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Plasmas are different from gases and fluids

In most physical regimes of interest the dynamics of a plasma
is intrinsically kinetic:

it requires a phase space description involving a particle
distribution function that depends on position x, momentum p and
time t,

instead of the simpler configuration space description involving
mean quantities that depend only on x and t.

In these regimes the concept of pressure, as we know it in gases
and in fluids, does not appear to be applicable.

Nevertheless a quick look at the literature is sufficient to show
that this concept is widely used, although with some caveats and
with some necessary generalizations.



Scheme of the lectures

First lecture: kinetic plasma descriptions and the definition of
a “pressure-like” quantity. The moment equations and the
closure problem.
Finding heuristic closures for linear waves: Langmuir and
ion-acoustic waves. Closures in magnetized plasmas.

Second lecture: physical mechanisms that can lead to an
anisotropic pressure: single particle and collective effects.
Experimental observations in the solar wind.

Third lecture: waves and instabilities in plasmas with
anisotropic pressure: Weibel (and current filamentation)
instabilities.
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Pressure in fluids and gases

Isotropic

Equation of state: p = p(V,T )

for ideal gases p = nRT

——————————–
Dynamics along thermodynamic transformations

p Red: isotherm

Black: adiabats

V

Sound waves in a gas: adiabatic transformations



Fluid-gas ordering

The relaxation time, due e.g. to molecule collisions in a gas, is the

shortest time in the theory. Analogously, the mean free-path

(essentially the distance between two successive collisions in a gas)

is the shortest distance in the theory.

The dynamics of the gas is described by introducing an expansion

parameter that is defined either as the ratio between the mean free

path and the spatial scale of the phenomenon under investigation or

as the ratio between the relaxation time and the dynamical time.

To zero order we have global thermodynamic equilibrium, adiabatic
equation of state, Euler-type equations of motion.

To next order we have local thermodynamic equilibrium, dissipative

effects such as thermal conductivity and viscosity and Navier-Stokes

type equations of motion1.

1
See e.g. S. Chapman, T. G. Cowling, The mathematical theory of nonuniform gases, Cambridge University

Press, 1991.
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Plasma ordering

The relaxation time, due e.g. to Coulomb collisions, is longer than
the period of the charge density (Langmuir) waves. Analogously,
the mean free-path is longer than the Debye length.
The ratio between the Coulomb collision frequency νcoll and the
plasma frequency2 ωpe scales as the plasma parameter

g∼ (nλ 3
d )
−1� 1

The dynamics of the plasma is described by an expansion in the

parameter g.

To zero order we obtain the collisionless Vlasov equation coupled to
the Maxwell equations that have the plasma charge density and
current density (obtained self-consistently from the Vlasov equation)
as sources.

To next order we have we have the addition of a collision operator

to the Vlasov equation.

2
This ratio can be easily as small or smaller than 10−8.
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Vlasov equation and its velocity moments

Define the distribution function f = f (x,v, t) which obeys the
Vlasov equation3

∂

∂ t
f + v ·∇x f +

q
m
(E+

v
c
×B) ·∇v f = 0, (1)

where the species index has been dropped.
Take velocity moments

∫
d3v f (x,v, t)(1, v, vv, ...)∫

d3v f (x,v, t) = n(x, t),
∂

∂ t
n +∇x · (nu) = 0, (2)

∫
d3v v f (x,v, t) = n(x, t)u(x, t). (3)

3
written here in the non relativistic limit. C.g.s. units are used throughout the presentation.



Moments of the Vlasov equation

The second moment obeys the equation4

m
∂

∂ t
(nu) + ∇x · (nmuu+ΠΠΠ) = (nq)(E+

u
c
×B), (4)

where

ΠΠΠ(x, t) =
∫

d3v f (x,v, t)(v−u(x, t))(v−u(x, t)) (5)

is a symmetric tensor. In general

ΠΠΠ(x, t) 6= p(x, t) III, (6)

i.e. the “pressure tensor” cannot be reduced to a scalar function
(times the identity matrix III).

4
It can be reduced to the standard Euler form by subtracting Eq.(18) multiplied times u.



The closure problem

• Within the gas ordering, to leading order, the distribution
function f is isotropic (in the local rest frame). Then the pressure
is a scalar and the thermodynamic limit allows us to close the fluid
equations by assuming a law p = p(n) that relates the dynamics of
the pressure to that of the density5.
• Within the plasma ordering the only information we can obtain
on the distribution function f is by solving the Vlasov equation
itself, which makes Eq.(20) essentially useless.
From the Vlasov equation we can derive the moment equation for ΠΠΠ but
it leads to a 3-index tensor that “generalizes” the standard heat flux and
for which we have no expression in terms of the lowest order moments,
and so on, if we continue deriving higher order moments.

