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Compact Astrophysical Objects with Degenerate Electrons

BB class of equilibria have been studied for both relativistic and nonrelativistic 

plasmas, most investigations are limited to ”dilute” or non-degenerate plasmas: the 

constituent particles are assumed to obey the classical Maxwell-Boltzman statistics. 

Question: how such states would change/transform if the 

plasmas were highly dense and degenerate (mean 

inter-particle distance is  <<  de Broglie thermal 

wavelength) - their energy distribution is dictated by Fermi-Dirac statistics. 

Notice: at very high densities, particle Fermi Energy can become relativistic & 

degeneracy pressure may dominate thermal pressure.

Such highly dense/degenerate plasmas are found in several astrophysical and 

cosmological environments as well as in the laboratories devoted to inertial 

confinement and high energy density physics; in the latter intense lasers are employed 

to create such extreme conditions. 
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Model

The natural habitats for dense/degenerate matter:  Compact astrophysical objects like 

white and brown dwarfs, neutron stars, magnetars with believed characteristic 

electron number densities ∼ 1026 − 1032 cm−3 ,  formed under extreme conditions.

We develop the simplest model in which the effect of quantum degeneracy on the 

nature of the BB class of equilibrium states can be illustrated; fundamental role of 

another quantum effect – spin vorticity – on BB states was studied in  Mahajan et al 

(2011, 2012).

We choose a model hypothetical system (relevant to specific aspects of a white dwarf 

(WD)) of a two-species neutral plasma with non-degenerate non relativistic ions, 

and degenerate relativistic electrons embedded in a magnetic field. 

It is assumed that, despite the relativistic mass increase, the electron fluid vorticity is 

negligible compared to the electron cyclotron frequency (such a situation may 

pertain, for example, in the pre-WD state of star evolution, and in the dynamics of the 

WD atmosphere). 

The study of the degenerate electron inertia effects on the Beltrami States in dense neutral plasmas will be shown later.
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Model Details
For an ideal isotropic degenerate Fermi gas of electrons at temperature  Te  the relevant 

thermodynamic quantities – the pressure           &   the proper internal energy  density            

(the corresponding enthalpy                            ) , per unit volume – can be calculated to be  

(1)

(2)

is the normalized Fermi momentum of electrons

Fermi Energy in terms of    PF  is                                                                   .

PF  is related to the rest-frame electron density    ne via                                                        .   

nc = 5.9 ×1029cm-3 - critical number-density at which the Fermi momentum equals me c  -

defines the onset of the relativistic regime.

The electron plasma is treated as the completely degenerate gas  –

their thermal energy is much lower than their Fermi energy                                 . 

Distribution function of electrons remains locally Juttner-Fermian which for 0-temperature case

leads to the just density dependent thermodynamical quantities                                  &               . 

Electron plasma dynamics is isentropic,  obeys relation: 
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Model Equations

Equation of motion for degenerate electron fluid reduces to:

(3)

With being electron hydrodynamic momentum 

Under our assumption of negligible electron fluid vorticity the last term can be negligible.

For the non-degenerate ion fluid we have the equation of motion written as (mi - proton mass):

(4)

Simplest model - non relativistic ions & inertialess electrons                               - there are two 

independent Beltrami conditions (aligning ion & electron generalized vorticities along their

respective velocities):

(5)
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Bernoulli Condition

Density is normalized to N0 (the corresponding rest-frame density is   n0 )

Magnetic field is normalized to some ambient measure   B0

All velocities are measured in terms of corresponding Alfvén speed

All lengths  [times ]   are normalized to the skin depth     λi    [λi /VA]

where

The Beltrami conditions  (5) must be supplemented by the Bernoulli constraint to define an 

equilibrium state (the stationary solution of the dynamical system):

(6)

Where   β0   is the ratio of thermal pressure to magnetic pressure,  

and for the electron fluid Lorentz factor we put                              .

Bernoulli condition (6) is an expression of the balance of all remaining potential forces when 

Beltrami conditions (5) are imposed on the two-fluid equilibrium equations.

is a function of density. (5-6) is a complete

system of equations.

- Equilibrium Continuity Eq. ,                            are automatically satisfied.
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New class of Double Beltrami Equlibria 
sustained by Electron Degeneracy Pressure

1) The Beltrami conditions reflect the simple physics: (i) the inertia-less (despite the relativistic 

increase in mass) degenerate electrons follow the field lines, (ii) while the ions, due to their finite 

inertia, follow the magnetic field modified by the fluid vorticity. 

The combined field                             - an expression of magneto-fluid unification, 

may be seen either as an effective magnetic field or an effective vorticity.

2)   The Beltrami conditions (5) are not directly affected by the degeneracy effects in the current 

approximation neglecting the electron inertia. These are precisely the two conditions that define 

the Hall MHD states. In the highest density regimes Fermi momentum (& hence the Lorentz 

factor γ(V)) may be so large that the effective electron inertia will have to be included in (5).

3) In this minimal model, electron degeneracy manifests only through the Bernoulli condition 

(6). The degeneracy induced term ~ µ0 would go to unity (whose gradient is zero), and would 

disappear in the absence of the degeneracy pressure. For significant PF , the degeneracy 

pressure can be  >>  thermal pressure (measured by β0 ).

Degenerate electron gas can sustain a qualitatively new state: a nontrivial Double Beltrami –

Bernoulli equilibrium at zero temperature. In the classical zero-beta plasmas, only the 

relatively trivial, single Beltrami states are accessible.
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4) It is trivial to eliminate b in Eqs. (5)  to obtain

(7)

which, coupled with (6), provides us with a closed system of four equations in four variables (N,V ). 

Once this is solved with appropriate boundary conditions, one can invoke  1st eq. of  (5) to calculate b . 

