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• Main processes of actinide migration in the geosphere 

• Basis of reactive transport modeling 

• Why using reactive modeling in underground radioactive 

waste disposal

• Modeling of spent-fuel (and vitrified waste) leaching 

experiments
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▌ Approach = application of our code HYTEC with some references to the 
literature; references are given in the appendix

▌ Materials = a subsurface sandy aquifer & a deep argillaceous formation



Sandy aquifer = quartz, calcite, 
& argillaceous and ferric phases 
fractions – organic matter not 
considered

Rain water (i.e. active O2 & CO2 dissolved 
gas)

Contaminated zone with UO2 debris

Actinide migration
Schematic configuration
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15 m

20 m



(Local) differential equation

ci = water concentration of a chemical 
element i
D = diffusion/dispersion
U = Darcy velocity

K = hydraulic conductivity
h = hydraulic head

Submitted to boundary conditions, 
e.g. C0.U

Actinide migration
Hydrodynamics
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Representative 
elementary 
volume REV



Tracer (HTO) Dissolved O2

Actinide migration
Source term
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= concentration 
in/on the solid 
phase



UO2
2+ UO2(s) 

UO2
2+ (uranyl) aqueous speciation = competition between several ligands 

presents in the natural water, e.g. carbonates, hydroxyls, phosphates, 
small organic molecules

Actinide migration
Source term and complexation in solution
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Note on thermodynamic data
Chemical reaction and speciation
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• Thermodynamic chemical equilibrium
• International databases, e.g. ThermoChimie, 

More than 1300 aqueous reactions, 900 minerals,
of which the compilation of the NEA data (actinides, 

fission products, activation products, etc.  



UO2
2+ is controlled by the precipitation of secondary minerals of U(VI), e.g. 
1. hydrated oxides: becquerelite, schoepite…
2. silicates: soddyite, boltwoodite, uranophane…

UO2
2+ with no sink term UO2

2+ with schoepite
precipitation

Actinide migration
Sink/attenuation terms = precipitation
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Actinide migration
Sink/attenuation terms = precipitation
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UO2
2+ with no sink term UO2

2+ with precipitation 
and sorption

Actinide migration
Sink/attenuation terms = sorption
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Sorption plays a key role for actinide plume attenuation,
especially in trace concentration levels



For ex., 
complexation on goethite surfaces:

Actinide migration
Sink/attenuation terms = sorption
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Actinide migration
Sink/attenuation terms = sorption
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Actinide migration
Colloidal migration
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UO2
2+ sorbed onto mobile 

colloids

Negatively, sorption onto colloids will enhance the migration,
especially in trace concentration levels

Colloids = submicrometric
organic humics, hydrous ferric
oxides, silica, etc.
Which are mobile in water



Actinide migration
Summary

15

1. Source term in water are often linked to a chemical
reaction

2. Migration is driven by advection and/or diffusion

3. Complexation in solution may enhance stability in water

4. Sink terms = precipitation and sorption

5. Colloidal migration can enhance the contaminant plume



Reactive transport modeling
Coupling of H – C – T processes
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(Un)-saturated       
diffusion/advection

Transport (H)

Conduction, convection

Thermic (T)

Aqueous chemistry, 
dissolution/precipitation, 

sorption

Chemistry (C)Driving force

Coupling

Driving force



Chemistry (C)

Diffusion/advection, 
density effect, 

equations of state

Gas phase (H)

Decay and decay 
chains

Isotopes (I)

Transport (H)

Reactive transport modeling
Implementation of new processes

Driving force
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Actinide migration
Kd et solubility limit simplification
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Safety assessment of underground radioactive waste disposal
generally uses a simplified chemical approach, i.e. Kd and solubility limit



Actinide migration
Kd simplification
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Kd LangmuirFreundlich

λ = radioactive decay constant

R = retardation factor



Actinide migration
Kd simplification
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Spent fuel disposal in 
Opalinus clay

Values for the Opalinus Clay

Actinides are strongly sorbed
onto the clayey rock
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Kd values can significantly change according to the chemistry (pH, etc.) 
and this can be estimated by reactive transport modeling.
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Note on Kd sensitivity to pH…
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Actinide migration
Solubility limit simplification
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with the constraint that c ≤ solubility limit 



Actinide migration
Solubility limit simplification
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Spent fuel 
disposal in 

Opalinus clay

Values for the 
Opalinus Clay

.

U – Np – Pu solubility is slow under reducing condition but can 
strongly increase under oxic conditions

Am solubility is relatively high but non sensitive to redox 
conditions

mol/L



Actinide migration
Solubility limit simplification
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• Main processes of actinide migration in the geosphere 

• Basis of reactive transport modeling 

• Why using reactive modeling in underground radioactive 

waste disposal

• Modeling of spent-fuel (and vitrified waste) leaching 

experiments

Outline
4
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Waste 
container 

divider

Host rock: 
argillite

Underground radioactive waste 
disposals = multi-barrier system

Assess of the durability of an 
industrial facility for several 
thousands of years

Wasteform reactivity in disposals
Long term evolution
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Wasteform reactivity in disposals
Long term evolution
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Reactive transport modeling
Wasteform reactivity