In the second lecture I will use the moment equation for ΠΠΠ and

assume that heat flux vanishes.

5
In an incompressible fluid the pressure ceases to be an independent dynamical variable



The closure problem

The moment equations (often somewhat erroneously called fluid
equations) appear to be similar to the true fluid equations but they
are conceptually very different as they do not form a system of
closed equations.

The difference does not rise at the level of Eq.(18) that expresses the

conservation of the number of particles6, but at the level of the

momentum density continuity equation in the expression of the second

order moment contribution to the momentum density flux.

The closure problem is amplified in the case of a relativistic plasma (a

plasma where the particle velocities are not small with respect to the

velocity of light) as it enters also the definition of the inertia term that is

no longer simply given by the sum of the particle rest masses.

6
In the absence of chemical reactions and ionization processes



Ad hoc closures

In the fluid ordering νcoll/ωpe >> 1 the closure is in a sense “universal”
being ensured by the local thermodynamic equilibrium conditions.

In the plasma ordering νcoll/ωpe << 1 we lack such a general closure

condition, indeed we lack a closure altogether, but in given subdomains

of parameter space we can find ad hoc closures based on different

expansion parameters. These expansions are not general and are easily

violated during the evolution of the system. Often they are used as7

“models” more than as valid limits.

In a linear wave the wave phase velocity can be compared with the

particle velocities.

In a magnetized plasma the particle cyclotron frequency, and the

particle gyro-radius, can be compared to the inverse time scale or to the

length scale of the phenomenon under consideration.

7
“Models” are very useful when exploring a new phenomenon as they can identify the “major players”.

Clearly, after the exploratory phase the investigation has to be refined using physically valid equations.



Simple examples of ad hoc closures

Closure conditions can be devised on the basis of such
comparisons. These closures do not reflect a property of the
plasma but only those of a specific phenomenon in the plasma.

Linear phase velocity closures (unmagnetized plasma)

“Cold”, “warm” plasma closures: ω/(kvth)<< 1

→ neglect the pressure tensor altogether, no need for a closure
(dispersion relation for longitudinal (Langmuir) waves ω2 = ω2

pe).

→ first thermal correction8 : impose a 1-D adiabatic closure per
the pressure tensor (dispersion relation for longitudinal (Langmuir)
waves ω2 = ω2

pe +3k2v2
the).

8
This closures can be validated by solving in the appropriate limit the linearized Vlasov equation.



Simple examples of ad hoc closures

Linear phase velocity closures (unmagnetized plasma)

“Hot” plasma closure9: ω/(kvthe)>> 1

→ neglect electron inertia and adopt an isothermal electron
closure. It leads to the linearized Boltzmann electron response
ñ/n0 ∼ eϕ̃/Te. Dispersion relation for quasineutral ionacoustic
waves ω2 = k2c2

s , with c2
s = Te/mi.

It is not at all clear how to extend these closures to a
finite amplitude regime where the particle oscillation velocity
comes into play (or the ratio between the electrostatic potential
energy and the particle temperature) and where harmonics (shorter
scales) are produced by the nonlinearities and are accompanied
e.g., by the steepening of the wave profile.

9
With cold ions



Failures of ad hoc closures

Particle populations can appear to be split into subpopulations
with different dynamics: e.g., circulating and trapped particles
(depending on the ratio between the particle kinetic energy and the
fluctuating electrostatic potential energy).
A closure for each subpopulation ? Can be done10 but it the wave
amplitude changes with time, how do you treat the particles that
get trapped or untrapped, etc... ?

The “ad hoc” closures fail when they are really needed i.e.
in the nonlinear regimes!

One can resort to the “salvific” word “model” or better solve
numerically the full nonlinear Vlasov equation11 guided by the
indications that the “models” can give.

10
See e.g. some models of ionacoustic shocks

11
This can be done now on powerful supercomputer even for high dimensionality problems and is rather

straightforward for 1-D Langmuir and ionacoustic waves.



Closures in magnetized plasmas

If the collision frequency is smaller than the cyclotron frequency Ωc

(due e.g. to a large scale magnetic field) the particle dynamics along

magnetic field lines differs from the perpendicular dynamics12.