See solution for similar math. problem in Mahajan et al (2001).

5) The Bernoulli condition (6)  introduces a brand new player in the equilibrium balance; the 

spatial variation in the electron degeneracy energy (~ µ0 ) could increase or decrease the plasma  β0

or the fluid kinetic energy (measured by V 2 ) in the corresponding region. Thus, Fermi energy could 

be converted to kinetic energy; it could also forge a re-adjustment of the kinetic energy from a 

high-density/low-velocity plasma to a low-density/high-velocity plasma. Similar energy 

transformations, mediated through classical gravity, were discussed in Mahajan et al (2002, 2005, 2006).

Possible extensions of model:

• When electron fluid degeneracy is very high and one can not neglect inertia effects in their 

vorticity, the order of BB states is likely to rise (the triple BB states have been studied in 2008).

• For the supper-relativistic electrons extension will be the introduction of Gravity, which could 

balance the highly degenerate electron fluid pressure. Gravity (Newtonian) effects in the BB 

system have been investigated in the solar physics context (e.g Mahajan et.al (2002, 2005, 2006).
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Illustrative Example - White Dwarfs
A possible application of the ”degenerate” BB states may be found in stellar physics.

Star collapses + cools down: the density of lighter elements increases affecting the total 

pressure / enthalpy of unit fluid element – first order departure from the classical e-i plasma. 

Beyond the hot, pre-white dwarf stage, photon cooling dominates and gravitational contraction is dramatically 

reduced as the interior equation of state hardens into that of a strongly degenerate electron gas. 

Mechanical and thermal properties separate; the degenerate electrons provide the dominant pressure, while the 

thermal motions of the ions make a negligible contribution to the mechanical support; the roles of electrons and ions 

are reversed in their contribution to the overall energy. 

Recent studies show that a significant fraction of White Dwarfs are found to be magnetic with

typical fields strengths below 1KG. Massive and cool White Dwarfs, interestingly, are found 

with much higher fields detected. Recent investigations have uncovered several cool, magnetic, 

polluted hydrogen atmosphere (DAs) white dwarfs.

A simple example:       if degenerate BB states could shed some light on the physics of WDs?

Considering High B-field WDs, we assume: degenerate electron densities  ~ (1025-1029) cm-3 ; 

Magnetic fields  ~ (105 - 109) G , Temperatures ~ (40000-6000) K . Alfvén speed VA ~ (104-106) cm/s,

 β0 ~ (106 - 100 )  &   µ0 ~ (1010 - 106 ) >> 1  . Ion skin-depth   λi ~ (10-5 - 10-7 )cm - very short.
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Illustrative Example - White Dwarfs – large-scale flows

For this class of systems, 2nd term (degeneracy pressure) in (6)  >>  1st term (thermal pressure). 

Neglecting the 1st term, and remembering that for non relativistic flows (essential at ion speeds) 

γ (V )  ~ 1 , Bernoulli Condition  with inclusion of classical (Newtonian) gravity (justified by 

observations for WDs) implies

(8)

const measures the main energy content of the fluid; the Beltrami conditions (5) remain the same; 

R - radial distance from the center of WD normalized to its radius   RW [~ (0 .008-0.02)R sun ] ; 

RA =GMW / RWVA
2 (here  G is the gravitational constant and MW - WD mass). 

Since  PF is a function of Fermi energy (and hence, of density), we assume that at some distance R*

(corresponding to density maximum), PF    reaches its maximum value   PF* . 

Taking the corresponding minimum velocity to be zero (V* ~ 0), we find 

Magnitude of velocity is now determined to be

(9) 

with                                                                                                                         



12

Results – Outer Layers of WD-s
Dimensionless coefficient   RA / µ0 << 1   measures relative strength of gravity versus degenerate 

pressure term. 

For   WD-s    with Mass   MW ~ (0.8 - 0 .25) Msun &    radius   RW ~ (0 .013 - 0.02)Rsun ,   

RA / µ0 ~ (0 .2 - 0 .04) << 1 ;     less massive the WD, the smaller is the coefficient . 

DB structure scales are small compared to RW in outer layers of the WD (where model applies).

The gravity contribution to the flow velocity can be  neglected

at specific distance of outer layers of WD-s with R ≥ R*    & (R - R*)/ R* << 1 , R*  ≤ 1  .  

Gravity contribution determines the radial distance in WD ’s outer layer over which the   

”catastrophic” acceleration of flow may appear (due to the magneto-fluid coupling). 

In the regions where the flows are insignificant (at very short distances from the WD ’s surface) gravity

controls the stratification but as we approach the flow ”blow-up ”distances (the flow becomes strong) 

the self-consistent magneto-Bernoulli processes take over & control density / velocity stratification.

Calculating the maximum flow velocity, occurring at   κ (PF)   maximum (density minimum), needs a 

detailed knowledge of the system. 
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If                                     the generated flow is locally super-Alfvénic in contradistinction to the

non-degenerate, thermal pressure dominated plasma, when the maximal

velocity due to the magneto-Bernoulli mechanism be locally sub-Alfvénic (when local plasma   β <1

as in the Solar Atmosphere). 

This example shows that the electron degeneracy effects can be both strong, and lead to interesting

predictions like the anticorelation between the density and flow speeds.

The richness introduced by electron-degeneracy to the Beltrami-Bernoulli states could help us better 

understand compact astrophysical objects. When star contracts, its outer layers keep the multi-

Structure character although density in structures becomes defined by electron degeneracy pressure. 

Important conclusion for future studies - when studying the evolution of the atmospheres/outer layers 

of compact objects, flow effects can not be ignored. Knowledge of the effects introduced by flows (observed in stellar 

outer layers) acquired for classical plasmas can be used when investigating the dynamics of White Dwarfs and their evolution.