• Reactive transport modeling is applied to 

• the other engineered materials (clay, glass, steel) 
• the geosphere (unsaturated zone, host rock)

• Share the same databases, e.g. ThermoChimie, Thermoddem, 
CEMDATA-PSI…

• Can be coupled to thermic and gas processes

• Can simulate long-term duration, from century to 100 000 years

• Therefore, great generality and flexibility

• However, complexity and strong coupling ==> specialized (and more 
efficient) approaches, especially in terms of mechanics
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Pu-doped UO2 leaching
In a synthetic clayey pore water and iron foil

29

Gaseous phase Ar/CO2 3000 ppm (P=3,5 bars)

Different kinds of nuclear fuel (Pu-doped UO2

pellets, MOx 7% pellets, or spent fuel fragments) 

Carbonated water/Synthetic COx water

Iron foil

 Anoxic atmosphere

 To simulate the steel container

 To test their reactivity

 To simulate environmental water chemistry

T = 25 
°C



Pu-doped UO2 leaching
In a synthetic clayey pore water and iron foil

U [ug/L]

Gas & 
solution

U1-xPuxO2

pellets

Iron foil
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Cylindrical modeling grid

Pu-doped UO2 pellets  

Synthetic COx water

Iron foil

r (cm)

h (cm)

No stirring during lab test 

=> diffusion and coupling 

Pu-doped UO2 leaching
Reactive transport
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Pu-doped UO2 leaching
Geochemical thermodynamics and kinetics
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Pu-doped UO2 leaching
Reaction H2O2 / Fe2+ at the UO2 surface

H2O2

10 days

Iron foil

U1-xPuxO2

pellets

Gas & 
solution
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Pu-doped UO2 leaching
Reaction H2O2 / Fe2+ at the UO2 surface

H2O2

10 days

Fe[II]

10 days

FeOOH

10 days

Iron foil

U1-xPuxO2

pellets

Gas & 
solution
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Goethite

450 days

r (cm)

h (cm)

Pu-doped UO2 leaching
Reaction H2O2 / Fe2+ at the UO2 surface
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H2O2 Dissolved 

Fe(II)

Goethite

FeOOH

r (cm)

h (cm)

Time = 20 d Time = 20 dTime = 20 d

h (cm)h (cm)

r (cm)r (cm)

If H2O2 primary production is increased by 50

 the precipitation front of FeOOH is shifted in solution

Pu-doped UO2 leaching
Displacement of the redox front
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h (cm)

r (cm)

Time = 450 d

Siderite

450 days

r (cm)

h (cm)

Calcite

450 days

Time = 450 d

r (cm)

h (cm)

pH

450 days

Time = 450 d

calcite
Fe° + 2 H2O   Fe2+ +  2 OH- + 

H2(g)

Pu-doped UO2 leaching
Corrosion products on the iron foil surface

Ankerite CaFe(CO3)2
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Uranium

10 days

Pu-doped UO2 leaching
Uranium in solution and redox potential

F

UF

pH ≈ 7.5
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UO2 pellet

450 d

UO2 (am)

precipitate

450 d

H2O2 scavenging by 
Fe(II)

Uranium

10 days

UO2 (am)

precipitate

450 d

U(VI) secondary 
reduction by Fe(II)

Pu-doped UO2 leaching
Uranium release
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Mass balance in 
agreement with 
the experiment



Fe° + 2 H2O   Fe2+ +  2 OH- + H2(g)

COx synthetic 

groundwater

pH 

HCO3
- + OH-

 CO3
2- + H2O

Ca2+ + CO3
2-
 CaCO3

H2O2 Fe2+

Akaganeite

α radiolysis

Iron foilUO2

40 µm Aragonite

½ H2O2 + Fe2+
 Fe3+ + OH-

Fe3+ + 3 OH-
 FeOOH + H2O

Ca-carbonates precipitation

Iron corrosion

Fe(III)-hydroxide precipitation

Iron corrosion products precipitation

Fe2+ + Ca2+ + 2 CO3
2-


(Ca,Fe)(CO3)2

2Fe2+ + CO3
2- + 2 OH-



Fe2CO3(OH)2

Ankerite 

Chukanovite

Redox front

U(IV)
Colloïdes 

U(IV)

Sorption U(IV)

Pu-doped UO2 leaching
Common experiment/modeling mechanisms
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Borosilicate glass leaching
In Mg-rich environment
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Implementation of the GRAAL 
model in HYTEC …

have demonstrated than Mg 
sustains glass dissolution at a high 
rate due to Mg-Si phase 
precipitation and pH effect

Stages I – II and III



Actinide migration
• Source term chemical reaction + advection and/or diffusion
• Complexation enhance stability
• Sink terms = precipitation and sorption
• Colloids can enhance migration

In deep clayey rocks,
• Actinides are strongly sorbed and have a low solubility (Am excepted)

but their chemistry is highly sensitive to redox.

Reactive transport modeling
• Couple chemical – hydrodynamic – thermal processes
• Simulate both actinide migration and waste/rock interactions
• Support but not replace safety assessment (Kd, etc.)
• Useful to interpret actinide waste immobilization experiments,

• but ask the modeler the parameters he needs before starting ;)

To conclude
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