This means that one construct hybrid kinetic-moment equations by

taking velocity moments separately with respect to the perpendicular

velocities and to the parallel velocity13.
This mean that different closures need be devised for the parallel

and for the perpendicular components14 of the pressure tensor.

In the parallel direction we have essentially velocity-type closures

(with ω/k→ (ω + sΩc)/k||). In the perpendicular direction the cold

plasma limit corresponds instead to k⊥ρth << 1, with ρth the particle

gyroradius (Larmor radius) computed with the thermal velocity.

12
In the nonrelativistic limit they are decoupled.

13
This separation between the parallel and the perpendicular dynamics is the starting point of the derivation of

the se called gyro-kinetic and drift-kinetic equations
14

Disregarding mixed parallel-perpendicular terms.



Closures in magnetized plasmas

A consequence of the different parallel and perpendicular dynamics

is that the particle distribution function is inherently anisotropic.

On timescales longer than the cyclotron period the pressure tensor

can be taken to be isotropic in the perpendicular plane due to the rapid

gyration of the particle (gyrotropic pressure).
This is at the basis of the so called double adiabatic closure where

the pressure tensor is written in the form15

ΠΠΠ = p⊥ III +(p|| − p⊥)bb, with b = B/B, (7)

where (p|| and p⊥) obey (in the ideal MHD framework) the closure
equations

d
dt

(
p||B2

n3

)
= 0,

d
dt

(
p⊥

nB

)
= 0. (8)

15
G. Chew, F. Goldberger, and F. Low, Proceedings of the Royal Society of London A: 236, 112 (1956).



Closures in magnetized plasmas

The equation for the perpendicular pressure can be interpreted as the
conservation of the particle magnetic moment |v⊥|2/B.
The equation for the parallel pressure follows16 from the conservation of
the “action” of a plasma element moving along a magnetic line (and of
the magnetic flux). A more general version of CGL equations (in index
notation) is

d pα

||
dtα

+ pα

||
∂uα

k
∂xk

=−2pα

|| blbk
∂uα

l
∂xk

(9)

d pα

⊥
dtα

+2pα

⊥
∂uα

k
∂xk

= pα

⊥blbk
∂uα

l
∂xk

. (10)

These equations can apply to separate species (α).

In the next lecture it will be indicated how these equations can be derived

by the moment equation for the pressure tensor ΠΠΠ.

16
See R.M. Kulsrud, in Handbook of Plasma Physics, M.N. Rosenbluth and R.Z. Sagdeev Ed., Vol.1, p.115,

North Holland Publ., (1983).



Shear Alfvèn waves and fire-hose instability

Magnetohydrodynamic (single fluid) description with double adiabatic

equation of state.
Dispersion relation of shear Alfvèn waves with isotropic plasma

pressure
ω

2 = k2
||B

2/(4πnmi) = k2
||c

2
A

where cA is the “magnetic sound” (Alfvèn) velocity.

Corresponding dispersion relation with an anisotropic plasma obeying
the double adiabatic equation of state

ω
2 = k2

|| (B
2/4π + p⊥− p||)/(nmi) .

It corresponds to an instability, ω2 < 0, when B2/4π + p⊥ < p||: parallel

pressure (if not balanced by perpendicular pressure) counteracts the

parallel magnetic tension which is the restoring force of shear Alfvèn

waves.



Processes that make the pressure tensor anisotropic

The presence of anisotropy is the rule rather than the exception.

Some single and multi particle effects in a magnetized plasma

Energy gain: Joule heating (acceleration) along magnetic field lines,
perpendicular heating in an e.m. laser pulse, wave resonances (a curious
case: anomalous Doppler effect) Radio-frequency heating.

Energy loss: cyclotron (synchrotron) radiation,

Energy transport along field lines in the presence of “temperature”
gradients,

Particle propagation in an inhomogeneous (turbulent) magnetic field:
different dependence of the parallel and perpendicular equations of state
on B. Plasma compression and expansion, (solar wind problem) Selective

particle confinement: magnetic traps and mirrors.

...........