The possibility of the existence of DB relaxed states in plasmas with degenerate electrons (met in

astrophysical conditions) is found. Non degenerate double BB states guarantee scale separation 

phenomenon  provide energy transformation pathways for various astrophysical phenomena 

(erruptions,  fast / transient outflow & jet formation, B-field generation, structure formation, heating & etc.), such pathways could 

be explored for degenerate case with degeneracy pressure providing an additional energy source.
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Astrophysical Objects with Degenerate Electrons & Positrons 

& Ion Fraction

Magnetospheres of rotating neutron stars are believed to contain e-p plasmas produced in the cusp regions 

of the stars due to intense electromagnetic radiation. Since protons or other ions may exist in such 

environments, three-component e-p-i plasmas can exist in pulsar magnetospheres. 

Positron component could have a variety of origins: 

(1) positrons can be created in the interstellar medium due to interaction of atoms & cosmic ray nuclei, 

(2) they can be introduced in a Tokamak e-i plasma by injecting bursts of neutral positronium atoms 

(e+e−),  which are then ionized by plasma.

The annihilation  usually occurs at much longer characteristic time scales compared with the time 

in which the collective interaction between the charged particles takes place.

The natural habitats for dense/degenerate matter:  Compact astrophysical objects like white and 

brown dwarfs, neutron stars, magnetars with believed characteristic electron number densities 

∼ 1026 − 1032 cm−3 ,  formed under extreme conditions.
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Model

We develop the simplest model in which the effect of quantum degeneracy as well as 

the mobility of heavier ions on the nature of the BB class of equilibrium states can 

be illustrated.

We choose a model hypothetical system (relevant to specific aspects of a white dwarf 

(WD)) of a three-species neutral plasma of degenerate relativistic electron-positron 

plasma with small fraction of non-degenerate classical mobile ions. 

The new BB equilibrium is defined by: two relativistic Beltrami conditions (one for each dynamic degenerate species), one non-relativistic 

Beltrami condition for ion fluid, an appropriate Bernoulli condition, and Ampere’s law to close the set. This set of equations will lead 

to what may be called a quadruple Beltrami system. 

The ions, though a small mobile component, play an essential role, they create an asymmetry in 

the electron-positron dynamics (to maintain charge neutrality, there is a larger concentration 

of electrons than positrons) and that asymmetry introduces a new and very important 

dynamical scale. This scale, though present in a classical non-degenerate plasma, turns out to 

be degeneracy dependent and could be vastly different from its classical counterpart.

Presence of mobile ions leads to “effective mass” asymmetry in electron & positron fluids, which, 

coupled with degeneracy-induced inertia, manifests in the existence of Quadruple Beltrami 

fields.
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Model Equations - 1

Charge neutrality in an e-p-i plasma of degenerate electrons (−), positrons (+) and a small 

mobile ion component, forces the following density relationships

(10)

The equation for ion dynamics is standard. The e(p) dynamics will be described by the relativistic 

degenerate fluid equations: the Continuity

(11)

and the Equation of Motion           

(12)

where     - is hydrodynamic momentum,                             is the rest-frame particle 

density (          denotes laboratory frame number density), the degeneracy effects manifest through 

the “effective mass”                                                  ,       where                 is the enthalpy per unit 

volume. For fully degenerate relativistic e(p) plasma its general expression transfers to 

and    

The mass factor is then                                                                for arbitrary
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Model Equations - 2

On taking the curl of these equations, one can cast them into an ideal vortex dynamics

where                                                               (13)

We emphasize that the so called plasma approximation for a degenerate e(p) assembly is valid if 

their average kinetic energy                is larger than the interaction energy                                  .    

This condition is fulfilled for a sufficiently dense fluid when                 

6 3×1022 cm-3 ; 

such a condition would imply                                                     .

The low frequency dynamics is, now, closed with Ampere’s law

(14)

The small static/mobile ion population, represented by  α and  Vi ,  creates an asymmetry 

between the currents contributed by the electrons and positrons. This will be the source of a 

new scale-length that turns out to be much larger than the intrinsic electron and positron 

scale lengths (skin depths).
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Equilibrium States in Relativistic E-P-I Degenerate Plasma

Density is normalized to electrons N0 (the corresponding rest-frame density is   n0 )

Magnetic field is normalized to some ambient measure   B0

All velocities are measured in terms of corresponding Alfvén speed

All lengths  [times ]   are normalized to the skin depth  

where                                                                     ,                                                  ,  

The intrinsic skin depths, the natural length scales of the dynamics, are generally much shorter 

compared to the system size. For the degenerate electron fluid, the effective mass goes to

for                           and to                                      for 

Following the well-known procedure we obtain the set of equilibrium equations for the degenerate 

system (the primary difference is in the physics of G- ).

The Beltrami conditions:                                                                                                                   (15)

aligning the Generalized vorticities along their velocity fields, and the Bernoulli conditions

(16)

And Ion fluid Beltrami Condition                                                                                                 

(17)
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The Quadruple Beltrami System

An appropriate tedious manipulation of the set Eqs. (14)–(16), leads us to an explicit Quadruple Beltrami 

equation obeyed by the Ion Fluid Velocity Vi (the Beltrami index is measured by the highest number 

of curl operators). Written schematically as

(18)

Equation (18) was derived in the incompressible approximation, and for   

The  b coefficients are functions of effective masses, Beltrami & system characteristic parameters. 

Incompressibility assumption is expected to be adequate for outer layers of compact objects, though, 

compressibility effects can be significant e.g. in the atmospheres of pre-compact stars (Berezhiani et al. 

