Joint ICTP-IAEA International School on Nuclear Waste Actinide Immobilization Trieste 10 – 16 sept 2018

Modeling of actinide migration and wasteform reactivity in the geosphere

Laurent De Windt & Christophe Jégou (CEA)

Academics

Lab = geochemical and reactive transport modeling

Dewindtite crystal $Pb_3(H(UO_2)_3O_2(PO_4)_2)_2$.12H₂O

Phosphate family, named by Professor M.A. Schoep of the University of Ghent (Belgium) in memory of his student Jean DeWindta distant cousin?, drowned in Lake Tanganyika in Congo.

Cr Acad Sci Paris 174 (1922)

Outline

- Main processes of actinide migration in the geosphere
- Basis of reactive transport modeling
- Why using reactive modeling in underground radioactive waste disposal
- Modeling of spent-fuel (and vitrified waste) leaching experiments
- Approach = application of our code HYTEC with some references to the literature; references are given in the appendix
 - Materials = a subsurface sandy aquifer & a deep argillaceous formation

Actinide migration

Schematic configuration

Rain water (i.e. active $O_2 \& CO_2$ dissolved gas) Contaminated zone with UO_2 debris

Sandy aquifer = quartz, calcite, & argillaceous and ferric phases fractions – organic matter not considered

15 m

Actinide migration Hydrodynamics

 $\frac{\partial \omega c_i}{\partial t}$ $= \operatorname{div}(D(\omega) \overrightarrow{\operatorname{grad}} c_i - c_i \overrightarrow{U})$

(Local) differential equation

c_i = water concentration of a chemical element i D = diffusion/dispersion U = Darcy velocity

$$\overrightarrow{U} = -\underline{\mathbf{K}} \cdot \overrightarrow{\operatorname{grad}}(h)$$

K = hydraulic conductivity h = hydraulic head

Submitted to boundary conditions, e.g. $C_0.U$

Actinide migration Source term

Dissolved O₂

Tracer (HTO)

 $\frac{\partial \omega \overline{c_i}}{\partial t} \leftrightarrow \text{ uraninite (UO_2)} + 2 \text{ H}^+ + \frac{1}{2} \text{ O}_2(\text{aq}) \rightarrow \text{UO}_2^{2+} + \text{H}_2\text{O}_2^{2+}$

Actinide migration Source term and complexation in solution

 $\frac{\partial \omega \overline{c_i}}{\partial t} \leftrightarrow \quad \text{uraninite} (UO_2) + 2 H^+ + \frac{1}{2} O_2(aq) \rightarrow UO_2^{2+} + H_2O$

UO₂²⁺ (uranyl) aqueous speciation = competition between several ligands presents in the natural water, e.g. carbonates, hydroxyls, phosphates, small organic molecules

Note on thermodynamic data

Chemical reaction and speciation

$$\frac{\partial \omega \overline{c_i}}{\partial t} \leftrightarrow K = \frac{(C)^{n_c} (D)^{n_d}}{(A)^{n_a} (B)^{n_b}} = e^{\left(\frac{-\Delta_r G^0}{RT}\right)}$$

- Thermodynamic chemical equilibrium
- International databases, e.g. ThermoChimie, More than 1300 aqueous reactions, 900 minerals, of which the compilation of the NEA data (actinides, fission products, activation products, etc.

fission products, activation products, etc.

Actinide migration Sink/attenuation terms = precipitation

 UO_2^{2+} is controlled by the precipitation of secondary minerals of U(VI), e.g.

- 1. hydrated oxides: becquerelite, schoepite...
- 2. silicates: soddyite, boltwoodite, uranophane...

Actinide migration

Sink/attenuation terms = precipitation

Dissolution/precipitation rate of a mineral M :

$$\frac{d[M]}{dt} = kA_V \prod_i (A_i)^{a_i} \left(\left(\frac{Q}{Ks} \right)^p - 1 \right).$$

where $A_v = A_s[M]$ and A_s is the specific surface (m²/kg).