A measurement and a problem

Proton velocity distribution

in the solar wind (fast right)

largest anisotropy closer to the sun

E. Marsch, Space Sci. Rev., 172, 23 (2012)



A measurement and a problem

Pressure anisotropy in the

solar wind as predicted by

ihe double adiabatic closure

S.D. Bale et al. PRL, 103, 211101 (2009)

see also

P. Hellinger et al. GRL, 33, L09101 (2006)



Processes that make the pressure tensor anisotropic

I will discuss within the moment description a “kinetic” effect that leads

to pressure anisotropy in the presence of a plasma velocity shear (D. Del

Sarto, F. Pegoraro MNRAS 475, 181 (2018)).
This treatment has important limitations but it clearly identifies the

main features of the process putting together velocity shear (actually the

symmetric part [(∂ui)/(∂x j)+(∂u j)/(∂xi)]/2 of the velocity

strain tensor that characterizes the ‘deformation” of the velocity field)

and the shape and dynamics of the pressure tensor.



Processes that make the pressure tensor anisotropic

The approach to the investigation of the anisotropization process due to
the plasma velocity distribution obeys two related motivations:

1) the extension to higher orders of the so called finite Larmor radius
corrections to the double adiabatic pressure tensor17.

2) The evidence obtained with kinetic (hybrid) simulations18 of a

correlation between plasma vorticity and generation of pressure

anisotropy.

As consistent with the double adiabatic closure strong magnetic field is

assumed. Furthermore the treatment I will present is essentially 2-D (in

the plane perpendicular to the almost straight magnetic field)

17
The inclusion of gyroviscous Finite-Larmor-Radius (FLR) corrections related to the components of the

gradient velocity tensor breaks the gyrotropic symmetry of the CGL pressure tensor (A.F. Kaufman, Phys fluids 3,
619 (1960). There is a huge literature (see in particular the classic K. V. Roberts and J. B. Taylor Phys. Rev. Lett.
8, 197 (1962)) on this subject which been revived in connection with the recent developments in gyrokinetic theory
and simulations.

18
L. Franci, et al. Ap.J, 833, 91 (2016), T.N Parashar, W.H. Matthaeus Ap.J, 832, 57 (2016), F. Valentini et

al. New J. Phys. 18, 125001 (2016),



Moment equations for the pressure tensor

From Vasov equation, for a given species, in index notation:

∂n
∂ t

+
∂

∂xi
(nui) = 0 (11)

∂ui

∂ t
+ uk

∂ui

∂xk
=

q
mc

(cEi + εilmulBm) −
1

mn
∂Πik

∂xk
(12)

∂Πi j

∂ t
+

∂Qki j

∂xk
+

∂

∂xk
(uk Πi j) +

∂ui

∂xk
Πk j +

∂u j

∂xk
Πik (13)

− q
mc

(
εilmΠl jBm + ε jlmBmΠil

)
= 0

Index notation used with ε jlm the Levi-Civita symbol (vector product).
If a closure condition for Qi jk is given, the system of fluid equations

above is closed once it is coupled to the equations for the e.m. fields.



Moment equations for the pressure tensor

∂Ei

∂xi
=

1
4π

(neqe +niqi),
∂Bi

∂xi
= 0,

∂Bi

∂ t
=−cεi jk

∂Ek

∂x j
(14)

εi jk
∂Bk

∂x j
=

4π

c
Ji +

1
c

∂Ei

∂ t
Ji ≡ neqeue

i +niqiui
i (15)

and satisfies the energy conservation equation

∂

∂ t

{
∑
α

[
mαnα

2
(uα)2 +

tr{ΠΠΠα}
2

]
+

B2

8π
+

E2

8π

}
= (16)

=−∇·
{

∑
α

[
Qα +uα ·ΠΠΠα +uα

(
tr{ΠΠΠα}

2
+

nαmα(uα)2

2

)]
+

c
4π

E×B
}

with the heat flow vector Qα
i ≡ Qα

i jkδ jk/2 .



Extended MHD equations with a pressure tensor ΠΠΠ

Sum in the usual way the electron and the ion equations using the
quasineutrality condition to obtain a single fluid theory (as in the
standard double adiabatic MHD equations).

Close the system by setting to zero the heat flux tensor.

This is the weakest assumption although at least for the plasma dynamics

perpendicular to the background magnetic field, which I will consider in

the following part of the presentation, it can be shown that it is

reasonable.

Tensor notation: ΠΠΠ has components Πi j,
(ΠΠΠ×b)i j means εilk Πl j bk, while (ΠΠΠ ·∇∇∇u)i j means Πil ∂l u j, etc.

The symbol T means transpose. Clearly ΠΠΠ
T = ΠΠΠ (symmetric tensor).