2015). Ion fluid velocity & the magnetic field are related to

e-p plasma average bulk fluid velocity                                                      (19)

through                                                                                                                      (20)

with

(21)
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The quadruple Beltrami (18) can be factorized as

(22)

where μi -s define coefficients in Eq. (22) & are functions of α , β , n0
- and the degeneracy-determined G0

+ . 

The general solution of Eq. (13)  is a sum of four Beltrami fields  Fk (solutions of Beltrami Equations 

)  while eigenvalues            of the curl operator are the solutions of the fourth order 

equation

(23)

An examination of the various b coefficients of (14), for the most relevant limit  α << 1 , reveal:
´

though the inverse scales, determined by b1´ , b2´, and b3´ , do get somewhat modified by α <<1 corrections, 

it is the inverse scale associated with  b4´ that is most profoundly affected; being  ~ α , it tends to 

become small, i.e., the corresponding scale length becomes large as  α approaches zero; this scale 

length becomes strictly infinite for α=0, and disappears reducing (23) to a triple Beltrami system.

Thus, the ion contamination-induced asymmetry may lead to the formation of macroscopic structures 

through creating an intermediate/large length scale, much larger than the intrinsic scale skin 

depths, and less than the system size. 

The possible significance and importance of this somewhat natural mechanism (a small ion contamination 

is rather natural) for creating Macro-structures in astrophysical objects, could hardly be overstressed. 

Notice: this mechanism operates for all levels of degeneracy (the range of R0
- was irrelevant).



21

Illustrative Examples – White Dwarfs - Large Scale

This new macroscopic scale can be “determined” by dominant balance arguments; as scale gets larger,

gets smaller, and the dominant balance will be between the last terms of (14), yielding (               ):

where                                                                                           (24)

Assuming that:                                                            [e(p) plasma density is within                                ]

we can simplify A when both                               and                      . 

(i) When    a+ ≠ a- the simplified expression                                                                                          (25) 

for                   satisfies                                .

(ii)   When                                                                                                       for all    .             (26)

Without ion contamination (α = 0), the degenerate e-p system is still capable of creating length scales larger 

than the non-relativistic skin depths through the degeneracy-enhanced inertia of the light particles.

Notice that even with equal effective masses (G- =G+ ≡ G(n) at equal electron-positron temperature), 

inertia change due to degeneracy can cause asymmetry in e(p) fluids.
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Illustrative Examples – Meso Scale

Even in the absence of ions (Lmacro →   infinity), the Beltrami states could be characterized by what could 

be called meso-scales—the temperature & degeneracy-boosted effective skin depths λ±
eff larger than λ

[                                                                                    for densities (1025 –1032 )cm-3 ]. 

For pure compressible e-p plasma, if                      is at a much slower rate than the spatial derivatives of B

and V± ,   we can write following relation:

(27)

Estimation for the large scale  lmeso in case of pure degenerate e-p plasma, derived from the 

dominant balance, gives:

if                    (28)     

Hence, whenever the local density satisfies this condition there is a guaranteed scale separation in the 

degenerate e-p plasma with at least one large scale present.

At the same time: for larger scale to exist we do need an entirely different mechanism — a dynamic 

ion-species with a much lower density and higher rest mass (justified by observations for many 

astrophysical objects plasmas) — this scale corresponds to the ion skin depth enhanced, dramatically, 

by low density 
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Scale Hierarchy

This work registers a major departure from e-i system leading to the most important result — by 

studying BB states in an e-p-i (small dynamic ion contamination added to a primarily e-p plasma), 

we demonstrated the creation of a new macroscopic length scale Lmacro lying between the system 

size and relatively small intrinsic scales (measured by the skin depths) of the system.

(1) For a pure electron-positron plasma, the equilibrium is triple Beltrami with the following 

fundamental three scales: system size L , and the two intrinsic scales (electron and positron skin 

depths).

(2) The e-p skin depths, microscopic in a non degenerate plasma, can become much larger due to 

degeneracy effects and could be classified as meso-scales, lmeso .

(3) When a dynamic low density ion species is added, the equilibrium becomes quadruple Bertrami 

with a new additional scale, Lmacro. Although the exact magnitude of this scale is complicated, its 

origin is entirely due to the ion contamination; this scale disappears as the ion concentration α goes to 

zero. Both the larger ion mass and low density contribute towards boosting Lmacro .

(4) The meso-scale lmeso cannot become very large but for some special constraints on the Bertrami 

parameters, for instance, if                     and both                       or the condition (28) is satisfied. 
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Discussion & Summary

We derived Quadruple [Triple] Beltrami relaxed states in e-p-i plasma with classical ions, and 

degenerate electrons and positrons. Such a mix is often met in both astrophysical and laboratory 

conditions.

The presence of the mobile ion component has a striking qualitative effect; it converts, what would 

have been, a triple Beltrami state to a new quadruple Beltrami state. In the process, it adds 

structures at a brand new macroscopic scale    Lmacro (absent when ion concentration is zero) 

that is much larger than the intrinsic skin depth       (                           )  of the lighter components.

Though primarily controlled by the mobile ion concentration,     Lmacro also takes cognizance of 

the electron and positron inertias that could be considerably enhanced by degeneracy.

The creation of these new intermediate scales (between the system size, and λ ) adds immensely to 

the richness of the structures that such an e-p-i plasma can sustain; many more pathways 

become accessible for energy transformations. 

Such pathways could help us better understand a host of quiescent as well as explosive astrophysical 

phenomena — eruptions, fast/transient outflow and jet formation, magnetic field generation, structure 

formation, heating etc.
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Flow Generation / Acceleration Due to Magneto-fluid Coupling

A possible application of the ”degenerate” BB states was found in stellar physics [BSM 

2015] where we have considered High B-field WDs and assumed: degenerate 

electrons densities  ~ (1025-1029) cm-3 ; Magnetic fields  ~ (105 - 109) G , Temperatures 

~ (40000-6000) K . Alfvén speed VA ~ (104-106) cm/s,  β0 ~ (106 - 100 )  &   µ0 ~ (1010 -

106 ) >> 1  . Ion skin-depth   λi ~ (10-5 - 10-7 )cm - very short.