- The term ∏_i(A_i)^{a_i}, (A_i) is either catalytic or inhibiting according to its signs.
- Temperature dependency is given by the Arrhenius's law:

$$k = A \exp\left(\frac{-E_A}{RT}\right),$$

where E_A stands for the apparent activation energy (J/mol).

Actinide migration Sink/attenuation terms = sorption

 UO_2^{2+} with precipitation UO_2^{2+} with no sink term and sorption Time= 1 y Conc. [mol/L] Time=1 y Conc. [umol/L] 500 0.01 126 31.5 7.92 0.005 0.5 y [m] y [m] -12 -16 -16 -201 -20 3 12 12 x [m] x [m]

Sorption plays a key role for actinide plume attenuation, especially in trace concentration levels

Actinide migration Sink/attenuation terms = sorption

For ex.,

complexation on goethite surfaces:

$$= Fe-OH + UO_2^{2+} \rightarrow = Fe-OUO_2^{+} + H^+$$

$$= Fe-OH + UO_2OH^+ \rightarrow = Fe-OUO_2OH + H^+$$

Amphoteric functional groups at the solution/solid interface, i.e. acid or base according to pH:

 ${\displaystyle {\displaystyle {\displaystyle \equiv}}} S{\operatorname{-OH}_2}{}^+ \, \rightleftharpoons {\displaystyle {\displaystyle {\displaystyle {\displaystyle \equiv}}}} S{\operatorname{-OH}} + {\operatorname{H}}{}^+,$

$$\equiv$$
S-OH $\rightleftharpoons \equiv$ S-O⁻ + H⁺.

Actinide migration

Sink/attenuation terms = sorption

• Density of surface charge σ :

$$\sigma = \frac{F}{A_s[M]} \sum_i Z_i[=S_i].$$

- Usually positive at acidic pH and negative at basic pH.
- The sorption constant writes as:

$$K_{ads} = K_{int} \exp\left(rac{-\Delta ZF\Psi(x=0)}{RT}
ight).$$

where the potential Ψ is a function of σ as well as the counter-ion distribution in the solution close to the solid surface.

Actinide migration Colloidal migration

UO2²⁺ sorbed onto mobile colloids

Colloids = submicrometric organic humics, hydrous ferric oxides, silica, etc. Which are mobile in water

Negatively, sorption onto colloids will enhance the migration, especially in trace concentration levels

Actinide migration

- 1. Source term in water are often linked to a chemical reaction
- 2. Migration is driven by advection and/or diffusion
- 3. Complexation in solution may enhance stability in water
- 4. Sink terms = precipitation and sorption
- 5. Colloidal migration can enhance the contaminant plume

Reactive transport modeling Coupling of H – C – T processes

$$D_e(\omega) = D_e(\omega_0) \left(rac{\omega - \omega_c}{\omega_0 - \omega_c}
ight)^m \quad \Delta V_{m,tot} = \sum V_{m,i} \Delta C_{m,i}$$

MINES

Reactive transport modeling

Implementation of new processes

Actinide migration Kd et solubility limit simplification

Safety assessment of underground radioactive waste disposal generally uses a simplified chemical approach, i.e. Kd and solubility limit

Actinide migration Kd simplification

 $R = 1 + K_d$

$$R\frac{\partial\omega c}{\partial t} = div(D_e(\omega)\overrightarrow{grad}(c) - c\vec{U}) - \lambda\omega c$$

 λ = radioactive decay constant

R = retardation factor

Actinide migration Kd simplification

ıt	K _d				
ner	Ref.	Lower limit	Upper limit		
Eler	case	(pessimistic)	(optimistic)		
	$[m^{3} kg^{-1}]$	$[m^{3} kg^{-1}]$	$[m^{3} kg^{-1}]$		
Cinorg	0.001	1×10^{-4}	0.006		
$\mathrm{C}_{\mathrm{org}}$	0	0	0		
Cl	0	0	0		
Ca	0.001	1×10^{-4}	0.007		
Sr	0.001	1×10^{-4}	0.007		