Extended MHD equations with a pressure tensor ΠΠΠ

∂n
∂ t

+ ∇∇∇ · (nuuu) = 0, (17)

∂uuu
∂ t

+ uuu ·∇∇∇uuu = Ωc
JJJ×bbb

ne
− ∇∇∇ ·ΠΠΠ

mn
, (18)

∂ΠΠΠ

∂ t
+ ∇∇∇ · (uuuΠΠΠ) + ΠΠΠ ·∇∇∇uuu + (ΠΠΠ ·∇∇∇uuu)T − Ωc(ΠΠΠ×bbb+(ΠΠΠ×bbb)T ) = 0, (19)

JJJ =
c

4π
∇∇∇×BBB,

∂BBB
∂ t

= ∇∇∇×
{(

uuu− JJJ
ne

)
×BBB
}
. (20)

Here Ωc ≡ e|BBB|/(mc) is the ion cyclotron frequency, bbb the unit vector along the

local magnetic field and ∇∇∇ · (uuuΠΠΠ)≡ (∇∇∇ ·uuu)ΠΠΠ+uuu ·∇∇∇ΠΠΠ.



Extended MHD equations with a pressure tensor ΠΠΠ

The evolution of the pressure tensor described by Eq.(19) is determined
by the contribution of the two linear operators

Luuu(ΠΠΠ)≡ ∇∇∇ · (uuuΠΠΠ) + ΠΠΠ ·∇∇∇uuu + (ΠΠΠ ·∇∇∇uuu)T , (21)

MBBB(ΠΠΠ)≡Ωc(ΠΠΠ×bbb+(ΠΠΠ×bbb)T ), (22)

their actions on ΠΠΠ involves the time scales τH ≡ |∇∇∇uuu|−1 and τB ≡Ω−1
c .

The CGL closure is obtained by setting MBBB(ΠΠΠ) = 0

Taking b in a fixed direction (say along z in a 2D configuration with a
uniform external field) the operator MBBB corresponds to a rotation in the
x-y plane. The operator Luuu consists of different contributions.

We take uz = 0 and in the following we only consider the dynamics in the

x-y plane i.e. the corrections to the CGL pressure tensor that is isotropic

in this plane : gyrotropic distribution.



Extended MHD equations with a pressure tensor ΠΠΠ

The velocity strain tensor ∇∇∇uuu in this 2D configuration19 consists of a
compressional part

C⊥,i j ≡−
1
2

∂uk

∂xk
δi j, (k = x,y), (23)

of the trace-less rate of shear that gives the (incompressible) distortion
(rate of shear) of the velocity distribution

D⊥,i j ≡
1
2

[
∂ui

∂x j
+

∂u j

∂xi

]
, (i, j = x,y), (24)

and of the vorticity

W⊥,i j ≡
1
2

[
∂ui

∂x j
−

∂u j

∂xi

]
, (i, j = x,y). (25)

19
An analogous splitting could be done in 3D. Note that compression in the perpendicular plane is different

from volume compression



Generation of a non-gyrotropic pressure tensor

Using a matrix notation where [AAA,BBB] = AAABBB−BBBAAA and {AAA,BBB}= AAABBB+BBBAAA
we obtain

dΠΠΠ⊥
dt

= [B⊥+W⊥,ΠΠΠ⊥]−{D⊥,ΠΠΠ⊥}+4C⊥ΠΠΠ⊥. (26)

We split ΠΠΠ⊥ into a gyrotropic and an agyrotropic (non-gyrotropic) part

ΠΠΠ⊥ = tr(ΠΠΠ⊥)I⊥/2+ΠΠΠ
ng
⊥ , and obtain

1
2

d
dt

tr(ΠΠΠ⊥) =−tr(D⊥ΠΠΠ⊥)+2C⊥tr((ΠΠΠ⊥), (27)

dΠΠΠ
ng
⊥

dt
= [B⊥+W⊥,ΠΠΠ

ng
⊥ ]−{D⊥,ΠΠΠ

ng
⊥ }+4C⊥ΠΠΠ

ng
⊥ , (28)

+I⊥ tr(D⊥ΠΠΠ
ng
⊥ )−D⊥ tr(ΠΠΠ⊥).



Non-gyrotropic pressure tensor in a shear flow

Eq.(28) shows (the red term) that a non-null rate of shear D⊥ can
generate agyrotropy on a time scale τan ∼ ||D⊥||−1 from an initial
isotropic state ( ΠΠΠ

ng
⊥ = 0 ) while the action of vorticity simply adds up to

that of the magnetic field.

In this 2D configuration, the evolution of the parallel component

P|| = Πi jbib j is given by dP||/dt = 4C⊥P||.