It was shown that Gravity contribution determines the radial distance in WD ’s outer 

layer over which the ”catastrophic” acceleration of flow may appear (due to the 

magneto-fluid coupling).  

For the special class of magnetic WDs BSM 2015 predicted that the electron degeneracy 

effects can be both strong and lead to the anti-correlation between density and flow 

speeds— the generated flow gets locally super-Alfvénic in contradistinction to non-

degenerate, thermal pressure dominated Solar Atmosphere plasma (with local plasma 

β <1) for which the maximal velocity due to the magneto-Bernoulli mechanism was found 

to be only locally sub-Alfvénic.

When star contracts, its outer layers keep the multi-Structure character although 

density in structures becomes defined by electron degeneracy pressure. 
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Steady State Considerations

Assuming: at some height of magnetic WDs surface there exist fully ionized magnetized 

plasma structures such that the quasi-equilibrium two-fluid model of BSM 2015 will 

capture the physics of flow or/and magnetic field amplification.

Corresponding equilibrium state equations are given by (5) (stating that for the non-

relativistic ions & inertialess electrons there are two independent Beltrami Conditions):

b = a N [ V− N-1 ∇ ×b ] ,   b + ∇ ×V = d N V  ,                                          (29)

where b = eB/mic and it was assumed, that electron and proton laboratory-frame densities are 

nearly equal— Ne ≈ Ni = N (rest-frame density ne,i = Ne,i /γ (Ve,i ), γ (Ve,i ) - Lorentz factor); 

a & d are dimensionless constants related to the two invariants:   

Magnetic helicity  h1 = ∫(A · b) d3x     &   Generalized helicity   h2 = ∫ (A+ V) · (b +∇ ×V) d3x    

of the system  with   A being the dimensionless vector potential.

Normalized variables: fluid velocity  V &  current  J = ∇ × b when electron and ion speeds 

are given by    Ve = V − (1/N)∇ ×b,     and Vi = V, respectively. 

Notice: the electron vorticity is primarily magnetic (b) while the ion vorticity has both 

kinematic and magnetic parts (b+∇ ×V).
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Flow Generation / Acceleration - extension

We construct the detailed solutions of (29, 8) with gravity taken into account for concrete 

parameters relevant to magnetic WDs to show the explicit effects of degeneracy on two-

fluid BB structures when star contracts and cools down. 

Rewriting equations with inclusion of classical gravity for nonrelatvistic flows 

(  γ (V) ∼ 1 justified by observations):

b = a N [ V − κ N-1 ∇ ×b ]  ,   b + κ ∇ ×V = d N V  ,                                      (30) 

∇ [ β0 ln N + μ0 (1+PF
2)1/2 – RAR-1+ 0.5 V 2 ] = 0                                                (31)

R - radial distance from the center of WD normalized to its radius   RW [~ (0 .008-0.02)R sun ] 

RA =GMW / RWVA
2 (here  G is the gravitational constant and MW - WD mass).

Dimensionless parameter κ = λi / Rw

For above parameters neglecting the first term related to ion fluid pressure, (30-31) give:

κ2 N-1 ∇ ×∇ ×V +  κ ∇ × [ (a-1N-1 −  d )N V ] + [1− da-1 ] V = 0,                         (32)

N = [a0
-2μ0

-2 ( [ RAR-1− RAR0
-1] − 0.5 [V 2− V0

2] + 0.5 α μ0
2) 2 − a0

-2 ] 3 / 2                (33)

where:  a0 = (n0/nc)
1/3 and  α = ( 1+ a0

2N0
2/3 )1/2 ;    subscript  “0” is used for the height 

from stellar surface where the boundary conditions are applied .
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Flow Generation / Acceleration – White Dwarfs’ Atmospheres

To illustrate the coupling process we picked up several sets of our runs. Density, magnetic 

fields and velocity vs height for n0 = 1026 cm−3 [a0 = (1/6)1/3 ×10−1] & a = d = 0.1 (left) and 

n0 = 1027 cm−3 [a0 = (1/6)1/3 ×10−2/3] & a = d = 10 (right) are given for various values of μ0

There is a clear evidence of magnetic field amplification together with flow acceleration
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Flow Generation / Acceleration – White Dwarfs’ Atmospheres 2

We have also verified the analytical prediction of 

BSM 2015 for maximal flow speed  (achieved 

after acceleration) to be super-Alfvénic -

even for unrealistic Hall term strength parameter 

κ ∼ 10−6 at specific boundary conditions we see

the tendency of accelerated flow to become locally 

almost super-Alfvénic (starting from sub-Alfvénic). 

n0 = 1025 cm−3 [a0 = (1/6)1/3 ×10−4/3] and 

a = d = 10 at μ0 = 109. Initial flow with 0.15 km/s 

speed accelerates 450 times reaching 60 km/s .

Blow-up distance and blow-up velocity

versus DB parameter a ∼ d for initial density 

n0 = 1026 cm−3(top) / n0 = 1027 cm−3(bottom)
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Flow Generation / Acceleration – White Dwarfs’ Atmospheres 3

Blow-up (a) distance and (b) velocity vs Hall-term

strength κ for n0 = 1026 cm−3 and a = d = 0.1 (left) 

and n0 = 1027 cm−3 , a = d = 10 (top right), 

n0 = 1026 cm−3 , a = d = 10 (bottom right). 

For fixed μ0 blow-up process is more sensitive to 

changes in κ at higher μ0 (lower initial B-field)..

