonstrated aqueous durability
- Natural analogues
- Waste ions can partition onto both Zr⁴⁺ and Ca²⁺ sites
- Polytypic behaviour (2M, 4M, 3T etc.)

🥤 @ISL_Sheffield

Composition	Wt%	Mineralogy	Wt%
TiO ₂	57.0	Hollandite	30
ZrO ₂	5.4	Zirconolite	30
Al ₂ O ₃	4.3	Perovskite	20
BaO	4.4	Magnéli phases	15
CaO	8.9	Intermetallics	5
HLW	20.0		

2M-Zirconolite

4M-Zirconolite

- Compare relative behaviour of plutonium surrogates Ce, U, Th, by incorporation into zirconolite lattice
- Synthesised materials characterised by XRD, SEM, EDX, XAS

Target Composition ($S_x = U^{4+}$, Th ⁴⁺ , Ce ⁴⁺)	Target Valence
CaZr _{0.6} S _{0.4} Ti ₂ O ₇	+4
CaZr _{0.7} S _{0.3} Ti ₂ O ₇	+4
$CaZr_{0.8}S_{0.2}Ti_2O_7$	+4
$CaZr_{0.9}S_{0.1}Ti_2O_7$	+4

Intensity (a.u.)

CaZr_{1-x}Ce_xTi₂O₇ – 1300°C, 8 h

 $CaZr_{0.6}Ce_{0.4}Ti_2O_7 - 12 h$

@ISL_Sheffield

 $XRD - CaZr_{1-x}U_{x}Ti_{2}O_{7}$

neffield The University Of Sheffield.

 $XAS - CaZr_{1-x}U_xTi_2O_7$

@ISL_Sheffie

 $XRD - CaZr_{1-x}Th_xTi_2O_7$

The University Of Sheffield.

🥖 @ISL_Sheffie

Hot Isostatic Pressing: $CaZr_{1-x}Ce_{x}Ti_{2}O_{7}$, x = 0.1, 0.2, 0.3, 0.4

Can Number	Densification (internal)%
1	43
2	44
3	43
4	42

SEM – HIPed CaZr_{0.6}Ce_{0.4}Ti₂O₇

@ISL_Sheffield

٠

- ZC zirconolite
- C cerium
- P perovskite
- T rutile
- Z zirconia

- XRD confirms phase assemblage
- Ceria likely unreacted material
- Perovskite and zirconia could have formed but also possibility of unreacted calcium titanate and zirconium oxide
- Optimisation of pre-processing parameters or possibly higher reaction temperature needed

- Substantial differences in plutonium surrogate behaviour has been identified
- Traditional sintering in oxidising atmosphere leads to pronounced changes in phase assemblage
- The propensity of cerium to reduce leads to formation of secondary phases, highly undesirable for plutonium immobilisation
- The potential of uranium to form higher oxidation states than applicable for plutonium indicates that its use as a surrogate is highly dependent on processing atmosphere
- The refractory nature of ThO2 in comparison to CeO2 and UO2 implies its use as a simulant for PuO2 is sensitive to processing conditions
- Large cerium oxide inclusions leads to conclusion that optimisation of pre-processing parameters for HIP is needed

Thank you for listening – any questions?

 $Nucle \underline{US}$

Immobilisation Science Laboratory

Nuclear Decommissioning Authority

midas