The correlation between a non-gyrotropic distribution and vorticity
is only indirect as it follows from the correlation between fluid
vorticity and rate of shear D

as shown e.g., in a sheared flow of the form ux(y)

∇∇∇uuu =
∂ux

∂y
=

1
2

[
∂ux

∂y
−

∂uy

∂x

]
+

1
2

[
∂ux

∂y
+

∂uy

∂x

]
= W⊥+D⊥. (29)



Anisotropy-driven instabilities.

Anisotropy (both gyrotropic and non-gyrotropic) modifies existing
instabilities20 and leads to new ones.

These instabilities influence the evolution of the anisotropy generating
mechanism, for example the shear flow discussed in the second lecture.

An example is provided by the Weibel instability21 or by the fire-hose
and mirror instabilities (not discussed here) whose thresholds have been
supposed to fix the boundaries in the parameter space of the ion
gyrotropic anisotropy measured in the solar wind22.

In a different context a Weibel-type instability on the electron scales,

called the current filamentation instability, has been studied in the

context of ultraintense laser plasma interactions23.

20
See e.g. reconnecting instabilities for which the change of magnetic topology is allowed or enhanced by

pressure anisotropy
21

E. W. Weibel, Phys. Rev. Lett., 2, 83 (1959)
22

See among others P. Hellinger et al., Geophys. Res. Lett., 33, L09101 (2006)
23

See among others F. Pegoraro, et al, Phys. Scr., T63, 262 (1996) and more recent articles including the
extension to relativistic plasmas



Magnetic field generation and the Weibel instability

Magnetic fields represent a fundamental feature of laboratory and space
plasmas. At low frequencies and long spatial scales, magnetic fields
emerge as the dominant factor in the dynamics of a plasma as a
consequence of the effective cancellation of the electric forces due to
plasma quasi-neutrality. Conversely, at high frequencies and shorter
spatial scales, magnetic fields play an increasingly important role when
the particle velocities approach the speed of light.

The Weibel instability (and its beam-plasma counterpart: the current
filamentation instability) is an electromagnetic instability that generates a
magnetic field in the presence of particle phase-space anisotropies.

The Weibel instabilitiy is of primary importance in the astrophysical

context: e.g.for the formation (or the seeding at small spatial scales) of

cosmological magnetic fields or the development of collisionless shocks.



Magnetic field generation and the Weibel instability

A direct link between electron pressure anisotropy and the generation of
magnetic field is shown by inserting the moment equation for the electron
momentum24

men
[

∂ue

∂ t
+(ue ·∇)ue

]
=−∇ ·ΠΠΠe−ne

[
E+

ue

c
×B
]

(30)

into Faraday’s law ∇×E =−(1/c)∂B/∂ t and by neglecting for simplicity
the inertial terms. If ΠΠΠe = peIII, and if pe satisfies a barotropic closure
(so that ∇× [(1/n)(∇p)] = 0) magnetic flux conservation applies (in
Eq.(30) in the electron or in the single fluid plasma in MHD.

If the pressure tensor ΠΠΠe is anisotropic ∇× [(1/n)(∇ ·ΠΠΠe)] 6= 0 and

magnetic flux conservation is violated. It can be destroyed (magnetic

reconnection) or it can be generated (Weibel instability).

24
as obtained from Eqs.(19,18)



The way collective excitations work:
Weibel instability and magnetic field generation

Collisions would eventually make the particle distribution function

isotropic if it were not for faster mechanisms that reinforce anisotropy25.

Collective excitations take part of the role of the collisions, but in general

they do not lead to thermalization: the process is much more complex.

• In an anisotropic plasma, because of the magnetic part of the Lorentz
force, a transverse e.m. mode can propagate with a phase velocity
smaller26 than c and can thus interact with the plasma particles.

• Then the anisotropic degrees of freedom in the particle distribution can

be thought of as thermal baths at different “temperatures” with the

instability putting the two baths in contact and extracting work (the

magnetic field energy) in the process as in a “thermal”” machine.

25
Some of them, such as synchrotron radiation in a magnetized plasma or the effect of the velocity shear, were

mentioned and discussed in the second lecture.
26

In an isotropic plasma transverse modes ω2 = k2c2 +ω2
pe have phase velocity larger than the light speed c



Weibel Instability

An approximate but intuitive explanation of the magnetic field generation
can be derived from a virtual displacement argument borrowed from the
theory of the closely related current filamentation instability

Assume Ty� Tx,Tz and split the electron distribution function into two
parts corresponding to positive and to negative values of vy, Displace
them in opposite directions along x. The opposite current densities that
are formed are modulated along x and produce a magnetic field along z.
Opposite currents repel, the initial displacement is reinforced, the
instability can develop and the magnetic field along z can grow.