The smaller the μ0 lower is the final speed

and smaller is the blow-up distance. 

For fixed μ0 blow-up process is less sensitive to

changes in Hall-term strength  κ

There is a clear tendency for initial flow 

to become Super-Alfvénic at blow-up



31

Conclusions 
The mechanism for flow generation in dense degenerate stellar atmospheres is suggested 

when the electron gas is degenerate and ions are assumed to be classical. 

It is shown, that there is a catastrophe in such system—fast flows are generated due to 

magneto-fluid coupling near the surface. Distance over which acceleration appears is 

determined by the strength of gravity and degeneracy parameter. 

Application of this mechanism for White Dwarfs' atmospheres is examined and 

appropriate physical parameter range for flow generation/acceleration is found; 

possibility of the super-Alfvénic flow generation is shown; the simultaneous possibility of 

flow acceleration and magnetic field amplification for specific boundary conditions is 

explored; in some cases initial background flow can be accelerated 100 and more times 

leading to transient jet formation while the Magnetic field amplification is less strong. 

We extended the studies of BSM 2015 and SBM 2016 and showed that the degeneracy effects 

are significant for specific class of dense stellar atmospheres/outer layers dynamics, 

specifically, for the structure formation phenomena there —

We suggest that when studying the evolution of the compact objects flow effects cannot 

be ignored since their catastrophic generation close to the surface may determine the 

further evolution of stars and their atmospheres.



Compact Astrophysical Objects with                       
Degenerate Electron-positron plasma

Recent observations as well as the modern theoretical considerations indicate on the 

existence of super-dense electron-positron plasmas in a variety of astrophysical 

environments.

The presence of the e-p plasma is also argued in the MeV 

epoch of the early Universe. 

Intense e-p pair creation takes place during the process of 

gravitational collapse of massive stars; it is shown that in 

certain circumstances the gravitational collapse of the stars 

may lead to the charge separation with the field strength 

exceeding the  Schwinger limit resulting in e-p pair plasma 

creation with estimated density to be ~ 1034 cm-3. 

The e-p plasma density can be in the range (1030 – 1037) cm-3

of the gamma-ray burst (GRB) source.

Generation of a high density e-p plasma is augmented by production of intense pulses 

of X- and Gamma-rays.

Bright GRB occurring in a star-forming region. Energy 

from the explosion is beamed into two narrow, 

oppositely directed jets.
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Compact Astrophysical Objects - 2

The natural habitats for dense/degenerate matter:  

Compact astrophysical objects like white and brown dwarfs, neutron 

stars, magnetars with believed characteristic electron number 

densities ∼ 1026 − 1032 cm−3 ,  formed under extreme conditions.

In BSM (2015) we developed the simplest model in which the effect of quantum degeneracy on 

the nature of the Beltrami-Bernoulli class of equilibrium states was illustrated. We choose 

a model hypothetical system (relevant to specific aspects of a white dwarf (WD)) of a 

two-species neutral plasma with non-degenerate non relativistic ions, and degenerate 

relativistic electrons embedded in a magnetic field. 

The electron fluid vorticity was assumed negligible compared to the electron cyclotron 

frequency (such a situation may pertain, for example, in pre-WD state of star evolution, 

and in the dynamics of the WD atmosphere). 

SMB (2016) studied the degenerate e-p inertia effects as well as the mobile ion species on 

Beltrami States in dense neutral plasmas and found the existence of meso- and large-

scales adding immensely to the richness of the structures that such medium can 

sustain; many more pathways become accessible for energy transformations. 

When star contracts, its outer layers keep the multi-Structure character although density 

in structures becomes defined by electron degeneracy pressure.
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Model

For a highly compressed state, the plasma behaves as a degenerate Fermi gas provided that the 

averaged inter-particle distance is smaller than the thermal de Broglie wavelength. As the 

density increases, the Fermi energy of the particles  ϵF
± =                                   becomes 

larger than the interaction  energy - mutual interaction of particles becomes 

unimportant—plasma becomes more ideal.

Condition is fulfilled for a sufficiently dense fluid when  

n0
± >>                              = 6.3x1022cm-3

When density increases further, particle’s relativistic motion shall be taken into account, leading to the 

relativistic Fermi energy of the particles in the following form                                                where

— is the Fermi momentum related to the rest-frame particle density by the 

following relation                                    ;

here,   nc = 5.9×1029cm-3 is the normalizing critical number-density. 

When                    plasma turns out to be ultra-relativistic even for non-relativistic temperature                   .

Pair plasmas with such densities cannot be in complete thermodynamic equilibrium with the 

photon gas into which it annihilates. Equilibrium is reached within the time-period related 

mainly to the electron-positron annihilations. Subsequently, thermodynamic equilibrium 

between pairs and photons (with zero chemical potential) will be achieved. Plasma 

becomes optically thick with steady state pair density defined by plasma temperature. 
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On the other hand, for high density optically thin plasma [Berezhiani, Shatashvili, Tsintsadze 

(2015)],  e-p annihilation time becomes considerably short (τann ≈ 0.3×10-16 s for the 

densities ~1030 cm-3 ).  However, it is still larger than corresponding densities plasma 

oscillations characteristic time-scale [~ ωe
-1 ] ;   e.g, for densities (1030 - 1035 ) cm-3, we 

found that τann ωe
-1 is in the range [60 - 7] and collective plasma high frequency 

oscillations have enough time to manifest themselves.

To understand the dynamics of intense X- and Gamma-ray pulses emanating from the 

compact astrophysical objects as well as to study the nonlinear interactions of intense laser 

pulses and dense degenerate plasmas, it is important to investigate the wave self-

modulation and soliton formation phenomena in dense e-p plasmas. 

The existence of stable localized envelope solitons of EM radiation has been suggested as a 

potential mechanism for the production of micro-pulses in active galactic nuclei (AGN) 

& pulsars. 

