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Main aspects of radionuclide transport processes
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(a) Important radionuclide transport processes (b) Geochemical factors for radionuclide transport
(after Bodvarsson et al., 2000). (after Eckhardt, 2000) in the context of RW
Note that the radionuclides also undergo disposal.
radioactive decay, but this is not shown This depiction of breached waste canister shows
in the scheme. escaping of dissolved radionuclides from

the repository through water-filled rock fractures
and their impeding by the surrounding rock matrix.
These data are important for defining the chemical
and physical parameters for modeling.



Mechanisms of migration of radionuclides and colloids through
hydraulically active fracture — near fracture space
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Main mechanisms of migration of radionuclides and colloids are: 7) Formation of inorganic colloids;

2) Dissolution of radionuclides in water; 3) Sorption / desorption of colloids on the fracture surface;

4) Sorption of radionuclides by inorganic colloids; 5) Filtration of colloids; 6) Dimensions of colloids
determine their penetration into the rock matrix pore space; 7) Diffusion of radionuclides into the rock
matrix pore space; 8) Sorption and incorporation of radionuclides by organic colloids (after NAGRA, 2001).



Some mechanisms of radionuclide migration which affect on distribution
coefficient (K,) and retardation factor (R,) values

(Frick et al., 1988)
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K, = Cg/C, (Alexander, McKinley, 1994) Density and porosity are the

R.=V,/V.=1+Kpl® (Freeze, Cherry, 1979) fundamental variables in rocks



Images of geometry and linkage of water-conducting discontinuities

Models

Type 1: Single fault

master fault

splay crack

1 master fault, few splays

Type 2: Swarm of single faults

=

2 or more master faults with
splays, not well connected

\

Type 3: Fault zone

2 or more master faults
with connecting splays

Type 4: Fault zone with
rounded geometries

e

2 or more master faults with connecting

Type 5: Fault zone with long
splays

2 or more master faults with

Mechanistic principles
|

Fault geometries of five types of water-conducting
features on a scale of meters (after Mazurek, Jakob,
2001). The sketch in the lower right corner
schematically illustrates the evolution of the growth
and linkage of master faults and splay cracks,
resulting fault steps and locally different fault
geometries.
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Some physical properties of fault zones related to
their structure (damage zone and fault core): (a)
single fault core and (b) multiple fault core, which

permeability

:
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illustrate the resulting complexity in characterizing
the resultant filtration-transport properties (after
Faulkner et al., 2010)




Change of structure of pore-fracture space and effective porosity
as a function of distance from fluid-conducting discontinuity

Lab tests

Field reality
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Variation of effective porosity as
a function of distance due to
14C-PMMA method (after
Hellmuth et al., 1992)
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Shear fractures
and tension cracks

40

Conceptual scheme of internal structure of a
fault zone (after Shipton and Cowie, 2003): (l)
core of fault zone, (ll) zone of dynamic effect,

(111)y wall rock (protolith). Autoradiographs
show distribution of U in rock samples.




Fractionation of actinides (uranium)

Model Field / Lab observations

Wall rock Fracture Wall roc
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water 5 i
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Model of fractionation of uranium isotopes into the fracture — near
fracture space (after Suksi et al., 2001): application of uranium-series
disequilibrium data to interpretation of oxygen intrusion in rocks.

d

4 I e 3 | st el
. 9 oy s ‘.‘ ¥ ¥ v o e, i "‘: Sl 87

o i,

£ 5 — R | +

A

Uranium concentrations (FTR data) along
High sorption on fractures No sorption on fractures mineralized ( Fe-hydroxides) fractures

Comparison of optical image and digital radiograms showing within upper part of the oxidation zone

radium (a) and plutonium (b) sorption on rock samples of the Niznekanskv aranitic m if
Niznekansky granitic massif (gabbro-diabase and garnet-biotite ( ekansky granitic mass )

plagiogneiss, respectively) (after Petrov et al., 2018).



Relationship between THMC processes (a) and alternative approaches
of imaging geometry and linkage of water-conducting discontinuities
in space (b) for filtration-transport modeling
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Realistically simulating a nuclear repository requires the ability to couple the
continuous interplay of heat, chemistry, water flow, and rock mechanics.
Porosity and permeability are the fundamental variables that link these processes.