U 20 0.5 200 Np 5 50 500 Pu 1 300 20 10 1 200 Am

$$K_{d}[m^{3}/kg] = \frac{W}{(1-W)} \Gamma_{s} \frac{F(Np)}{(Np)} = \frac{W}{(1-W)} \Gamma_{s} K_{d}[-]$$

Spent fuel disposal in Opalinus clay

Values for the Opalinus Clay

Actinides are strongly sorbed onto the clayey rock

Note on Kd sensitivity to pH...

Kd values can significantly change according to the chemistry (pH, etc.) and this can be estimated by reactive transport modeling.

Actinide migration Solubility limit simplification

 $R\frac{\partial\omega c}{\partial t} = div(D_e(\omega)\overrightarrow{grad}(c) - c\vec{U}) - \lambda\omega c$

with the constraint that $c \leq solubility$ limit

Actinide migration Solubility limit simplification

Element mol/L	ref. case value rc-v	lower limit 11-v	upper limit ul-v	ox. case value oc-v
U	3 × 10 ⁻⁹	3×10^{-10}	$5 imes 10^{-7}$	3 × 10 ⁻⁴
Np	5×10^{-9}	3×10^{-9}	$1 imes 10^{-8}$	1×10^{-5}
Pu	5×10^{-8}	3×10^{-9}	1×10^{-6}	3×10^{-8}
Am	1 × 10 ⁻⁶	5 × 10 ⁻⁸	3 × 10 ⁻⁵	1 × 10 ⁻⁶

Spent fuel disposal in Opalinus clay

Values for the Opalinus Clay

U – Np – Pu solubility is slow under reducing condition but can strongly increase under oxic conditions

Am solubility is relatively high but non sensitive to redox conditions

Actinide migration Solubility limit simplification

Figure 1: U and Pu activity vs Eh diagram in carbonated water (10⁻²M) at pH 9. Red dot: homogeneous MOx. Blue square : heterogeneous MOx [19]

Outline

- Main processes of actinide migration in the geosphere
- Basis of reactive transport modeling
- Why using reactive modeling in underground radioactive waste disposal
- Modeling of spent-fuel (and vitrified waste) leaching experiments

Wasteform reactivity in disposals Long term evolution

Underground radioactive waste disposals = multi-barrier system

Assess of the durability of an industrial facility for several thousands of years

@www.cecilemassart.com

Wasteform reactivity in disposals Long term evolution

Reactive transport modeling

Wasteform reactivity

- Reactive transport modeling is applied to
 - the other engineered materials (clay, glass, steel)
 - the geosphere (unsaturated zone, host rock)
- Share the same databases, e.g. ThermoChimie, Thermoddem, CEMDATA-PSI...
- Can be coupled to thermic and gas processes
- Can simulate long-term duration, from century to 100 000 years
- Therefore, great generality and flexibility
- However, complexity and strong coupling ==> specialized (and more efficient) approaches, especially in terms of mechanics

Pu-doped UO₂ leaching In a synthetic clayey pore water and iron foil

Pu-doped UO₂ leaching In a synthetic clayey pore water and iron foil

Pu-doped UO₂ leaching Reactive transport

Pu-doped UO₂ leaching

Geochemical thermodynamics and kinetics

- Code : CHESS HYTEC
- Database: ThermoChimie (Andra)
 + added species (H₂O₂, Pu-doped UO₂,...)