Kinetic Development of the Weibel Instability

Consider high frequency modes evolving on electron time scales in a
collisionless plasma and use the Vlasov-Maxwell system of equations for
the electron distribution function fe taking immobile ions. Velocities
are normalized to the speed of light and times to ω−1

pe

∂ fe

∂ t
+v.

∂ fe

∂x
+(E+v×B) · ∂ fe

∂v
= 0.

Simplified geometry: 1D-2V configuration: all quantities depend on x

and time only, the particle velocities and the electric field have x-y
components and the magnetic field is along z.

∂Bz

∂ t
=−

∂Ey

∂x
, −∂Bz

∂x
=

∂Ey

∂ t
+ Jy,

∂ 2φ

∂ 2x
=−ρ,

ρ, J are the charge and current densities, φ is the electrostatic potential.

Initial distribution function: fM = n/(π
√

TxTy)exp(− v2
x/Tx− v2

y/Ty

)
.



Kinetic Development of the Weibel Instability

From the original Weibel’s article



Onset, linear growth, beginning of its saturation phase

Time evolution of the Fourier components of the most unstable k = kmax = 1

magnetic and inductive electric field mode, Bz,k=1 and Ey,k=1, solid and dashed

line, and of the most unstable k = 2.3 longitudinal electric field Ex,k=2.3 (dotted

line). The dash-three dotted line represents the linear growth rate of the

magnetic field. (L. Palodhi et al..PPCF, 51, 125006, (2009)).



Coupling to Langmuir waves

The longitudinal electric field Ex,k arises from the coupling between
the Weibel instability and the Langmuir waves due to the electron
density modulation induced by the spatial modulation of B2

z,k, and
thus grows in time at twice the growth rate of the magnetic field.

During the linear phase the evolution of the electron distribution
function in velocity space is characterized by a differential rotation
in velocity space at the points where |Bz| generated by the Weibel
instability has a maximum and by a Y- shaped deformation with
axis along vy where t |Bz| vanishes and the inductive electric field
|Ey| is largest.



Deformation of the e lectron distribution function

Initial deformation of the electron distribution function

how can we define a pressure tensor ?



Resonant Langmuir waves

As the Weibel instability enters its fully nonlinear phase the
winding of the distribution function becomes tighter until it
becomes ”multi-armed”. Positive slopes in vx in are formed.
Although these slopes evolve in time, they can give rise to the
resonant excitation of Langmuir waves with phase velocities much
smaller than those of the Langmuir waves driven by the nonlinear
coupling.

This new destabilizing process leads to a highly structured electron
density distribution along x, while Bz remains spatially regular even
at late times.



“Different” Plasmas

Chromo-Weibel instability



Conclusions: Why do we call it pressure?

When needed, use concepts such as pressure, reduced moment
equations etc. as powerful investigation tools
but keep in mind they are convenient tools, not exact treatments,
and do not take their predictions too far.

You can resort to high dimensionality fully kinetic computer
simulations. These are getting more and more powerful all the time
and already allow us to explore regimes that would be almost
impossible to treat with other means.
But keep in mind that, finally, you must understand and
understanding requires language, and language in its turn requires
models that need be able to collect the numerical results and put
them in a single logical frame, and models again are based on
simplified tools such as pressure.



CGL derivation

∂

∂ t
Πi j +Lu(Πi j)︸ ︷︷ ︸

|∇u|≡τ
−1
H

+DQ(Πi j)︸ ︷︷ ︸
τ
−1
Q

= MB(Πi j)︸ ︷︷ ︸
Ωcα≡τ

−1
B

(31)

Lu(Πi j)≡
∂

∂xk
(ukΠi j)+Πk j

∂ui

∂xk
+Πik

∂u j

∂xk

DQ(Πi j)≡
∂

∂xk
Qi jk, MB(Πi j)≡

q
m

(
εilmΠl jBm + ε jlmΠilBm

)
The standard CGL closure is obtained in the limit of a sufficiently strong

magnetic field and/or sufficiently weak velocity strain. In this closure the
diagonal block shape of the pressure tensor

Π
0
i j = p⊥δi j +(p||− p⊥)bib j (32)

(bi ≡ Bi/|B| being the local direction of the magnetic field) is obtained by

solving the tensor equation MB(Π
0
i j) = 0, which corresponds to the zeroth-order

equilibrium solution of Eq.(31).