Response of fracture pore space on heat and water flow

Before After Before After

Scanned images of leucogranite (a), porphyritic
adamellite (b), porphyritic granodiorite-tonalite
(c), and quartz diorite (d) before and after heating
up to 250 grad C, which results to transformation
d of fracture-pore structure.

P2

->

25 mm

Eq. area

Test on water filtration through artificial

0.01

or 02 03 04705 *% i ez 0a o4 os A fracture in porphyrite (after Zaraisky, 1994).
Porosity (%) Porosity (%) Porosity (%) Conditions: T = 250°C, P1(inlet) = 146 bar,
Sequence of opening of pore channels and increase of P2(outlet) = 145 bar, 38 days, water volume =
total porosity (@) in granitic gneiss during heating from 103.4 cm3, permeability (mD) 1.0 10-" (initial) and
22 (a) to 60 (b) and 150 (c) grad C. 14C-PMMA method. 2.5 103 (final). Chl — chlorite, Ep - epidote, Cc -

Time of impregnation by MMA varies from 8 to 12 days.  calcite, Pl - plagioclase, Ksp — potassium feldspar



Location and traits of the Transbaikal Region
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Satellite view of the area with the main faults and caldera edge

P> Volcanic Caldera of 20 km in diameter (180 km2) comprises 19
ore bodies

» Hostrocks: up to 1.4 km of volcano-sedimentary accumulation
within the caldera lying on a granitic Proterozoic basement

P Host structures: Vertical and sub horizontal faults
P> Age : Cretaceous (145-140 Ma)

;| P Ore lies within veins, sub-vertical stockworks and along
stratiform layers in the sandstone units.

» Ore: pitchblende, coffinite, and branerite,

= p Genetic Model: Hydrothermal remobilisations synchronous of
late stage of magmatic activity

P Total initial Resources : 280,000 tU @ 0.2%U
> Production : ~140.000 t U from 1968 to 2013, 2,133t in2013

ﬁ




Uranium transfer: environmental and natural resource issues
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One of the main objectives is to
improve data on processes
governing U migration and

accumulation in oxidizing-reducing
conditions of fracture porous
environment

Site Selection

%2/ and Characterization
/NY, for Long-Term Storage

of SNF
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and Isotopy
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preferential fluid
flow pathways
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stress-strain
context of

emplacement
of granites and
U ore formation

3. To obtain
data on U
(actinide)
migration
using natural
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4. To improve
flow and U
reactive
transport
models

of the porous
fractured
environment



Some issues of natural analogue studies at deep levels
of geological formations
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Geologic section of the Antey-Streltsovskoe U deposit (a), photomosaic
map of underground opening (b) and autoradiograph of the vein-type
mineralization (c)
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Natural analogue studies: for needs of SNF storage facility operation

1) orebodies are
composed by pitchblende
UO2 = SNF analogue

2) orebodies are
enveloped by packets

of hydrothermally altered
rocks (hydromicatized
rocks and low-
temperature mineral
assemblages as analogue
of backfill material)

09} 1ne4 ‘1| fare]

3) packets of altered rocks
are localized in fresh
granite (the enginering
disturbed zone and far-
field of an SNF facility)

Seismic-tectonic activity
and water inflow
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(a) Analogue of constructional elements of
SNF storage facility. An example of the
Antey U deposit

(b) A set of tools for detailed
examination of probabilistic scenario
of the thermohydromechanical

and chemical (THMC) processes
including rock burst (c)
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conditions
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and field work data)
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( 4.3.1. Distribution coef-
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4.3. Distribution
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ents and kinetic reaction
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5.1.1. Topography
(field work data)

5.1.2. Initial and current |

water table level {literary
andfield work data)

5.1. Water balance
data

5. Infiltration rates 5.13. Precipitation

(literary data)

4

5.14. E\.lapotranspiration'1
(literary data)

4

5.1.5. Temperature
(literary data)

Sampling procedures and analytical
methods from the requirements of U mass
transfer modeling for vadose zone



The Tulukuevsky Open Pit (TOP): 50,000 tU@0.2%U




Dynamics of water table recession and changing
of oxidizing/reducing conditions during the TOP mining

ESE

<l 1972-1983

710

YWNW ESE
1998 - Current state

r ~ 0l LV |3 [Ny

~145m




General view of the NW block with mineral zoning
of hydrothermal and hypergene transformations of rocks