Localized solitons created in the plasma-dominated era are also invoked to explain the 

observed inhomogeneities of the visible universe.

The existence of soliton-like electromagnetic distributions in a fully degenerate e-p plasma 

was shown in BST 2015 applying relativistic HD & Maxwell equations. For a c.p. wave: 

soliton solutions exist both in relativistic & nonrelativistic degenerate plasmas; possibility 

of cavitation.
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EM Solitons In Degenerate Relativistic e-p Plasma 

Fluid equations can be reduced to following

(34)

(35)

where                                               ,                                .

Expressing EM fields by the vector and scalar potentials  (with                  ) Maxwell equations can be 

written as                   

(36)

(37)

From equation  (34) it follows that if the generalized vorticity is initially zero  everywhere in 

space, it remains zero for all subsequent times. We assume that before the EM radiation is 

‘switched on’ the generalized vorticity of the system is zero. == > (34) now takes the form

(38)

Equations (36)-(37)  in one-dimensional case. Assuming that all quantities vary only with one spatial 

coordinate  z and in time  t the transverse component of the equation of motion (38) is 

immediately integrated to give                

Gauge condition                  longitudinal motion doesn’t depend on charge sign 

(                            )
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The EM pressure gives equal longitudinal momenta to both the electrons and positrons 

no charge separation

,                    .         

Thus for longitudinal motion  we have equation of motion                                                          (39)

and Continuity Equation                                                                                                          (40)

substituting this  into (3) we get 

(41)

where                                           is the Langmuir frequency. For stationary localized solution

(42)

where               is a real valued amplitude,                 .   Straightforward algebra leads to

(43)

(44)  

It follows from equation (43) that our considerations remain valid provided A  ≤  R0 ; the plasma 

density decreases in the area of EM field localization and if at certain point of this area  A → R0

then the plasma density becomes zero ( n → 0  ), hence, at that point the cavitation takes place.

37



Equation (41) reduces to

(45)

where the nonlinearity function is given by                                                                        (46)

here                           is a dimensionless constant and                                                  ,,           

For small intensities                   nonlinearity function is                             while               for         .

Note that the saturation character of nonlinearity is related to plasma cavitation . Since

equation  (45) admits the soliton solutions for all allowed intensities of EM field                         

provided that                                           .

The paramerer  λ is the nonlinear ‘frequency shift’ and it has the meaning  of the reciprocal of the square 

of the characteristic width of the soliton.

The general solution of equation (45) cannot be expressed in terms of the elementary function except for 

the ultra-relativistic degenerate plasma case, i.e.  for                                    

In this case                 and for                                    the soliton solution of (12) takes the simple form 

(47)

which exists for                                                                     .  
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Conclusions for Soliton Solutions

In the relativistic degenerate plasma the amplitude of EM soliton can become 

relativistically strong  Am >>1 .  In the region of the soliton localization the e–p plasma 

density decreases considerably while for   Am →R0 the plasma cavitation takes place. 

We have shown that fully degenerate electron–positron plasma supports the existence of 

stationary soliton solution in over-dense plasma ( ω < Ωe ). In relativistic degenerate e–

p plasma the intensity of EM field can be relativistically strong while for norelativistic 

degeneracy case the soliton intensity is always nonrelativistic. 

It is also shown that the cavitation of plasma can occur in both the relativistic and 

nonrelativistic degenerate plasmas. The generalization for the case of moving soliton is 

straightforward and is beyond the intended scope of the present paper.

The 1D model of present study can be generalized for 2D and 3D problems similarly in 

either so-called ‘pancake’ regime of propagation, or in so-called beam-regime of 

propagation. Preliminary analysis shows, that in such cases a nonlinear Schrödinger 

equation with saturating nonlinearity similar to (46) can be derived implying that the 

generation of stable multi-dimensional localized solutions —‘the light bullets’ or the 

solitary filaments — is possible.
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Model Equations for the Self-Guiding of EM Beams in 
Degenerate e-p plasma of Gamma-Ray Sources

We apply the Fluid-Maxwell model to investigate the possibility of self-trapping of intense  EM pulse in 

the transparent degenerate (e-p) plasma in a limit of narrow pulse L┴ <<  L‖ (L‖ & L┴   are 

characteristic longitudinal & transverse spatial dimensions of field) to demonstrate the  formation of 

stable 2D solitonic structures. The basic set of Maxwell-Fluid equations reads as [BST 2015]

(48)

(49)

(50)

(51)

p± = γ± V± - hydrodynamical momentum of particles;   γ± - relativistic factor;  N± - density in lab-frame 

- “effective mass” depends on plasma rest-frame density   n± = N± / γ±

and is valid for arbitrary  strength of relativity defined by the ratio   n± / γ±
.

Introducing Generalized momentum                             and generalized  Relativistic factor

In terms of normalized quantities: 
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Model Equations - 2

We obtain the following dimensionless equations (tilde is suppressed below):                             

(52)

(53)

(54)

(55)

with                              and                                                Here   ε =  ωe / ω << 1 , ω - is  EM field  

frequency; 

is valid for entire range of physically allowed 

densities.
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Model Equations - 3

We apply below the method of multiple scale expansion of the equations in the small parameter ε .

All physical variables                                                can be expanded as

(56)   

where                                              and                       ;                           .    