CGL derivation

The CGL double adiabatic equations are then written for pα

|| and pα
⊥, by solving

to next order27

∂

∂ t
Π

0
i j + Lu(Π

0
i j) = 0 (33)

contracting it by δi j and by bib j and using28 |b|= 1.

d
dt

(Πi jδi j)+(Πi jδi j)
∂uk

∂xk
+2Πik

∂ui

∂xk
= 0

∂

∂ t
(Πi jbib j)+

∂

∂xk

(
ukΠi jbib j

)
−Πi j

∂

∂ t

(
bib j

)
+bib j

(
Πik

∂u j

∂xk
+Πk j

∂ui

∂xk

)
= 0

27
After projecting out the term MB(Π

1
i j) = 0

28
For a nondiagonal form of the pressure tensor we must use an explicit equation for db/dt.



Current filamentation instability
in the context of laser plasma interaction

The transport of the fast electrons as a collimated beam is only possible by
means of a “return” current able to maintain global charge neutrality as well as
to compensate locally for the fast electron current.

Similarity with Weibel instability: counter propagating electron beams can be
assimilated to an anisotropic distribution function (no magnetic field is initially
present). ΠΠΠe arises from the relative motion of the two cold populations.
Counter propagating equal current beams currents lead to the development of
fast transverse electromagnetic (current-filamentation) instabilities +
longitudinal electrostatic (two-stream) instabilities (not present for more
standard anisotropic distributions).

Heuristically, the current-filamentation instability is driven by the magnetic
repulsion of the transversally displaced opposite currents.

It is the leading instability in relativistic conditions and generates strong
”quasi-static magnetic fields (with spatial scale of the order of some electron
skin-depths).



Filamentation instability: Linear dispersion relation

In the case of two counter propagating electron populations, the transverse
electromagnetic current filamentation instability is coupled to the two stream
electrostatic instability that develops along the beams’ direction.
Assuming the ions to be at rest and to provide a uniform neutralizing
background, the linear dispersion relation can be obtained by linearizing the
relativistic equations for the two counter-streaming cold electron populations
together with Maxwell’s equations (in normalized units):

∂nα

∂ t
= ∇ · jα ,

∂pα

∂ t
=−uα ·∇pα − (E+uα ×B), (34)

∂B
∂ t

=−∇×E,
∂E
∂ t

= ∇×B−∑
α

jα , (35)

with uα = pα/(1+ p2
α )

1/2, and jα =−nα uα , α = 1,2.

Consider: a homogeneous plasma with velocities along the x direction u0,α ,

such that the net current density is zero ∑α n0,α u0,α = 0, and a perturbation

with frequency ω and wavevector k = (kx,ky), such that the perturbed

magnetic field, arising from the separation along y of the oppositely directed

currents along x, is in the z direction.



Filamentation instability: Linear dispersion relation

With Ωα = ω− kxu0,α and Γα = (1−u2
0,α )

−1/2, the linear dispersion relation is

(1−Ω
−2
2 )
[
k2

x(1+Ω
−2
4 )−ω

2(1−Ω
−2
1 )−2ωkxΩ

−2
3

]
(36)

+k2
y

[
(1−Ω

−2
1 )(1+Ω

−2
4 )+Ω

−4
3

]
= 0, with

Ω
−2
1 = ∑

α

n0,α

Γα Ω2
α

, Ω
−2
2 = ∑

α

n0,α

Γ3
α Ω2

α

, Ω
−2
3 = ∑

α

n0,α u0,α

Γα Ω2
α

, Ω
−2
4 = ∑

α

n0,α u2
0,α

Γα Ω2
α

.

For ky = 0, no magnetic field is produced and the electrostatic two-stream
instability amplifies the electric field Ex with a growth rate obtained by solving
the equation 1−Ω

−2
2 = 0. For kx = 0, the dispersion relation reduces to

ω
2(1−Ω

−2
2 )(1−Ω

−2
1 )− k2

y

[
(1−Ω

−2
1 )(1+Ω

−2
4 )+Ω

−4
3

]
= 0, (37)

which contains two oscillatory solutions and one purely growing electromagnetic
instability (the current filamentation instability) which amplifies the magnetic
field Bz with a growth rate that is linear on ky for kyde < 1 (in dimensional
units) and becomes approximately constant and of order ωpe for kyde > 1 when
the velocity on the two counterstreaming beams is close to the velocity of light.