Added kinetic laws:

 $\begin{aligned} & H_2 O_2 \text{ production} \\ & \frac{d[H_2 O_2(aq)]}{dt} = \frac{d[H_2(aq)]}{dt} = k_{rad} A_{UO_2} \\ & k_{rad} = 10^{-9} \ mo / .m^{-2}.sec^{-1} \ \left(385 \ MBq.g_{UO_2}^{-1} \right) \end{aligned}$

 $\begin{aligned} & \mathsf{H_2O_2} \text{ disproportionation} \\ & \mathsf{H_2O_2(aq)} \to \mathsf{H_2O} + 0.5\mathsf{O_2(aq)} \\ & \underline{d[\mathsf{H_2O_2(aq)}]}{dt} = k_{disp} \ [\mathsf{H_2O_2(aq)}] \end{aligned}$ $\begin{aligned} & \textbf{Iron corrosion} \\ & \mathsf{Fe} + 2\mathsf{H_2O} \to \mathsf{Fe}^{2+} + 2\mathsf{OH}^- + \mathsf{H_2(aq)} \\ & \underline{d[Fe]}{dt} = k_{anox} \ A_{Fe} ; \ k_{anox} = 10^{-9} \ mol.m^{-2}.sec^{-1} \end{aligned}$

Pu-doped UO₂ dissolution $\frac{d[UO_2]}{dt} = R_{total} = R_{red} + R_{O_2} + R_{H_2O_2}$ In reducing media $UO_2 + H_2O \rightleftharpoons U(OH)_4(aq)$ $R_{red} = \frac{d[UO_2]}{dt} = k_{red} A_{UO_2} \left(\frac{IAP}{K_{UO_2}} - 1\right)$ $k_{red} = 10^{-12} mol.m^{-2}.sec^{-1}$ In oxidizing media H_2O_2 | $UO_2 + 2H^+ + H_2O_2(aq) \rightarrow UO_2^{2+} + 2H_2O_2$ $R_{H_2O_2} = \frac{d[UO_2]}{dt} = k_{ox}^{H_2O_2} A_{UO_2} (H_2O_2(aq))^{0.59}$ $k_{-2}^{H_2O_2} = 10^{-6} mol_{-m}m^{-2} sec^{-1}$ $UO_2 + 2H^+ + 0.5O_2(ag) \rightarrow UO_2^{2+} + H_2O_2^{2+}$ 0, $R_{O_2} = \frac{d[UO_2]}{dt} = k_{ox}^{O_2} A_{UO_2} (O_2(aq))^{0.74}$ $k_{ov}^{O_2} = 10^{-7} mol.m^{-2}.sec^{-1}$

Pu-doped UO₂ leaching Reaction H₂O₂ / Fe²⁺ at the UO₂ surface

 $2 H_2 O \rightarrow H_2 O_2(\mathsf{aq}) + H_2(\mathsf{aq})$

Pu-doped UO₂ leaching Reaction H₂O₂ / Fe²⁺ at the UO₂ surface

$$\begin{split} \label{eq:Fe} \mathsf{Fe} + 2\mathsf{H}_2\mathsf{O} &\to \mathsf{Fe}^{2+} + 2\mathsf{O}\mathsf{H}^- + \mathsf{H}_2(\mathsf{aq}) \\ &\quad \mathsf{Fe}^{2+} + 0.5\mathsf{H}_2\mathsf{O}_2(\mathsf{aq}) + 2\mathsf{O}\mathsf{H}^- \to \mathsf{Fe}\mathsf{O}\mathsf{O}\mathsf{H}(\mathsf{s}) + \mathsf{H}_2\mathsf{O} \end{split}$$

Pu-doped UO₂ leaching Reaction H₂O₂ / Fe²⁺ at the UO₂ surface

50-years UO₂

Pu-doped UO₂ leaching Displacement of the redox front

Conc. (mol.L-1)

Conc. (mol.L-1)

If H_2O_2 primary production is increased by 50 \rightarrow the precipitation front of FeOOH is shifted in solution