We assume that EM field is circularly polarized:                                                                             (57) 

with A being a slowly varying envelope of EM beam.                                                                                  

To the lowest order in  ε , following the standard procedure, we get

;                     ;                                      Thus, Poisson eq.                   gives:

Here                                        with                                        since fields vanish at infinity the factor  

Taking into account that                                                  and solving relations

we obtain the expression for density  (                               ) :

(58)

(58) is valid for arbitrary level of    δ provided that       



Nonlinear Schrӧdinger equation 

For slowly varying envelope, Maxwell equation (52) reduces to  (                            )

(59)

Where                                 ;   if                        the                               is nothing but the dispersion relation

where                             modified plasma frequency due to degeneracy. Introducing

dropping subscript for                    making renormalization:                    ;                       

(60)

with                            

(61)

Nonlinear Schrӧdinger equation  - NSE (60) is with nonlinearity function   f by (61) ;

f is a growing  function of  |a| attaining its maximum value  f  = 1  at    |a| = 1 .

For |a|  << 1     nonlinearity function reduces to                        where                               varies within

(1.5 -1)  for an arbitrary level of degeneracy  (0 <  δ < 1 ).   

For weak degeneracy level    δ << 1  nonlinearity function                                           ;

For relativistic degeneracy   δ → 1                           at    |a|  ≤ 1  .
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Solitary Solutions

The NSE with various type saturating nonlinearities has been studied thoroughly in the past; our Eq. (60) 

[with (61)] proves to be similar qualitatively though showing quantitative difference. First, one has to 

establish the existence and the stability of the self-trapped solutions of Equation (60).

Using the axially symmetric solution ansatz in the form                                    , where  

and  λ is the so called propagation constant, the ordinary nonlinear differential equation for the radially 

dependent envelope  U(r) reduces to                                                                                                                   

with                  (62)  

We consider lowest order nodeless (ground state) solution of (62)  with maximum  Um at the center 

( r = 0 ) and monotonically decreasing   ( U → 0 ) as  r → ∞ . 

Maximal value Um is determined by eigenvalue  λ , which satisfies  0 <  λ <  fm , where   fm    is 

a maximal value of the nonlinearity function.

The numerical simulation study of (62) with (61)  for 

arbitrary level of degeneracy parameter  δ shows: 

Despite the value of   fm  =  1  the allowed range of   λ is 

significantly narrow  λ < λc < 1.    Um is a growing function 

of   λ attaining its maximal value Um = 1 at  λ = λc .  λc decreases 

with   δ from its maximum = 0.2912 at   δ << 1 to   0.2055 for  δ >> 1. 
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Solitary Solutions - 2

Important characteristics of obtained solitary solutions are the so called beam “power” defined by

Numerical simulations show that for the arbitrary level of 

degeneracy  δ ,  power P is a growing function of  λ and 

Um [such behavior for δ = 0.5 is presented in Fig. 3 where 

P versus Um is plotted] ; 

consequently, solitary solutions are stable against 

small perturbations. 

For    λ → 1  [ Um → 0 ]   power   P → Pc ,

while the maximal allowed  value of power is achieved 

at   λ = λc [ Um = 1 ]   ;

here,  Pc is a critical power. 

Thus, a self-trapped propagation  of solitary beam could be 

formed  in such plasmas provided   P  ≥ Pc . 
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Fig.2 Profile of 

solitary structure

for variety of Um

Fig.3   for  δ = 0.5

with Pc = 8.5  



Critical Power of Self-trapped Beam

Critical power of self-trapped beam  Pc depends on degeneracy parameter  λ . This relation can be 

obtained analytically assuming that for the small amplitude case ( λ << 1 ,  f ≈ β U2 ) with obvious 

change of variables                                          .

Equation (48) reduces to                                                 where  g(r) is a stationary Townes mode.

Knowing the Power of ground state Townes mode                                                            , one can find the 

critical power to be  

For the nonrelativistically degenerate case   Pc = 7.79  

while for the super-relativistic degenerate case  Pc = 11.69 .

Critical power in dimensional units can be written in a following convenient form:

where                                                  (49)

A physically justified range of allowed plasma densities is presumably within  ( 1024 - 1034 ) cm-3

[ R0 ~ 1.19×10-2 – 25.69 ] ; 

corresponding critical power  Pc for self-trapped solution to occur is within

GW.                                            
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Summary and Discussion

Note: that recent progress in creating dense e-p plasmas in Laboratory conditions and 

achievements in the development of free electron powerful X-ray sources indicate that in 

the future the generation of the optically thin e-p plasmas can be expected with the 

solid state densities in the range of (1023 – 1028) cm-3 and above.

For the X-ray pulse with wave-length  ~3nm  interacting with  n ~ 1024 cm-3 density plasma, 

the critical power becomes 194 MW. We emphasize: in case of the cold non-degenerate 

classical plasma (temperature is zero), such an effect of the existence of self-trapped 

solitary structures is absent. 

Analysis of the stability study of obtained solitary solutions confirms (through direct 

simulation of derived equations) that like in the case of other type saturating 

nonlinearities, the ground state solution is stable; even for Gaussian profile initial radial 

distribution of field with power & amplitude close to ground state solution field quickly 

relaxes to the equilibrium shape structure; exception is for the initial profile with 

amplitude  ~1 or for the initial amplitude far from ground state solution. 

In certain cases when the initial Gaussian profile amplitude field is far from the equilibrium 

one the amplitude  |A| of the evolving field has a tendency to reach values  ≥ 1 implying 

that cavitation (complete expulsion of plasma from field localization area) will take place. 
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Results

We showed that:

The stable self-trapped solitary 2D structures exist for the arbitrary level of degeneracy. 

We have found the critical power for the self-guided propagation. 

The results of the given study can be applied to understand:

- the radiation properties of astrophysical gamma-ray sources 

- as well as may be useful to design the future laboratory experiments.

The results can be useful to understand the dynamics of x-ray pulses emanating from the 

compact astrophysical objects as well as to study the nonlinear interactions of intense 

laser pulses and dense degenerate plasmas that are relevant for the next-generation 

intense laser–solid density plasma experiments.
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