+ 710 masl
Subzone 4 690
of leaching
660
Secondary \ Initial
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540
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| - external (relic: KFs, Olg, Q, Bt, Hem / neogenic: lIt-Sm, Car)

Il - intermediate (Q, KFs, Alb / lIt-Sm, Car, Q, LA}
lll - internal (Q, KFs f Q, lIt-Sm, Car, Hem, LA, Ber, Kaol)



Pitchblende (a) and pitchblende-molibdenite (b) ores
and consecution of U mineralization

Time consecution of U mineralization:
Hypogene (pitchblende and tucholite)

U minerals of the ancient oxidation zone {(beginning:
blacks and urhyte, completion: uranophane)

Secondary (uranophane, heyviite, calcurmolite, liebigite
etc.)



TEM images and EDS of uranophane development

8 8
Energy (keV) Energy (keV)

Uvo,+0,+H,0 — UViO,nH,0+Me — MeUVL,0.nH,0+Si — Me(UO,),[Si0,],nH,0
Pitchblende Blacks (H-pitchblende) Hydroxides (velsendorphite) Silicates (uranophane)



Distribution of U in biotite and U content in welded tuffs
according to Fission-Track Radiography data

U, ppm

1 10 100 1000 10000
=$= Altered flamme

=@- Altered matrix
== Pseudomorphoses of hematite and LA on biotite

=8- Leucoxene-hematite aggregate (LA)
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Detection of filtration properties of fluid-conducting disconti

A =

Pl E f - ST L v

N = 3717 ; S

Saq = 183100 m2 (ext =5 m)
S, = 368000 m2 (ext =10 m)
3 Sp;= 100796 m? (ext =30 m)

Fault 1A

3D GoCAD model of fracture aperture (A),

length (ext) and total area (S) at different levels
of the TOP. Constructed together with J. Sausse,
UHP, Nancy

Effective porosity (®) and structure of pore space
(resin impregnation) as function of distance from
hydraulically active fault



Major element distribution pattern in welded tuff

The Sr distribution in welded tuff replaced with
- X ; _ : hydromica at a distance of 50 cm (sample J3)
—— from the core of hydraulically active fracture is

58 : shown leftmost. The elevated Sr contents
(white) in carbonate microveinlets and flasers
4t J2 - (invisible to the naked eye) are shown

rightmost (u-EDXRF scanning
- and isotopic geochemistry data)

Content of U as function of
distance from fluid-conducting
fracture (FTR data)

é‘ . Redox front

Distance [cm]

200 300 400 200

0



Evolution of the porosity as function of distance from the fluid-
conducting fault according to resin impregnation technique
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Note the evolution of the micropore shapes from slit-like (a) and bottle-like (b) to cylindrical (c).
The shapes are determined by water centrifuge method. Electron microscopy is needed!



Isotopic Dilution Data

Values of '80 (a) and U

total
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Conceptual model of temporal changes in U content within the profile
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Initial distribution
of U in volcanic rocks

Tectonics

Pre-ore hydro-micatization:
Leaching and redistribution
of initial U within the near-
fracture space

Ore-related hematitization:
Intake and redistribution of U
within the near-fracture space

<I Post-ore argillization

Meteoric water impact:
Leaching and redistribution of U
within the near-fracture space,
secondary U mineralization



Organic matter content (a) and TEM images of protoferrihydrite (b)
and ferrihydrite (c) with goethite and hematite on aggregate flanks
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Globular segregations of tucholite (a, b)
and secondary uranophane (c) on tucholite

1.5mm

DC120 05714102 Exp. 0.0069 secs Zoom 1.0
B227,MB5-2. obj2¢

a — photography, b and ¢ - BSE compo images

Chemical composition of tucholite (mass%): C 49.47, O
29.08, Mg 0.28, Ca 1.58, Al 0.81, Si0.43,50.59, U 10.72



Eh (mV)

Hydrochemistry of fracture-vein waters and atmospheric precipitates

of the TOP (2002-2015)
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Eh-pH diagram of U-O,-H,0-CO? system,
T=25°C, P=1 atm for U=10% mol, P¢5,=10 atm
(after Langmuir, 1978).