 $Fe^{\circ} + 2 H_2O \rightarrow Fe^{2+} + 2 OH^- +$ $HCO_3^{+} + OH^{-} \rightleftharpoons CO_3^{2-} + H_2O$

 $Fe^{2+} + CO_3^{2-} \rightleftharpoons$ siderite

Pu-doped UO₂ leaching Uranium in solution and redox potential

Pu-doped UO₂ leaching Uranium release

MINES ParisTech

Pu-doped UO₂ leaching

Common experiment/modeling mechanisms

MINES

Borosilicate glass leaching In Mg-rich environment

To conclude

Actinide migration

- Source term chemical reaction + advection and/or diffusion
- Complexation enhance stability
- Sink terms = precipitation and sorption
- Colloids can enhance migration

In deep clayey rocks,

 Actinides are strongly sorbed and have a low solubility (Am excepted) but their chemistry is highly sensitive to redox.

Reactive transport modeling

- Couple chemical hydrodynamic thermal processes
- Simulate both actinide migration and waste/rock interactions
- Support but not replace safety assessment (Kd, etc.)
- Useful to interpret actinide waste immobilization experiments,
 - but ask the modeler the parameters he needs before starting;)

References for this talk

Reactive transport modeling (RTM)

• De Windt, L., van der Lee, J., Schmitt, J.-M. (2005). Modélisation en géochimie des eaux. Concepts et applications aux problèmes d'environnement, Techniques de l'Ingénieur AF6530.

43

- Steefel, C.I. et al. (2015). Reactive transport codes for subsurface environmental simulation, Computational Geosciences 19, 445–478.
- van der Lee, J., De Windt, L. (2001). Present state and future modeling of geochemistry in hydrogeological systems, Journal of Contaminant Hydrology 47, 265-282.
- van der Lee, J., De Windt, L., Lagneau, V., Goblet, P. (2003). Module-oriented modeling of reactive transport with HYTEC, Computers and Geosciences 29, 265-275.

Some applications of RTM to wasteform leaching experiments

- Debure, M., De Windt, L., Frugier, P., Gin, S. (2013). HLW glass dissolution in the presence of magnesium carbonate : Diffusion cell experiment and coupled modeling of diffusion and geochemical interactions, Journal of Nuclear Materials 443, 507–521.
- De Windt, L., Pellegrini, D., van der Lee, J. (2004). Coupled modeling of cement/ claystone interactions and radionuclides migration, Journal of Contaminant Hydrology 68, 165-182.
- Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.E., Jollivet, P., Ayral, A., De Windt, L., Santarini, G. (2008). SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model, Journal of Nuclear Materials 380, 8-21.
- Odorowski, M., Jegou, C., De Windt, L., Broudic, V., Jouan, G., Peuget, S., Martin, C. (2017). Effect of metalliciron on the oxidative dissolution of UO2 doped with a radioactive alpha emitter in synthetic Callovian-Oxfordian groundwater, Geochimica et Cosmochimica Acta 219, 1–21.

References for this talk

Kd, solubility limits and thermodynamic data

• Altmaier, M., Gaona, X., Fanghänel, F. (2013). Recent Advances in Aqueous Actinide Chemistry and Thermodynamics, Chem Rev 113, 901-943.

- Bradbury, M.H., Baeyens, B., Thoenen, T. (2010). Sorption Data Bases for Generic Swiss Argillaceous Rock Systems, Technical Report 09-03, Nagra (CH).
- Giffaut E., et al. (2014). Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225–236.
- Wersin, P., Schwyn, B. (2004), Project Opalinus Clay, Integrated approach for the development of geochemical databases used for Safety Assessment, Technical report 03-06, Nagra (CH).
- Wilhelm, R.G. (2004). Understanding variation in partition coefficient Kd values, Volume III: Review of Geochemistry and Available Kd Values for Americium, Arsenic, Curium, Iodine, Neptunium, Radium, and Technetium, EPA 402-R-04-002C report (USA).