U speciation dominated by carbonate complexes




Dynamics of Eh-pH changes for fracture water (a) and atmospheric
precipitates (b) of the TOP during 2002-2015
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Variation of the major constituents in water sources (a)

and values of 8D (b) and §'30 (c) as a function of time
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ICP-MS data on fracture water and atmospheric precipitates of the TOP

Li Be \'4 Mn Co Ni Cu Ga Ge As Se Rb Y Zr
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162111 075 000 EFE] o002 2322 5970 047 003 001 002 000Xl o024 210
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U ore formation, modification and redeposition in the context
of spatial-temporal changes of oxidizing/reducing conditions at the TOP
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Conceptual model of the redox front penetration
through the fractured porous rock at oxidizing conditions

To study the conditions

: : Oxidized Rock ™) Reduced Rock
for U migration and C.GH \% :
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bordering fluid conductive fracture, PRB - permeable reactive barrier with U-sorbing material



Mineralogical input data and Quasi-Stationary State Approximation
approach (by Lichtner, 1988) to calculate the oxidizing front evolution

Mean mineral composition, size of mineral grains and Location of water

their velumes for relatively fresh and altered rocks
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Identification of space and time relations between geochemical events, which have occurred in the vadose zone of the TOP, can be
effected with a help of QSSA. For this purpose it is considered to divide the investigated column of rocks into elementary volumes (block
i, block i+1..., block i+6) through which meteoric waters infiltrate gradually. As it is proved by our studies, every elementary volume is
characterized by nearly equivalent fracture network. Application of QSSA is based on the assumption that meteoric waters penetrating
the rocks react with the latter during the period required for the equilibrium of the water-rock system (formation of the adequate mineral
paragenesis). It correlates with the stationary state in the elementary volume. Every stationary state is characterized by its initial mineral-
chemical composition of rocks (which changes in the process of its interaction with fluid), composition of waters (which changes with the
fluid infiltration from one volume to another) and rates of reacting minerals as a function of the distance.



Conceptual model of fracture density and mineral zoning
for meteoric water percolation and single / double-porosity approaches
of fracture flow and transport calculations
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In case of substitution of the density model for aperture model then it would be possible to define the areas (2D variant) and
bloks (3D variant) with specific aperture and consecutively apply the single and double-porosity models for fracture flow in
unsaturated porous media. The development of the models by supplement of sorptive potential of fracture and matrix
mineral fillings would be useful for a better understanding of processes of uranium migration and accumulation in the
unsaturated zone of the TOP. In the figure: e - aperture between the fracture walls [m], @ - effective porosity (dimentionless)
of porous media with definite grain diameter [m], kf and km — intrinsic permeability of fracture and the rock matrix
correspondingly [m?]; Kd - distribution coefficient of component k between the liquid (water) phase and rock solids [m%/kg].



Simplified matrix showing interrelation of U transport processes
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into the TOP vadose zone

Summing up the obtained field and
lab test data we could say that the
overriding characteristic of the
interactions in the vadose zone of
the Tulukuevskoe Open Pit results
from coupled processes.

The dominant processes can be
grouped into two categories: those
contributing to U release and those
contributing to U retardation.

The significance and magnitude of
the coupling varies both spatially
and temporally.

To identify priorities, the dominant
processes were considered.

The forward and back coupling of
processes makes the vadose zone
an environment typified by
interrelated interactions.

This idea can be shown conceptually
by using an interaction matrix of the
type proposed by Hudson (1989)
and developed by Wilder (1997).



Conclusion

e \Wide range of issues related to better understanding of actinide immobilisation is covered
by mineral-chemical and isotope-geochemical studies of U transfer in-situ of geological
formations.

e Natural analogue studies of features, events and processes which expected to be
evolved during underground disposal of RW show significant difference in approaches and
tools for understanding filtration-transport properties of rocks. In this context Antey U deposit
in PZ (250 Ma) granites and Tulukuevskoe U deposits in Mesozoic (140 Ma) welded tuffs
provide outstanding examples of processes governing U migration and accumulation in
oxidizing-reducing fracture porous environment.

® The environment reguire specific conceptual and numerical treatments because both
the fractures and porous matrix are active parts of the flow and transport regimes during
U transfer in hypogene and hypergene conditions. For instance, the main factors affecting
the modern redox front evolution and U redistribution are fault-matrix interactions

and occurrence of Permeable Reactive Barriers with mainly reducing conditions within
the fluid conducting faults.

e These data could be applied for developing conceptual and numerical reactive transport
models in terms of deeper insight into the spatial-temporal context of actinide migration
in the natural environment in application to the HLW and SNF underground disposal.



Nevertheless there are some complications
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